Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

View File

@@ -0,0 +1,129 @@
//! Plays an animation on a skinned glTF model of a fox.
use std::f32::consts::PI;
use bevy::{pbr::CascadeShadowConfigBuilder, prelude::*, scene::SceneInstanceReady};
// An example asset that contains a mesh and animation.
const GLTF_PATH: &str = "models/animated/Fox.glb";
fn main() {
App::new()
.insert_resource(AmbientLight {
color: Color::WHITE,
brightness: 2000.,
..default()
})
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup_mesh_and_animation)
.add_systems(Startup, setup_camera_and_environment)
.run();
}
// A component that stores a reference to an animation we want to play. This is
// created when we start loading the mesh (see `setup_mesh_and_animation`) and
// read when the mesh has spawned (see `play_animation_once_loaded`).
#[derive(Component)]
struct AnimationToPlay {
graph_handle: Handle<AnimationGraph>,
index: AnimationNodeIndex,
}
fn setup_mesh_and_animation(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Create an animation graph containing a single animation. We want the "run"
// animation from our example asset, which has an index of two.
let (graph, index) = AnimationGraph::from_clip(
asset_server.load(GltfAssetLabel::Animation(2).from_asset(GLTF_PATH)),
);
// Store the animation graph as an asset.
let graph_handle = graphs.add(graph);
// Create a component that stores a reference to our animation.
let animation_to_play = AnimationToPlay {
graph_handle,
index,
};
// Start loading the asset as a scene and store a reference to it in a
// SceneRoot component. This component will automatically spawn a scene
// containing our mesh once it has loaded.
let mesh_scene = SceneRoot(asset_server.load(GltfAssetLabel::Scene(0).from_asset(GLTF_PATH)));
// Spawn an entity with our components, and connect it to an observer that
// will trigger when the scene is loaded and spawned.
commands
.spawn((animation_to_play, mesh_scene))
.observe(play_animation_when_ready);
}
fn play_animation_when_ready(
trigger: Trigger<SceneInstanceReady>,
mut commands: Commands,
children: Query<&Children>,
animations_to_play: Query<&AnimationToPlay>,
mut players: Query<&mut AnimationPlayer>,
) {
// The entity we spawned in `setup_mesh_and_animation` is the trigger's target.
// Start by finding the AnimationToPlay component we added to that entity.
if let Ok(animation_to_play) = animations_to_play.get(trigger.target()) {
// The SceneRoot component will have spawned the scene as a hierarchy
// of entities parented to our entity. Since the asset contained a skinned
// mesh and animations, it will also have spawned an animation player
// component. Search our entity's descendants to find the animation player.
for child in children.iter_descendants(trigger.target()) {
if let Ok(mut player) = players.get_mut(child) {
// Tell the animation player to start the animation and keep
// repeating it.
//
// If you want to try stopping and switching animations, see the
// `animated_mesh_control.rs` example.
player.play(animation_to_play.index).repeat();
// Add the animation graph. This only needs to be done once to
// connect the animation player to the mesh.
commands
.entity(child)
.insert(AnimationGraphHandle(animation_to_play.graph_handle.clone()));
}
}
}
}
// Spawn a camera and a simple environment with a ground plane and light.
fn setup_camera_and_environment(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(100.0, 100.0, 150.0).looking_at(Vec3::new(0.0, 20.0, 0.0), Vec3::Y),
));
// Plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(500000.0, 500000.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
first_cascade_far_bound: 200.0,
maximum_distance: 400.0,
..default()
}
.build(),
));
}

View File

@@ -0,0 +1,210 @@
//! Plays animations from a skinned glTF.
use std::{f32::consts::PI, time::Duration};
use bevy::{animation::RepeatAnimation, pbr::CascadeShadowConfigBuilder, prelude::*};
const FOX_PATH: &str = "models/animated/Fox.glb";
fn main() {
App::new()
.insert_resource(AmbientLight {
color: Color::WHITE,
brightness: 2000.,
..default()
})
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, setup_scene_once_loaded)
.add_systems(Update, keyboard_control)
.run();
}
#[derive(Resource)]
struct Animations {
animations: Vec<AnimationNodeIndex>,
graph_handle: Handle<AnimationGraph>,
}
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Build the animation graph
let (graph, node_indices) = AnimationGraph::from_clips([
asset_server.load(GltfAssetLabel::Animation(2).from_asset(FOX_PATH)),
asset_server.load(GltfAssetLabel::Animation(1).from_asset(FOX_PATH)),
asset_server.load(GltfAssetLabel::Animation(0).from_asset(FOX_PATH)),
]);
// Keep our animation graph in a Resource so that it can be inserted onto
// the correct entity once the scene actually loads.
let graph_handle = graphs.add(graph);
commands.insert_resource(Animations {
animations: node_indices,
graph_handle,
});
// Camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(100.0, 100.0, 150.0).looking_at(Vec3::new(0.0, 20.0, 0.0), Vec3::Y),
));
// Plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(500000.0, 500000.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
first_cascade_far_bound: 200.0,
maximum_distance: 400.0,
..default()
}
.build(),
));
// Fox
commands.spawn(SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset(FOX_PATH)),
));
// Instructions
commands.spawn((
Text::new(concat!(
"space: play / pause\n",
"up / down: playback speed\n",
"left / right: seek\n",
"1-3: play N times\n",
"L: loop forever\n",
"return: change animation\n",
)),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
// An `AnimationPlayer` is automatically added to the scene when it's ready.
// When the player is added, start the animation.
fn setup_scene_once_loaded(
mut commands: Commands,
animations: Res<Animations>,
mut players: Query<(Entity, &mut AnimationPlayer), Added<AnimationPlayer>>,
) {
for (entity, mut player) in &mut players {
let mut transitions = AnimationTransitions::new();
// Make sure to start the animation via the `AnimationTransitions`
// component. The `AnimationTransitions` component wants to manage all
// the animations and will get confused if the animations are started
// directly via the `AnimationPlayer`.
transitions
.play(&mut player, animations.animations[0], Duration::ZERO)
.repeat();
commands
.entity(entity)
.insert(AnimationGraphHandle(animations.graph_handle.clone()))
.insert(transitions);
}
}
fn keyboard_control(
keyboard_input: Res<ButtonInput<KeyCode>>,
mut animation_players: Query<(&mut AnimationPlayer, &mut AnimationTransitions)>,
animations: Res<Animations>,
mut current_animation: Local<usize>,
) {
for (mut player, mut transitions) in &mut animation_players {
let Some((&playing_animation_index, _)) = player.playing_animations().next() else {
continue;
};
if keyboard_input.just_pressed(KeyCode::Space) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
if playing_animation.is_paused() {
playing_animation.resume();
} else {
playing_animation.pause();
}
}
if keyboard_input.just_pressed(KeyCode::ArrowUp) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
let speed = playing_animation.speed();
playing_animation.set_speed(speed * 1.2);
}
if keyboard_input.just_pressed(KeyCode::ArrowDown) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
let speed = playing_animation.speed();
playing_animation.set_speed(speed * 0.8);
}
if keyboard_input.just_pressed(KeyCode::ArrowLeft) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
let elapsed = playing_animation.seek_time();
playing_animation.seek_to(elapsed - 0.1);
}
if keyboard_input.just_pressed(KeyCode::ArrowRight) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
let elapsed = playing_animation.seek_time();
playing_animation.seek_to(elapsed + 0.1);
}
if keyboard_input.just_pressed(KeyCode::Enter) {
*current_animation = (*current_animation + 1) % animations.animations.len();
transitions
.play(
&mut player,
animations.animations[*current_animation],
Duration::from_millis(250),
)
.repeat();
}
if keyboard_input.just_pressed(KeyCode::Digit1) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
playing_animation
.set_repeat(RepeatAnimation::Count(1))
.replay();
}
if keyboard_input.just_pressed(KeyCode::Digit2) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
playing_animation
.set_repeat(RepeatAnimation::Count(2))
.replay();
}
if keyboard_input.just_pressed(KeyCode::Digit3) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
playing_animation
.set_repeat(RepeatAnimation::Count(3))
.replay();
}
if keyboard_input.just_pressed(KeyCode::KeyL) {
let playing_animation = player.animation_mut(playing_animation_index).unwrap();
playing_animation.set_repeat(RepeatAnimation::Forever);
}
}
}

View File

@@ -0,0 +1,292 @@
//! Plays animations from a skinned glTF.
use std::{f32::consts::PI, time::Duration};
use bevy::{
animation::AnimationTargetId, color::palettes::css::WHITE, pbr::CascadeShadowConfigBuilder,
prelude::*,
};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
const FOX_PATH: &str = "models/animated/Fox.glb";
fn main() {
App::new()
.insert_resource(AmbientLight {
color: Color::WHITE,
brightness: 2000.,
..default()
})
.add_plugins(DefaultPlugins)
.init_resource::<ParticleAssets>()
.init_resource::<FoxFeetTargets>()
.add_systems(Startup, setup)
.add_systems(Update, setup_scene_once_loaded)
.add_systems(Update, simulate_particles)
.add_observer(observe_on_step)
.run();
}
#[derive(Resource)]
struct SeededRng(ChaCha8Rng);
#[derive(Resource)]
struct Animations {
index: AnimationNodeIndex,
graph_handle: Handle<AnimationGraph>,
}
#[derive(Event, Reflect, Clone)]
struct OnStep;
fn observe_on_step(
trigger: Trigger<OnStep>,
particle: Res<ParticleAssets>,
mut commands: Commands,
transforms: Query<&GlobalTransform>,
mut seeded_rng: ResMut<SeededRng>,
) {
let translation = transforms.get(trigger.target()).unwrap().translation();
// Spawn a bunch of particles.
for _ in 0..14 {
let horizontal = seeded_rng.0.r#gen::<Dir2>() * seeded_rng.0.gen_range(8.0..12.0);
let vertical = seeded_rng.0.gen_range(0.0..4.0);
let size = seeded_rng.0.gen_range(0.2..1.0);
commands.spawn((
Particle {
lifetime_timer: Timer::from_seconds(
seeded_rng.0.gen_range(0.2..0.6),
TimerMode::Once,
),
size,
velocity: Vec3::new(horizontal.x, vertical, horizontal.y) * 10.0,
},
Mesh3d(particle.mesh.clone()),
MeshMaterial3d(particle.material.clone()),
Transform {
translation,
scale: Vec3::splat(size),
..Default::default()
},
));
}
}
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Build the animation graph
let (graph, index) = AnimationGraph::from_clip(
// We specifically want the "run" animation, which is the third one.
asset_server.load(GltfAssetLabel::Animation(2).from_asset(FOX_PATH)),
);
// Insert a resource with the current scene information
let graph_handle = graphs.add(graph);
commands.insert_resource(Animations {
index,
graph_handle,
});
// Camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(100.0, 100.0, 150.0).looking_at(Vec3::new(0.0, 20.0, 0.0), Vec3::Y),
));
// Plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(500000.0, 500000.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
first_cascade_far_bound: 200.0,
maximum_distance: 400.0,
..default()
}
.build(),
));
// Fox
commands.spawn(SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset(FOX_PATH)),
));
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let seeded_rng = ChaCha8Rng::seed_from_u64(19878367467712);
commands.insert_resource(SeededRng(seeded_rng));
}
// An `AnimationPlayer` is automatically added to the scene when it's ready.
// When the player is added, start the animation.
fn setup_scene_once_loaded(
mut commands: Commands,
animations: Res<Animations>,
feet: Res<FoxFeetTargets>,
graphs: Res<Assets<AnimationGraph>>,
mut clips: ResMut<Assets<AnimationClip>>,
mut players: Query<(Entity, &mut AnimationPlayer), Added<AnimationPlayer>>,
) {
fn get_clip<'a>(
node: AnimationNodeIndex,
graph: &AnimationGraph,
clips: &'a mut Assets<AnimationClip>,
) -> &'a mut AnimationClip {
let node = graph.get(node).unwrap();
let clip = match &node.node_type {
AnimationNodeType::Clip(handle) => clips.get_mut(handle),
_ => unreachable!(),
};
clip.unwrap()
}
for (entity, mut player) in &mut players {
// Send `OnStep` events once the fox feet hits the ground in the running animation.
let graph = graphs.get(&animations.graph_handle).unwrap();
let running_animation = get_clip(animations.index, graph, &mut clips);
// You can determine the time an event should trigger if you know witch frame it occurs and
// the frame rate of the animation. Let's say we want to trigger an event at frame 15,
// and the animation has a frame rate of 24 fps, then time = 15 / 24 = 0.625.
running_animation.add_event_to_target(feet.front_left, 0.625, OnStep);
running_animation.add_event_to_target(feet.front_right, 0.5, OnStep);
running_animation.add_event_to_target(feet.back_left, 0.0, OnStep);
running_animation.add_event_to_target(feet.back_right, 0.125, OnStep);
// Start the animation
let mut transitions = AnimationTransitions::new();
// Make sure to start the animation via the `AnimationTransitions`
// component. The `AnimationTransitions` component wants to manage all
// the animations and will get confused if the animations are started
// directly via the `AnimationPlayer`.
transitions
.play(&mut player, animations.index, Duration::ZERO)
.repeat();
commands
.entity(entity)
.insert(AnimationGraphHandle(animations.graph_handle.clone()))
.insert(transitions);
}
}
fn simulate_particles(
mut commands: Commands,
mut query: Query<(Entity, &mut Transform, &mut Particle)>,
time: Res<Time>,
) {
for (entity, mut transform, mut particle) in &mut query {
if particle.lifetime_timer.tick(time.delta()).just_finished() {
commands.entity(entity).despawn();
return;
}
transform.translation += particle.velocity * time.delta_secs();
transform.scale = Vec3::splat(particle.size.lerp(0.0, particle.lifetime_timer.fraction()));
particle
.velocity
.smooth_nudge(&Vec3::ZERO, 4.0, time.delta_secs());
}
}
#[derive(Component)]
struct Particle {
lifetime_timer: Timer,
size: f32,
velocity: Vec3,
}
#[derive(Resource)]
struct ParticleAssets {
mesh: Handle<Mesh>,
material: Handle<StandardMaterial>,
}
impl FromWorld for ParticleAssets {
fn from_world(world: &mut World) -> Self {
Self {
mesh: world.add_asset::<Mesh>(Sphere::new(10.0)),
material: world.add_asset::<StandardMaterial>(StandardMaterial {
base_color: WHITE.into(),
..Default::default()
}),
}
}
}
/// Stores the `AnimationTargetId`s of the fox's feet
#[derive(Resource)]
struct FoxFeetTargets {
front_right: AnimationTargetId,
front_left: AnimationTargetId,
back_left: AnimationTargetId,
back_right: AnimationTargetId,
}
impl Default for FoxFeetTargets {
fn default() -> Self {
let hip_node = ["root", "_rootJoint", "b_Root_00", "b_Hip_01"];
let front_left_foot = hip_node.iter().chain(
[
"b_Spine01_02",
"b_Spine02_03",
"b_LeftUpperArm_09",
"b_LeftForeArm_010",
"b_LeftHand_011",
]
.iter(),
);
let front_right_foot = hip_node.iter().chain(
[
"b_Spine01_02",
"b_Spine02_03",
"b_RightUpperArm_06",
"b_RightForeArm_07",
"b_RightHand_08",
]
.iter(),
);
let back_left_foot = hip_node.iter().chain(
[
"b_LeftLeg01_015",
"b_LeftLeg02_016",
"b_LeftFoot01_017",
"b_LeftFoot02_018",
]
.iter(),
);
let back_right_foot = hip_node.iter().chain(
[
"b_RightLeg01_019",
"b_RightLeg02_020",
"b_RightFoot01_021",
"b_RightFoot02_022",
]
.iter(),
);
Self {
front_left: AnimationTargetId::from_iter(front_left_foot),
front_right: AnimationTargetId::from_iter(front_right_foot),
back_left: AnimationTargetId::from_iter(back_left_foot),
back_right: AnimationTargetId::from_iter(back_right_foot),
}
}
}

View File

@@ -0,0 +1,185 @@
//! Create and play an animation defined by code that operates on the [`Transform`] component.
use std::f32::consts::PI;
use bevy::{
animation::{animated_field, AnimationTarget, AnimationTargetId},
prelude::*,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight {
color: Color::WHITE,
brightness: 150.0,
..default()
})
.add_systems(Startup, setup)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut animations: ResMut<Assets<AnimationClip>>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
));
// Light
commands.spawn((
PointLight {
intensity: 500_000.0,
..default()
},
Transform::from_xyz(0.0, 2.5, 0.0),
));
// Let's use the `Name` component to target entities. We can use anything we
// like, but names are convenient.
let planet = Name::new("planet");
let orbit_controller = Name::new("orbit_controller");
let satellite = Name::new("satellite");
// Creating the animation
let mut animation = AnimationClip::default();
// A curve can modify a single part of a transform: here, the translation.
let planet_animation_target_id = AnimationTargetId::from_name(&planet);
animation.add_curve_to_target(
planet_animation_target_id,
AnimatableCurve::new(
animated_field!(Transform::translation),
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Vec3::new(1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, 1.0),
Vec3::new(-1.0, 0.0, -1.0),
Vec3::new(1.0, 0.0, -1.0),
// in case seamless looping is wanted, the last keyframe should
// be the same as the first one
Vec3::new(1.0, 0.0, 1.0),
]))
.expect("should be able to build translation curve because we pass in valid samples"),
),
);
// Or it can modify the rotation of the transform.
// To find the entity to modify, the hierarchy will be traversed looking for
// an entity with the right name at each level.
let orbit_controller_animation_target_id =
AnimationTargetId::from_names([planet.clone(), orbit_controller.clone()].iter());
animation.add_curve_to_target(
orbit_controller_animation_target_id,
AnimatableCurve::new(
animated_field!(Transform::rotation),
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]))
.expect("Failed to build rotation curve"),
),
);
// If a curve in an animation is shorter than the other, it will not repeat
// until all other curves are finished. In that case, another animation should
// be created for each part that would have a different duration / period.
let satellite_animation_target_id = AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
);
animation.add_curve_to_target(
satellite_animation_target_id,
AnimatableCurve::new(
animated_field!(Transform::scale),
UnevenSampleAutoCurve::new(
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0]
.into_iter()
.zip([
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
Vec3::splat(1.2),
Vec3::splat(0.8),
]),
)
.expect("Failed to build scale curve"),
),
);
// There can be more than one curve targeting the same entity path.
animation.add_curve_to_target(
AnimationTargetId::from_names(
[planet.clone(), orbit_controller.clone(), satellite.clone()].iter(),
),
AnimatableCurve::new(
animated_field!(Transform::rotation),
UnevenSampleAutoCurve::new([0.0, 1.0, 2.0, 3.0, 4.0].into_iter().zip([
Quat::IDENTITY,
Quat::from_axis_angle(Vec3::Y, PI / 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 2.),
Quat::from_axis_angle(Vec3::Y, PI / 2. * 3.),
Quat::IDENTITY,
]))
.expect("should be able to build translation curve because we pass in valid samples"),
),
);
// Create the animation graph
let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
// Create the animation player, and set it to repeat
let mut player = AnimationPlayer::default();
player.play(animation_index).repeat();
// Create the scene that will be animated
// First entity is the planet
let planet_entity = commands
.spawn((
Mesh3d(meshes.add(Sphere::default())),
MeshMaterial3d(materials.add(Color::srgb(0.8, 0.7, 0.6))),
// Add the animation graph and player
planet,
AnimationGraphHandle(graphs.add(graph)),
player,
))
.id();
commands
.entity(planet_entity)
.insert(AnimationTarget {
id: planet_animation_target_id,
player: planet_entity,
})
.with_children(|p| {
// This entity is just used for animation, but doesn't display anything
p.spawn((
Transform::default(),
Visibility::default(),
orbit_controller,
AnimationTarget {
id: orbit_controller_animation_target_id,
player: planet_entity,
},
))
.with_children(|p| {
// The satellite, placed at a distance of the planet
p.spawn((
Mesh3d(meshes.add(Cuboid::new(0.5, 0.5, 0.5))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.9, 0.3))),
Transform::from_xyz(1.5, 0.0, 0.0),
AnimationTarget {
id: satellite_animation_target_id,
player: planet_entity,
},
satellite,
));
});
});
}

View File

@@ -0,0 +1,197 @@
//! Shows how to use animation clips to animate UI properties.
use bevy::{
animation::{
animated_field, AnimationEntityMut, AnimationEvaluationError, AnimationTarget,
AnimationTargetId,
},
prelude::*,
};
use std::any::TypeId;
// Holds information about the animation we programmatically create.
struct AnimationInfo {
// The name of the animation target (in this case, the text).
target_name: Name,
// The ID of the animation target, derived from the name.
target_id: AnimationTargetId,
// The animation graph asset.
graph: Handle<AnimationGraph>,
// The index of the node within that graph.
node_index: AnimationNodeIndex,
}
// The entry point.
fn main() {
App::new()
.add_plugins(DefaultPlugins)
// Note that we don't need any systems other than the setup system,
// because Bevy automatically updates animations every frame.
.add_systems(Startup, setup)
.run();
}
impl AnimationInfo {
// Programmatically creates the UI animation.
fn create(
animation_graphs: &mut Assets<AnimationGraph>,
animation_clips: &mut Assets<AnimationClip>,
) -> AnimationInfo {
// Create an ID that identifies the text node we're going to animate.
let animation_target_name = Name::new("Text");
let animation_target_id = AnimationTargetId::from_name(&animation_target_name);
// Allocate an animation clip.
let mut animation_clip = AnimationClip::default();
// Create a curve that animates font size.
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableCurve::new(
animated_field!(TextFont::font_size),
AnimatableKeyframeCurve::new(
[0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
.into_iter()
.zip([24.0, 80.0, 24.0, 80.0, 24.0, 80.0, 24.0]),
)
.expect(
"should be able to build translation curve because we pass in valid samples",
),
),
);
// Create a curve that animates font color. Note that this should have
// the same time duration as the previous curve.
//
// This time we use a "custom property", which in this case animates TextColor under the assumption
// that it is in the "srgba" format.
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableCurve::new(
TextColorProperty,
AnimatableKeyframeCurve::new([0.0, 1.0, 2.0, 3.0].into_iter().zip([
Srgba::RED,
Srgba::GREEN,
Srgba::BLUE,
Srgba::RED,
]))
.expect(
"should be able to build translation curve because we pass in valid samples",
),
),
);
// Save our animation clip as an asset.
let animation_clip_handle = animation_clips.add(animation_clip);
// Create an animation graph with that clip.
let (animation_graph, animation_node_index) =
AnimationGraph::from_clip(animation_clip_handle);
let animation_graph_handle = animation_graphs.add(animation_graph);
AnimationInfo {
target_name: animation_target_name,
target_id: animation_target_id,
graph: animation_graph_handle,
node_index: animation_node_index,
}
}
}
// Creates all the entities in the scene.
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut animation_graphs: ResMut<Assets<AnimationGraph>>,
mut animation_clips: ResMut<Assets<AnimationClip>>,
) {
// Create the animation.
let AnimationInfo {
target_name: animation_target_name,
target_id: animation_target_id,
graph: animation_graph,
node_index: animation_node_index,
} = AnimationInfo::create(&mut animation_graphs, &mut animation_clips);
// Build an animation player that automatically plays the UI animation.
let mut animation_player = AnimationPlayer::default();
animation_player.play(animation_node_index).repeat();
// Add a camera.
commands.spawn(Camera2d);
// Build the UI. We have a parent node that covers the whole screen and
// contains the `AnimationPlayer`, as well as a child node that contains the
// text to be animated.
commands
.spawn((
// Cover the whole screen, and center contents.
Node {
position_type: PositionType::Absolute,
top: Val::Px(0.0),
left: Val::Px(0.0),
right: Val::Px(0.0),
bottom: Val::Px(0.0),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
..default()
},
animation_player,
AnimationGraphHandle(animation_graph),
))
.with_children(|builder| {
// Build the text node.
let player = builder.target_entity();
builder
.spawn((
Text::new("Bevy"),
TextFont {
font: asset_server.load("fonts/FiraSans-Bold.ttf"),
font_size: 24.0,
..default()
},
TextColor(Color::Srgba(Srgba::RED)),
TextLayout::new_with_justify(JustifyText::Center),
))
// Mark as an animation target.
.insert(AnimationTarget {
id: animation_target_id,
player,
})
.insert(animation_target_name);
});
}
// A type that represents the color of the first text section.
//
// We implement `AnimatableProperty` on this to define custom property accessor logic
#[derive(Clone)]
struct TextColorProperty;
impl AnimatableProperty for TextColorProperty {
type Property = Srgba;
fn evaluator_id(&self) -> EvaluatorId {
EvaluatorId::Type(TypeId::of::<Self>())
}
fn get_mut<'a>(
&self,
entity: &'a mut AnimationEntityMut,
) -> Result<&'a mut Self::Property, AnimationEvaluationError> {
let text_color = entity
.get_mut::<TextColor>()
.ok_or(AnimationEvaluationError::ComponentNotPresent(TypeId::of::<
TextColor,
>(
)))?
.into_inner();
match text_color.0 {
Color::Srgba(ref mut color) => Ok(color),
_ => Err(AnimationEvaluationError::PropertyNotPresent(TypeId::of::<
Srgba,
>(
))),
}
}
}

View File

@@ -0,0 +1,104 @@
//! Demonstrate how to use animation events.
use bevy::{
color::palettes::css::{ALICE_BLUE, BLACK, CRIMSON},
core_pipeline::bloom::Bloom,
prelude::*,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_event::<MessageEvent>()
.add_systems(Startup, setup)
.add_systems(Update, animate_text_opacity)
.add_observer(edit_message)
.run();
}
#[derive(Component)]
struct MessageText;
#[derive(Event, Clone)]
struct MessageEvent {
value: String,
color: Color,
}
fn edit_message(
trigger: Trigger<MessageEvent>,
text: Single<(&mut Text2d, &mut TextColor), With<MessageText>>,
) {
let (mut text, mut color) = text.into_inner();
text.0 = trigger.event().value.clone();
color.0 = trigger.event().color;
}
fn setup(
mut commands: Commands,
mut animations: ResMut<Assets<AnimationClip>>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
// Camera
commands.spawn((
Camera2d,
Camera {
clear_color: ClearColorConfig::Custom(BLACK.into()),
hdr: true,
..Default::default()
},
Bloom {
intensity: 0.4,
..Bloom::NATURAL
},
));
// The text that will be changed by animation events.
commands.spawn((
MessageText,
Text2d::default(),
TextFont {
font_size: 119.0,
..default()
},
TextColor(Color::NONE),
));
// Create a new animation clip.
let mut animation = AnimationClip::default();
// This is only necessary if you want the duration of the
// animation to be longer than the last event in the clip.
animation.set_duration(2.0);
// Add events at the specified time.
animation.add_event(
0.0,
MessageEvent {
value: "HELLO".into(),
color: ALICE_BLUE.into(),
},
);
animation.add_event(
1.0,
MessageEvent {
value: "BYE".into(),
color: CRIMSON.into(),
},
);
// Create the animation graph.
let (graph, animation_index) = AnimationGraph::from_clip(animations.add(animation));
let mut player = AnimationPlayer::default();
player.play(animation_index).repeat();
commands.spawn((AnimationGraphHandle(graphs.add(graph)), player));
}
// Slowly fade out the text opacity.
fn animate_text_opacity(mut colors: Query<&mut TextColor>, time: Res<Time>) {
for mut color in &mut colors {
let a = color.0.alpha();
color.0.set_alpha(a - time.delta_secs());
}
}

View File

@@ -0,0 +1,557 @@
//! Demonstrates animation blending with animation graphs.
//!
//! The animation graph is shown on screen. You can change the weights of the
//! playing animations by clicking and dragging left or right within the nodes.
use bevy::{
color::palettes::{
basic::WHITE,
css::{ANTIQUE_WHITE, DARK_GREEN},
},
prelude::*,
ui::RelativeCursorPosition,
};
use argh::FromArgs;
#[cfg(not(target_arch = "wasm32"))]
use {
bevy::{asset::io::file::FileAssetReader, tasks::IoTaskPool},
ron::ser::PrettyConfig,
std::{fs::File, path::Path},
};
/// Where to find the serialized animation graph.
static ANIMATION_GRAPH_PATH: &str = "animation_graphs/Fox.animgraph.ron";
/// The indices of the nodes containing animation clips in the graph.
static CLIP_NODE_INDICES: [u32; 3] = [2, 3, 4];
/// The help text in the upper left corner.
static HELP_TEXT: &str = "Click and drag an animation clip node to change its weight";
/// The node widgets in the UI.
static NODE_TYPES: [NodeType; 5] = [
NodeType::Clip(ClipNode::new("Idle", 0)),
NodeType::Clip(ClipNode::new("Walk", 1)),
NodeType::Blend("Root"),
NodeType::Blend("Blend\n0.5"),
NodeType::Clip(ClipNode::new("Run", 2)),
];
/// The positions of the node widgets in the UI.
///
/// These are in the same order as [`NODE_TYPES`] above.
static NODE_RECTS: [NodeRect; 5] = [
NodeRect::new(10.00, 10.00, 97.64, 48.41),
NodeRect::new(10.00, 78.41, 97.64, 48.41),
NodeRect::new(286.08, 78.41, 97.64, 48.41),
NodeRect::new(148.04, 112.61, 97.64, 48.41), // was 44.20
NodeRect::new(10.00, 146.82, 97.64, 48.41),
];
/// The positions of the horizontal lines in the UI.
static HORIZONTAL_LINES: [Line; 6] = [
Line::new(107.64, 34.21, 158.24),
Line::new(107.64, 102.61, 20.20),
Line::new(107.64, 171.02, 20.20),
Line::new(127.84, 136.82, 20.20),
Line::new(245.68, 136.82, 20.20),
Line::new(265.88, 102.61, 20.20),
];
/// The positions of the vertical lines in the UI.
static VERTICAL_LINES: [Line; 2] = [
Line::new(127.83, 102.61, 68.40),
Line::new(265.88, 34.21, 102.61),
];
/// Initializes the app.
fn main() {
#[cfg(not(target_arch = "wasm32"))]
let args: Args = argh::from_env();
#[cfg(target_arch = "wasm32")]
let args = Args::from_args(&[], &[]).unwrap();
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "Bevy Animation Graph Example".into(),
..default()
}),
..default()
}))
.add_systems(Startup, (setup_assets, setup_scene, setup_ui))
.add_systems(Update, init_animations)
.add_systems(
Update,
(handle_weight_drag, update_ui, sync_weights).chain(),
)
.insert_resource(args)
.insert_resource(AmbientLight {
color: WHITE.into(),
brightness: 100.0,
..default()
})
.run();
}
/// Demonstrates animation blending with animation graphs
#[derive(FromArgs, Resource)]
struct Args {
/// disables loading of the animation graph asset from disk
#[argh(switch)]
no_load: bool,
/// regenerates the asset file; implies `--no-load`
#[argh(switch)]
save: bool,
}
/// The [`AnimationGraph`] asset, which specifies how the animations are to
/// be blended together.
#[derive(Clone, Resource)]
struct ExampleAnimationGraph(Handle<AnimationGraph>);
/// The current weights of the three playing animations.
#[derive(Component)]
struct ExampleAnimationWeights {
/// The weights of the three playing animations.
weights: [f32; 3],
}
/// Initializes the scene.
fn setup_assets(
mut commands: Commands,
mut asset_server: ResMut<AssetServer>,
mut animation_graphs: ResMut<Assets<AnimationGraph>>,
args: Res<Args>,
) {
// Create or load the assets.
if args.no_load || args.save {
setup_assets_programmatically(
&mut commands,
&mut asset_server,
&mut animation_graphs,
args.save,
);
} else {
setup_assets_via_serialized_animation_graph(&mut commands, &mut asset_server);
}
}
fn setup_ui(mut commands: Commands) {
setup_help_text(&mut commands);
setup_node_rects(&mut commands);
setup_node_lines(&mut commands);
}
/// Creates the assets programmatically, including the animation graph.
/// Optionally saves them to disk if `save` is present (corresponding to the
/// `--save` option).
fn setup_assets_programmatically(
commands: &mut Commands,
asset_server: &mut AssetServer,
animation_graphs: &mut Assets<AnimationGraph>,
_save: bool,
) {
// Create the nodes.
let mut animation_graph = AnimationGraph::new();
let blend_node = animation_graph.add_blend(0.5, animation_graph.root);
animation_graph.add_clip(
asset_server.load(GltfAssetLabel::Animation(0).from_asset("models/animated/Fox.glb")),
1.0,
animation_graph.root,
);
animation_graph.add_clip(
asset_server.load(GltfAssetLabel::Animation(1).from_asset("models/animated/Fox.glb")),
1.0,
blend_node,
);
animation_graph.add_clip(
asset_server.load(GltfAssetLabel::Animation(2).from_asset("models/animated/Fox.glb")),
1.0,
blend_node,
);
// If asked to save, do so.
#[cfg(not(target_arch = "wasm32"))]
if _save {
let animation_graph = animation_graph.clone();
IoTaskPool::get()
.spawn(async move {
let mut animation_graph_writer = File::create(Path::join(
&FileAssetReader::get_base_path(),
Path::join(Path::new("assets"), Path::new(ANIMATION_GRAPH_PATH)),
))
.expect("Failed to open the animation graph asset");
ron::ser::to_writer_pretty(
&mut animation_graph_writer,
&animation_graph,
PrettyConfig::default(),
)
.expect("Failed to serialize the animation graph");
})
.detach();
}
// Add the graph.
let handle = animation_graphs.add(animation_graph);
// Save the assets in a resource.
commands.insert_resource(ExampleAnimationGraph(handle));
}
fn setup_assets_via_serialized_animation_graph(
commands: &mut Commands,
asset_server: &mut AssetServer,
) {
commands.insert_resource(ExampleAnimationGraph(
asset_server.load(ANIMATION_GRAPH_PATH),
));
}
/// Spawns the animated fox.
fn setup_scene(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-10.0, 5.0, 13.0).looking_at(Vec3::new(0., 1., 0.), Vec3::Y),
));
commands.spawn((
PointLight {
intensity: 10_000_000.0,
shadows_enabled: true,
..default()
},
Transform::from_xyz(-4.0, 8.0, 13.0),
));
commands.spawn((
SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
),
Transform::from_scale(Vec3::splat(0.07)),
));
// Ground
commands.spawn((
Mesh3d(meshes.add(Circle::new(7.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
));
}
/// Places the help text at the top left of the window.
fn setup_help_text(commands: &mut Commands) {
commands.spawn((
Text::new(HELP_TEXT),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
/// Initializes the node UI widgets.
fn setup_node_rects(commands: &mut Commands) {
for (node_rect, node_type) in NODE_RECTS.iter().zip(NODE_TYPES.iter()) {
let node_string = match *node_type {
NodeType::Clip(ref clip) => clip.text,
NodeType::Blend(text) => text,
};
let text = commands
.spawn((
Text::new(node_string),
TextFont {
font_size: 16.0,
..default()
},
TextColor(ANTIQUE_WHITE.into()),
TextLayout::new_with_justify(JustifyText::Center),
))
.id();
let container = {
let mut container = commands.spawn((
Node {
position_type: PositionType::Absolute,
bottom: Val::Px(node_rect.bottom),
left: Val::Px(node_rect.left),
height: Val::Px(node_rect.height),
width: Val::Px(node_rect.width),
align_items: AlignItems::Center,
justify_items: JustifyItems::Center,
align_content: AlignContent::Center,
justify_content: JustifyContent::Center,
..default()
},
BorderColor(WHITE.into()),
Outline::new(Val::Px(1.), Val::ZERO, Color::WHITE),
));
if let NodeType::Clip(clip) = node_type {
container.insert((
Interaction::None,
RelativeCursorPosition::default(),
(*clip).clone(),
));
}
container.id()
};
// Create the background color.
if let NodeType::Clip(_) = node_type {
let background = commands
.spawn((
Node {
position_type: PositionType::Absolute,
top: Val::Px(0.),
left: Val::Px(0.),
height: Val::Px(node_rect.height),
width: Val::Px(node_rect.width),
..default()
},
BackgroundColor(DARK_GREEN.into()),
))
.id();
commands.entity(container).add_child(background);
}
commands.entity(container).add_child(text);
}
}
/// Creates boxes for the horizontal and vertical lines.
///
/// This is a bit hacky: it uses 1-pixel-wide and 1-pixel-high boxes to draw
/// vertical and horizontal lines, respectively.
fn setup_node_lines(commands: &mut Commands) {
for line in &HORIZONTAL_LINES {
commands.spawn((
Node {
position_type: PositionType::Absolute,
bottom: Val::Px(line.bottom),
left: Val::Px(line.left),
height: Val::Px(0.0),
width: Val::Px(line.length),
border: UiRect::bottom(Val::Px(1.0)),
..default()
},
BorderColor(WHITE.into()),
));
}
for line in &VERTICAL_LINES {
commands.spawn((
Node {
position_type: PositionType::Absolute,
bottom: Val::Px(line.bottom),
left: Val::Px(line.left),
height: Val::Px(line.length),
width: Val::Px(0.0),
border: UiRect::left(Val::Px(1.0)),
..default()
},
BorderColor(WHITE.into()),
));
}
}
/// Attaches the animation graph to the scene, and plays all three animations.
fn init_animations(
mut commands: Commands,
mut query: Query<(Entity, &mut AnimationPlayer)>,
animation_graph: Res<ExampleAnimationGraph>,
mut done: Local<bool>,
) {
if *done {
return;
}
for (entity, mut player) in query.iter_mut() {
commands.entity(entity).insert((
AnimationGraphHandle(animation_graph.0.clone()),
ExampleAnimationWeights::default(),
));
for &node_index in &CLIP_NODE_INDICES {
player.play(node_index.into()).repeat();
}
*done = true;
}
}
/// Read cursor position relative to clip nodes, allowing the user to change weights
/// when dragging the node UI widgets.
fn handle_weight_drag(
mut interaction_query: Query<(&Interaction, &RelativeCursorPosition, &ClipNode)>,
mut animation_weights_query: Query<&mut ExampleAnimationWeights>,
) {
for (interaction, relative_cursor, clip_node) in &mut interaction_query {
if !matches!(*interaction, Interaction::Pressed) {
continue;
}
let Some(pos) = relative_cursor.normalized else {
continue;
};
for mut animation_weights in animation_weights_query.iter_mut() {
animation_weights.weights[clip_node.index] = pos.x.clamp(0., 1.);
}
}
}
// Updates the UI based on the weights that the user has chosen.
fn update_ui(
mut text_query: Query<&mut Text>,
mut background_query: Query<&mut Node, Without<Text>>,
container_query: Query<(&Children, &ClipNode)>,
animation_weights_query: Query<&ExampleAnimationWeights, Changed<ExampleAnimationWeights>>,
) {
for animation_weights in animation_weights_query.iter() {
for (children, clip_node) in &container_query {
// Draw the green background color to visually indicate the weight.
let mut bg_iter = background_query.iter_many_mut(children);
if let Some(mut node) = bg_iter.fetch_next() {
// All nodes are the same width, so `NODE_RECTS[0]` is as good as any other.
node.width =
Val::Px(NODE_RECTS[0].width * animation_weights.weights[clip_node.index]);
}
// Update the node labels with the current weights.
let mut text_iter = text_query.iter_many_mut(children);
if let Some(mut text) = text_iter.fetch_next() {
**text = format!(
"{}\n{:.2}",
clip_node.text, animation_weights.weights[clip_node.index]
);
}
}
}
}
/// Takes the weights that were set in the UI and assigns them to the actual
/// playing animation.
fn sync_weights(mut query: Query<(&mut AnimationPlayer, &ExampleAnimationWeights)>) {
for (mut animation_player, animation_weights) in query.iter_mut() {
for (&animation_node_index, &animation_weight) in CLIP_NODE_INDICES
.iter()
.zip(animation_weights.weights.iter())
{
// If the animation happens to be no longer active, restart it.
if !animation_player.is_playing_animation(animation_node_index.into()) {
animation_player.play(animation_node_index.into());
}
// Set the weight.
if let Some(active_animation) =
animation_player.animation_mut(animation_node_index.into())
{
active_animation.set_weight(animation_weight);
}
}
}
}
/// An on-screen representation of a node.
#[derive(Debug)]
struct NodeRect {
/// The number of pixels that this rectangle is from the left edge of the
/// window.
left: f32,
/// The number of pixels that this rectangle is from the bottom edge of the
/// window.
bottom: f32,
/// The width of this rectangle in pixels.
width: f32,
/// The height of this rectangle in pixels.
height: f32,
}
/// Either a straight horizontal or a straight vertical line on screen.
///
/// The line starts at (`left`, `bottom`) and goes either right (if the line is
/// horizontal) or down (if the line is vertical).
struct Line {
/// The number of pixels that the start of this line is from the left edge
/// of the screen.
left: f32,
/// The number of pixels that the start of this line is from the bottom edge
/// of the screen.
bottom: f32,
/// The length of the line.
length: f32,
}
/// The type of each node in the UI: either a clip node or a blend node.
enum NodeType {
/// A clip node, which specifies an animation.
Clip(ClipNode),
/// A blend node with no animation and a string label.
Blend(&'static str),
}
/// The label for the UI representation of a clip node.
#[derive(Clone, Component)]
struct ClipNode {
/// The string label of the node.
text: &'static str,
/// Which of the three animations this UI widget represents.
index: usize,
}
impl Default for ExampleAnimationWeights {
fn default() -> Self {
Self { weights: [1.0; 3] }
}
}
impl ClipNode {
/// Creates a new [`ClipNodeText`] from a label and the animation index.
const fn new(text: &'static str, index: usize) -> Self {
Self { text, index }
}
}
impl NodeRect {
/// Creates a new [`NodeRect`] from the lower-left corner and size.
///
/// Note that node rectangles are anchored in the *lower*-left corner. The
/// `bottom` parameter specifies vertical distance from the *bottom* of the
/// window.
const fn new(left: f32, bottom: f32, width: f32, height: f32) -> NodeRect {
NodeRect {
left,
bottom,
width,
height,
}
}
}
impl Line {
/// Creates a new [`Line`], either horizontal or vertical.
///
/// Note that the line's start point is anchored in the lower-*left* corner,
/// and that the `length` extends either to the right or downward.
const fn new(left: f32, bottom: f32, length: f32) -> Self {
Self {
left,
bottom,
length,
}
}
}

View File

@@ -0,0 +1,496 @@
//! Demonstrates how to use masks to limit the scope of animations.
use bevy::{
animation::{AnimationTarget, AnimationTargetId},
color::palettes::css::{LIGHT_GRAY, WHITE},
prelude::*,
};
use std::collections::HashSet;
// IDs of the mask groups we define for the running fox model.
//
// Each mask group defines a set of bones for which animations can be toggled on
// and off.
const MASK_GROUP_HEAD: u32 = 0;
const MASK_GROUP_LEFT_FRONT_LEG: u32 = 1;
const MASK_GROUP_RIGHT_FRONT_LEG: u32 = 2;
const MASK_GROUP_LEFT_HIND_LEG: u32 = 3;
const MASK_GROUP_RIGHT_HIND_LEG: u32 = 4;
const MASK_GROUP_TAIL: u32 = 5;
// The width in pixels of the small buttons that allow the user to toggle a mask
// group on or off.
const MASK_GROUP_BUTTON_WIDTH: f32 = 250.0;
// The names of the bones that each mask group consists of. Each mask group is
// defined as a (prefix, suffix) tuple. The mask group consists of a single
// bone chain rooted at the prefix. For example, if the chain's prefix is
// "A/B/C" and the suffix is "D/E", then the bones that will be included in the
// mask group are "A/B/C", "A/B/C/D", and "A/B/C/D/E".
//
// The fact that our mask groups are single chains of bones isn't an engine
// requirement; it just so happens to be the case for the model we're using. A
// mask group can consist of any set of animation targets, regardless of whether
// they form a single chain.
const MASK_GROUP_PATHS: [(&str, &str); 6] = [
// Head
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_Spine01_02/b_Spine02_03",
"b_Neck_04/b_Head_05",
),
// Left front leg
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_Spine01_02/b_Spine02_03/b_LeftUpperArm_09",
"b_LeftForeArm_010/b_LeftHand_011",
),
// Right front leg
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_Spine01_02/b_Spine02_03/b_RightUpperArm_06",
"b_RightForeArm_07/b_RightHand_08",
),
// Left hind leg
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_LeftLeg01_015",
"b_LeftLeg02_016/b_LeftFoot01_017/b_LeftFoot02_018",
),
// Right hind leg
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_RightLeg01_019",
"b_RightLeg02_020/b_RightFoot01_021/b_RightFoot02_022",
),
// Tail
(
"root/_rootJoint/b_Root_00/b_Hip_01/b_Tail01_012",
"b_Tail02_013/b_Tail03_014",
),
];
#[derive(Clone, Copy, Component)]
struct AnimationControl {
// The ID of the mask group that this button controls.
group_id: u32,
label: AnimationLabel,
}
#[derive(Clone, Copy, Component, PartialEq, Debug)]
enum AnimationLabel {
Idle = 0,
Walk = 1,
Run = 2,
Off = 3,
}
#[derive(Clone, Debug, Resource)]
struct AnimationNodes([AnimationNodeIndex; 3]);
#[derive(Clone, Copy, Debug, Resource)]
struct AppState([MaskGroupState; 6]);
#[derive(Clone, Copy, Debug)]
struct MaskGroupState {
clip: u8,
}
// The application entry point.
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "Bevy Animation Masks Example".into(),
..default()
}),
..default()
}))
.add_systems(Startup, (setup_scene, setup_ui))
.add_systems(Update, setup_animation_graph_once_loaded)
.add_systems(Update, handle_button_toggles)
.add_systems(Update, update_ui)
.insert_resource(AmbientLight {
color: WHITE.into(),
brightness: 100.0,
..default()
})
.init_resource::<AppState>()
.run();
}
// Spawns the 3D objects in the scene, and loads the fox animation from the glTF
// file.
fn setup_scene(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Spawn the camera.
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-15.0, 10.0, 20.0).looking_at(Vec3::new(0., 1., 0.), Vec3::Y),
));
// Spawn the light.
commands.spawn((
PointLight {
intensity: 10_000_000.0,
shadows_enabled: true,
..default()
},
Transform::from_xyz(-4.0, 8.0, 13.0),
));
// Spawn the fox.
commands.spawn((
SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
),
Transform::from_scale(Vec3::splat(0.07)),
));
// Spawn the ground.
commands.spawn((
Mesh3d(meshes.add(Circle::new(7.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
Transform::from_rotation(Quat::from_rotation_x(-std::f32::consts::FRAC_PI_2)),
));
}
// Creates the UI.
fn setup_ui(mut commands: Commands) {
// Add help text.
commands.spawn((
Text::new("Click on a button to toggle animations for its associated bones"),
Node {
position_type: PositionType::Absolute,
left: Val::Px(12.0),
top: Val::Px(12.0),
..default()
},
));
// Add the buttons that allow the user to toggle mask groups on and off.
commands
.spawn(Node {
flex_direction: FlexDirection::Column,
position_type: PositionType::Absolute,
row_gap: Val::Px(6.0),
left: Val::Px(12.0),
bottom: Val::Px(12.0),
..default()
})
.with_children(|parent| {
let row_node = Node {
flex_direction: FlexDirection::Row,
column_gap: Val::Px(6.0),
..default()
};
add_mask_group_control(parent, "Head", Val::Auto, MASK_GROUP_HEAD);
parent.spawn(row_node.clone()).with_children(|parent| {
add_mask_group_control(
parent,
"Left Front Leg",
Val::Px(MASK_GROUP_BUTTON_WIDTH),
MASK_GROUP_LEFT_FRONT_LEG,
);
add_mask_group_control(
parent,
"Right Front Leg",
Val::Px(MASK_GROUP_BUTTON_WIDTH),
MASK_GROUP_RIGHT_FRONT_LEG,
);
});
parent.spawn(row_node).with_children(|parent| {
add_mask_group_control(
parent,
"Left Hind Leg",
Val::Px(MASK_GROUP_BUTTON_WIDTH),
MASK_GROUP_LEFT_HIND_LEG,
);
add_mask_group_control(
parent,
"Right Hind Leg",
Val::Px(MASK_GROUP_BUTTON_WIDTH),
MASK_GROUP_RIGHT_HIND_LEG,
);
});
add_mask_group_control(parent, "Tail", Val::Auto, MASK_GROUP_TAIL);
});
}
// Adds a button that allows the user to toggle a mask group on and off.
//
// The button will automatically become a child of the parent that owns the
// given `ChildSpawnerCommands`.
fn add_mask_group_control(
parent: &mut ChildSpawnerCommands,
label: &str,
width: Val,
mask_group_id: u32,
) {
let button_text_style = (
TextFont {
font_size: 14.0,
..default()
},
TextColor::WHITE,
);
let selected_button_text_style = (button_text_style.0.clone(), TextColor::BLACK);
let label_text_style = (
button_text_style.0.clone(),
TextColor(Color::Srgba(LIGHT_GRAY)),
);
parent
.spawn((
Node {
border: UiRect::all(Val::Px(1.0)),
width,
flex_direction: FlexDirection::Column,
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
padding: UiRect::ZERO,
margin: UiRect::ZERO,
..default()
},
BorderColor(Color::WHITE),
BorderRadius::all(Val::Px(3.0)),
BackgroundColor(Color::BLACK),
))
.with_children(|builder| {
builder
.spawn((
Node {
border: UiRect::ZERO,
width: Val::Percent(100.0),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
padding: UiRect::ZERO,
margin: UiRect::ZERO,
..default()
},
BackgroundColor(Color::BLACK),
))
.with_child((
Text::new(label),
label_text_style.clone(),
Node {
margin: UiRect::vertical(Val::Px(3.0)),
..default()
},
));
builder
.spawn((
Node {
width: Val::Percent(100.0),
flex_direction: FlexDirection::Row,
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
border: UiRect::top(Val::Px(1.0)),
..default()
},
BorderColor(Color::WHITE),
))
.with_children(|builder| {
for (index, label) in [
AnimationLabel::Run,
AnimationLabel::Walk,
AnimationLabel::Idle,
AnimationLabel::Off,
]
.iter()
.enumerate()
{
builder
.spawn((
Button,
BackgroundColor(if index > 0 {
Color::BLACK
} else {
Color::WHITE
}),
Node {
flex_grow: 1.0,
border: if index > 0 {
UiRect::left(Val::Px(1.0))
} else {
UiRect::ZERO
},
..default()
},
BorderColor(Color::WHITE),
AnimationControl {
group_id: mask_group_id,
label: *label,
},
))
.with_child((
Text(format!("{:?}", label)),
if index > 0 {
button_text_style.clone()
} else {
selected_button_text_style.clone()
},
TextLayout::new_with_justify(JustifyText::Center),
Node {
flex_grow: 1.0,
margin: UiRect::vertical(Val::Px(3.0)),
..default()
},
));
}
});
});
}
// Builds up the animation graph, including the mask groups, and adds it to the
// entity with the `AnimationPlayer` that the glTF loader created.
fn setup_animation_graph_once_loaded(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut animation_graphs: ResMut<Assets<AnimationGraph>>,
mut players: Query<(Entity, &mut AnimationPlayer), Added<AnimationPlayer>>,
targets: Query<(Entity, &AnimationTarget)>,
) {
for (entity, mut player) in &mut players {
// Load the animation clip from the glTF file.
let mut animation_graph = AnimationGraph::new();
let blend_node = animation_graph.add_additive_blend(1.0, animation_graph.root);
let animation_graph_nodes: [AnimationNodeIndex; 3] =
std::array::from_fn(|animation_index| {
let handle = asset_server.load(
GltfAssetLabel::Animation(animation_index)
.from_asset("models/animated/Fox.glb"),
);
let mask = if animation_index == 0 { 0 } else { 0x3f };
animation_graph.add_clip_with_mask(handle, mask, 1.0, blend_node)
});
// Create each mask group.
let mut all_animation_target_ids = HashSet::new();
for (mask_group_index, (mask_group_prefix, mask_group_suffix)) in
MASK_GROUP_PATHS.iter().enumerate()
{
// Split up the prefix and suffix, and convert them into `Name`s.
let prefix: Vec<_> = mask_group_prefix.split('/').map(Name::new).collect();
let suffix: Vec<_> = mask_group_suffix.split('/').map(Name::new).collect();
// Add each bone in the chain to the appropriate mask group.
for chain_length in 0..=suffix.len() {
let animation_target_id = AnimationTargetId::from_names(
prefix.iter().chain(suffix[0..chain_length].iter()),
);
animation_graph
.add_target_to_mask_group(animation_target_id, mask_group_index as u32);
all_animation_target_ids.insert(animation_target_id);
}
}
// We're doing constructing the animation graph. Add it as an asset.
let animation_graph = animation_graphs.add(animation_graph);
commands
.entity(entity)
.insert(AnimationGraphHandle(animation_graph));
// Remove animation targets that aren't in any of the mask groups. If we
// don't do that, those bones will play all animations at once, which is
// ugly.
for (target_entity, target) in &targets {
if !all_animation_target_ids.contains(&target.id) {
commands.entity(target_entity).remove::<AnimationTarget>();
}
}
// Play the animation.
for animation_graph_node in animation_graph_nodes {
player.play(animation_graph_node).repeat();
}
// Record the graph nodes.
commands.insert_resource(AnimationNodes(animation_graph_nodes));
}
}
// A system that handles requests from the user to toggle mask groups on and
// off.
fn handle_button_toggles(
mut interactions: Query<(&Interaction, &mut AnimationControl), Changed<Interaction>>,
mut animation_players: Query<&AnimationGraphHandle, With<AnimationPlayer>>,
mut animation_graphs: ResMut<Assets<AnimationGraph>>,
mut animation_nodes: Option<ResMut<AnimationNodes>>,
mut app_state: ResMut<AppState>,
) {
let Some(ref mut animation_nodes) = animation_nodes else {
return;
};
for (interaction, animation_control) in interactions.iter_mut() {
// We only care about press events.
if *interaction != Interaction::Pressed {
continue;
}
// Toggle the state of the clip.
app_state.0[animation_control.group_id as usize].clip = animation_control.label as u8;
// Now grab the animation player. (There's only one in our case, but we
// iterate just for clarity's sake.)
for animation_graph_handle in animation_players.iter_mut() {
// The animation graph needs to have loaded.
let Some(animation_graph) = animation_graphs.get_mut(animation_graph_handle) else {
continue;
};
for (clip_index, &animation_node_index) in animation_nodes.0.iter().enumerate() {
let Some(animation_node) = animation_graph.get_mut(animation_node_index) else {
continue;
};
if animation_control.label as usize == clip_index {
animation_node.mask &= !(1 << animation_control.group_id);
} else {
animation_node.mask |= 1 << animation_control.group_id;
}
}
}
}
}
// A system that updates the UI based on the current app state.
fn update_ui(
mut animation_controls: Query<(&AnimationControl, &mut BackgroundColor, &Children)>,
texts: Query<Entity, With<Text>>,
mut writer: TextUiWriter,
app_state: Res<AppState>,
) {
for (animation_control, mut background_color, kids) in animation_controls.iter_mut() {
let enabled =
app_state.0[animation_control.group_id as usize].clip == animation_control.label as u8;
*background_color = if enabled {
BackgroundColor(Color::WHITE)
} else {
BackgroundColor(Color::BLACK)
};
for &kid in kids {
let Ok(text) = texts.get(kid) else {
continue;
};
writer.for_each_color(text, |mut color| {
color.0 = if enabled { Color::BLACK } else { Color::WHITE };
});
}
}
}
impl Default for AppState {
fn default() -> Self {
AppState([MaskGroupState { clip: 0 }; 6])
}
}

View File

@@ -0,0 +1,124 @@
//! Demonstrates how to animate colors in different color spaces using mixing and splines.
use bevy::{math::VectorSpace, prelude::*};
// We define this trait so we can reuse the same code for multiple color types that may be implemented using curves.
trait CurveColor: VectorSpace + Into<Color> + Send + Sync + 'static {}
impl<T: VectorSpace + Into<Color> + Send + Sync + 'static> CurveColor for T {}
// We define this trait so we can reuse the same code for multiple color types that may be implemented using mixing.
trait MixedColor: Mix + Into<Color> + Send + Sync + 'static {}
impl<T: Mix + Into<Color> + Send + Sync + 'static> MixedColor for T {}
#[derive(Debug, Component)]
struct Curve<T: CurveColor>(CubicCurve<T>);
#[derive(Debug, Component)]
struct Mixed<T: MixedColor>([T; 4]);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(
Update,
(
animate_curve::<LinearRgba>,
animate_curve::<Oklaba>,
animate_curve::<Xyza>,
animate_mixed::<Hsla>,
animate_mixed::<Srgba>,
animate_mixed::<Oklcha>,
),
)
.run();
}
fn setup(mut commands: Commands) {
commands.spawn(Camera2d);
// The color spaces `Oklaba`, `Laba`, `LinearRgba`, `Srgba` and `Xyza` all are either perceptually or physically linear.
// This property allows us to define curves, e.g. bezier curves through these spaces.
// Define the control points for the curve.
// For more information, please see the cubic curve example.
let colors = [
LinearRgba::WHITE,
LinearRgba::rgb(1., 1., 0.), // Yellow
LinearRgba::RED,
LinearRgba::BLACK,
];
// Spawn a sprite using the provided colors as control points.
spawn_curve_sprite(&mut commands, 275., colors);
// Spawn another sprite using the provided colors as control points after converting them to the `Xyza` color space.
spawn_curve_sprite(&mut commands, 175., colors.map(Xyza::from));
spawn_curve_sprite(&mut commands, 75., colors.map(Oklaba::from));
// Other color spaces like `Srgba` or `Hsva` are neither perceptually nor physically linear.
// As such, we cannot use curves in these spaces.
// However, we can still mix these colors and animate that way. In fact, mixing colors works in any color space.
// Spawn a sprite using the provided colors for mixing.
spawn_mixed_sprite(&mut commands, -75., colors.map(Hsla::from));
spawn_mixed_sprite(&mut commands, -175., colors.map(Srgba::from));
spawn_mixed_sprite(&mut commands, -275., colors.map(Oklcha::from));
}
fn spawn_curve_sprite<T: CurveColor>(commands: &mut Commands, y: f32, points: [T; 4]) {
commands.spawn((
Sprite::sized(Vec2::new(75., 75.)),
Transform::from_xyz(0., y, 0.),
Curve(CubicBezier::new([points]).to_curve().unwrap()),
));
}
fn spawn_mixed_sprite<T: MixedColor>(commands: &mut Commands, y: f32, colors: [T; 4]) {
commands.spawn((
Transform::from_xyz(0., y, 0.),
Sprite::sized(Vec2::new(75., 75.)),
Mixed(colors),
));
}
fn animate_curve<T: CurveColor>(
time: Res<Time>,
mut query: Query<(&mut Transform, &mut Sprite, &Curve<T>)>,
) {
let t = (ops::sin(time.elapsed_secs()) + 1.) / 2.;
for (mut transform, mut sprite, cubic_curve) in &mut query {
// position takes a point from the curve where 0 is the initial point
// and 1 is the last point
sprite.color = cubic_curve.0.position(t).into();
transform.translation.x = 600. * (t - 0.5);
}
}
fn animate_mixed<T: MixedColor>(
time: Res<Time>,
mut query: Query<(&mut Transform, &mut Sprite, &Mixed<T>)>,
) {
let t = (ops::sin(time.elapsed_secs()) + 1.) / 2.;
for (mut transform, mut sprite, mixed) in &mut query {
sprite.color = {
// First, we determine the amount of intervals between colors.
// For four colors, there are three intervals between those colors;
let intervals = (mixed.0.len() - 1) as f32;
// Next we determine the index of the first of the two colors to mix.
let start_i = (t * intervals).floor().min(intervals - 1.);
// Lastly we determine the 'local' value of t in this interval.
let local_t = (t * intervals) - start_i;
let color = mixed.0[start_i as usize].mix(&mixed.0[start_i as usize + 1], local_t);
color.into()
};
transform.translation.x = 600. * (t - 0.5);
}
}

View File

@@ -0,0 +1,235 @@
//! Skinned mesh example with mesh and joints data defined in code.
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
use std::f32::consts::*;
use bevy::{
math::ops,
prelude::*,
render::{
mesh::{
skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
Indices, PrimitiveTopology, VertexAttributeValues,
},
render_asset::RenderAssetUsages,
},
};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight {
brightness: 3000.0,
..default()
})
.add_systems(Startup, setup)
.add_systems(Update, joint_animation)
.run();
}
/// Used to mark a joint to be animated in the [`joint_animation`] system.
#[derive(Component)]
struct AnimatedJoint(isize);
/// Construct a mesh and a skeleton with 2 joints for that mesh,
/// and mark the second joint to be animated.
/// It is similar to the scene defined in `models/SimpleSkin/SimpleSkin.gltf`
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut skinned_mesh_inverse_bindposes_assets: ResMut<Assets<SkinnedMeshInverseBindposes>>,
) {
// Create a camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(2.5, 2.5, 9.0).looking_at(Vec3::ZERO, Vec3::Y),
));
// Create inverse bindpose matrices for a skeleton consists of 2 joints
let inverse_bindposes = skinned_mesh_inverse_bindposes_assets.add(vec![
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
Mat4::from_translation(Vec3::new(-0.5, -1.0, 0.0)),
]);
// Create a mesh
let mesh = Mesh::new(
PrimitiveTopology::TriangleList,
RenderAssetUsages::RENDER_WORLD,
)
// Set mesh vertex positions
.with_inserted_attribute(
Mesh::ATTRIBUTE_POSITION,
vec![
[0.0, 0.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.5, 0.0],
[1.0, 0.5, 0.0],
[0.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.5, 0.0],
[1.0, 1.5, 0.0],
[0.0, 2.0, 0.0],
[1.0, 2.0, 0.0],
],
)
// Add UV coordinates that map the left half of the texture since its a 1 x
// 2 rectangle.
.with_inserted_attribute(
Mesh::ATTRIBUTE_UV_0,
vec![
[0.0, 0.00],
[0.5, 0.00],
[0.0, 0.25],
[0.5, 0.25],
[0.0, 0.50],
[0.5, 0.50],
[0.0, 0.75],
[0.5, 0.75],
[0.0, 1.00],
[0.5, 1.00],
],
)
// Set mesh vertex normals
.with_inserted_attribute(Mesh::ATTRIBUTE_NORMAL, vec![[0.0, 0.0, 1.0]; 10])
// Set mesh vertex joint indices for mesh skinning.
// Each vertex gets 4 indices used to address the `JointTransforms` array in the vertex shader
// as well as `SkinnedMeshJoint` array in the `SkinnedMesh` component.
// This means that a maximum of 4 joints can affect a single vertex.
.with_inserted_attribute(
Mesh::ATTRIBUTE_JOINT_INDEX,
// Need to be explicit here as [u16; 4] could be either Uint16x4 or Unorm16x4.
VertexAttributeValues::Uint16x4(vec![
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0],
]),
)
// Set mesh vertex joint weights for mesh skinning.
// Each vertex gets 4 joint weights corresponding to the 4 joint indices assigned to it.
// The sum of these weights should equal to 1.
.with_inserted_attribute(
Mesh::ATTRIBUTE_JOINT_WEIGHT,
vec![
[1.00, 0.00, 0.0, 0.0],
[1.00, 0.00, 0.0, 0.0],
[0.75, 0.25, 0.0, 0.0],
[0.75, 0.25, 0.0, 0.0],
[0.50, 0.50, 0.0, 0.0],
[0.50, 0.50, 0.0, 0.0],
[0.25, 0.75, 0.0, 0.0],
[0.25, 0.75, 0.0, 0.0],
[0.00, 1.00, 0.0, 0.0],
[0.00, 1.00, 0.0, 0.0],
],
)
// Tell bevy to construct triangles from a list of vertex indices,
// where each 3 vertex indices form a triangle.
.with_inserted_indices(Indices::U16(vec![
0, 1, 3, 0, 3, 2, 2, 3, 5, 2, 5, 4, 4, 5, 7, 4, 7, 6, 6, 7, 9, 6, 9, 8,
]));
let mesh = meshes.add(mesh);
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(42);
for i in -5..5 {
// Create joint entities
let joint_0 = commands
.spawn(Transform::from_xyz(
i as f32 * 1.5,
0.0,
// Move quads back a small amount to avoid Z-fighting and not
// obscure the transform gizmos.
-(i as f32 * 0.01).abs(),
))
.id();
let joint_1 = commands.spawn((AnimatedJoint(i), Transform::IDENTITY)).id();
// Set joint_1 as a child of joint_0.
commands.entity(joint_0).add_children(&[joint_1]);
// Each joint in this vector corresponds to each inverse bindpose matrix in `SkinnedMeshInverseBindposes`.
let joint_entities = vec![joint_0, joint_1];
// Create skinned mesh renderer. Note that its transform doesn't affect the position of the mesh.
commands.spawn((
Mesh3d(mesh.clone()),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::srgb(
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
rng.gen_range(0.0..1.0),
),
base_color_texture: Some(asset_server.load("textures/uv_checker_bw.png")),
..default()
})),
SkinnedMesh {
inverse_bindposes: inverse_bindposes.clone(),
joints: joint_entities,
},
));
}
}
/// Animate the joint marked with [`AnimatedJoint`] component.
fn joint_animation(
time: Res<Time>,
mut query: Query<(&mut Transform, &AnimatedJoint)>,
mut gizmos: Gizmos,
) {
for (mut transform, animated_joint) in &mut query {
match animated_joint.0 {
-5 => {
transform.rotation =
Quat::from_rotation_x(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-4 => {
transform.rotation =
Quat::from_rotation_y(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-3 => {
transform.rotation =
Quat::from_rotation_z(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
-2 => {
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
}
-1 => {
transform.scale.y = ops::sin(time.elapsed_secs()) + 1.0;
}
0 => {
transform.translation.x = 0.5 * ops::sin(time.elapsed_secs());
transform.translation.y = ops::cos(time.elapsed_secs());
}
1 => {
transform.translation.y = ops::sin(time.elapsed_secs());
transform.translation.z = ops::cos(time.elapsed_secs());
}
2 => {
transform.translation.x = ops::sin(time.elapsed_secs());
}
3 => {
transform.translation.y = ops::sin(time.elapsed_secs());
transform.scale.x = ops::sin(time.elapsed_secs()) + 1.0;
}
_ => (),
}
// Show transform
let mut axis = *transform;
axis.translation.x += animated_joint.0 as f32 * 1.5;
gizmos.axes(axis, 1.0);
}
}

View File

@@ -0,0 +1,154 @@
//! Demonstrates the application of easing curves to animate a transition.
use std::f32::consts::FRAC_PI_2;
use bevy::{
animation::{animated_field, AnimationTarget, AnimationTargetId},
color::palettes::css::{ORANGE, SILVER},
math::vec3,
prelude::*,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut animation_graphs: ResMut<Assets<AnimationGraph>>,
mut animation_clips: ResMut<Assets<AnimationClip>>,
) {
// Create the animation:
let AnimationInfo {
target_name: animation_target_name,
target_id: animation_target_id,
graph: animation_graph,
node_index: animation_node_index,
} = AnimationInfo::create(&mut animation_graphs, &mut animation_clips);
// Build an animation player that automatically plays the animation.
let mut animation_player = AnimationPlayer::default();
animation_player.play(animation_node_index).repeat();
// A cube together with the components needed to animate it
let cube_entity = commands
.spawn((
Mesh3d(meshes.add(Cuboid::from_length(2.0))),
MeshMaterial3d(materials.add(Color::from(ORANGE))),
Transform::from_translation(vec3(-6., 2., 0.)),
animation_target_name,
animation_player,
AnimationGraphHandle(animation_graph),
))
.id();
commands.entity(cube_entity).insert(AnimationTarget {
id: animation_target_id,
player: cube_entity,
});
// Some light to see something
commands.spawn((
PointLight {
shadows_enabled: true,
intensity: 10_000_000.,
range: 100.0,
..default()
},
Transform::from_xyz(8., 16., 8.),
));
// Ground plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(50., 50.))),
MeshMaterial3d(materials.add(Color::from(SILVER))),
));
// The camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(0., 6., 12.).looking_at(Vec3::new(0., 1.5, 0.), Vec3::Y),
));
}
// Holds information about the animation we programmatically create.
struct AnimationInfo {
// The name of the animation target (in this case, the text).
target_name: Name,
// The ID of the animation target, derived from the name.
target_id: AnimationTargetId,
// The animation graph asset.
graph: Handle<AnimationGraph>,
// The index of the node within that graph.
node_index: AnimationNodeIndex,
}
impl AnimationInfo {
// Programmatically creates the UI animation.
fn create(
animation_graphs: &mut Assets<AnimationGraph>,
animation_clips: &mut Assets<AnimationClip>,
) -> AnimationInfo {
// Create an ID that identifies the text node we're going to animate.
let animation_target_name = Name::new("Cube");
let animation_target_id = AnimationTargetId::from_name(&animation_target_name);
// Allocate an animation clip.
let mut animation_clip = AnimationClip::default();
// Each leg of the translation motion should take 3 seconds.
let animation_domain = interval(0.0, 3.0).unwrap();
// The easing curve is parametrized over [0, 1], so we reparametrize it and
// then ping-pong, which makes it spend another 3 seconds on the return journey.
let translation_curve = EasingCurve::new(
vec3(-6., 2., 0.),
vec3(6., 2., 0.),
EaseFunction::CubicInOut,
)
.reparametrize_linear(animation_domain)
.expect("this curve has bounded domain, so this should never fail")
.ping_pong()
.expect("this curve has bounded domain, so this should never fail");
// Something similar for rotation. The repetition here is an illusion caused
// by the symmetry of the cube; it rotates on the forward journey and never
// rotates back.
let rotation_curve = EasingCurve::new(
Quat::IDENTITY,
Quat::from_rotation_y(FRAC_PI_2),
EaseFunction::ElasticInOut,
)
.reparametrize_linear(interval(0.0, 4.0).unwrap())
.expect("this curve has bounded domain, so this should never fail");
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableCurve::new(animated_field!(Transform::translation), translation_curve),
);
animation_clip.add_curve_to_target(
animation_target_id,
AnimatableCurve::new(animated_field!(Transform::rotation), rotation_curve),
);
// Save our animation clip as an asset.
let animation_clip_handle = animation_clips.add(animation_clip);
// Create an animation graph with that clip.
let (animation_graph, animation_node_index) =
AnimationGraph::from_clip(animation_clip_handle);
let animation_graph_handle = animation_graphs.add(animation_graph);
AnimationInfo {
target_name: animation_target_name,
target_id: animation_target_id,
graph: animation_graph_handle,
node_index: animation_node_index,
}
}
}

View File

@@ -0,0 +1,188 @@
//! Demonstrates the behavior of the built-in easing functions.
use bevy::prelude::*;
#[derive(Component)]
#[require(Visibility, Transform)]
struct EaseFunctionPlot(EaseFunction, Color);
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, display_curves)
.run();
}
const COLS: usize = 12;
const EXTENT: Vec2 = Vec2::new(1172.0, 520.0);
const PLOT_SIZE: Vec2 = Vec2::splat(80.0);
fn setup(mut commands: Commands) {
commands.spawn(Camera2d);
let text_font = TextFont {
font_size: 10.0,
..default()
};
let chunks = [
// "In" row
EaseFunction::SineIn,
EaseFunction::QuadraticIn,
EaseFunction::CubicIn,
EaseFunction::QuarticIn,
EaseFunction::QuinticIn,
EaseFunction::SmoothStepIn,
EaseFunction::SmootherStepIn,
EaseFunction::CircularIn,
EaseFunction::ExponentialIn,
EaseFunction::ElasticIn,
EaseFunction::BackIn,
EaseFunction::BounceIn,
// "Out" row
EaseFunction::SineOut,
EaseFunction::QuadraticOut,
EaseFunction::CubicOut,
EaseFunction::QuarticOut,
EaseFunction::QuinticOut,
EaseFunction::SmoothStepOut,
EaseFunction::SmootherStepOut,
EaseFunction::CircularOut,
EaseFunction::ExponentialOut,
EaseFunction::ElasticOut,
EaseFunction::BackOut,
EaseFunction::BounceOut,
// "InOut" row
EaseFunction::SineInOut,
EaseFunction::QuadraticInOut,
EaseFunction::CubicInOut,
EaseFunction::QuarticInOut,
EaseFunction::QuinticInOut,
EaseFunction::SmoothStep,
EaseFunction::SmootherStep,
EaseFunction::CircularInOut,
EaseFunction::ExponentialInOut,
EaseFunction::ElasticInOut,
EaseFunction::BackInOut,
EaseFunction::BounceInOut,
// "Other" row
EaseFunction::Linear,
EaseFunction::Steps(4, JumpAt::End),
EaseFunction::Steps(4, JumpAt::Start),
EaseFunction::Steps(4, JumpAt::Both),
EaseFunction::Steps(4, JumpAt::None),
EaseFunction::Elastic(50.0),
]
.chunks(COLS);
let max_rows = chunks.clone().count();
let half_extent = EXTENT / 2.;
let half_size = PLOT_SIZE / 2.;
for (row, functions) in chunks.enumerate() {
for (col, function) in functions.iter().enumerate() {
let color = Hsla::hsl(col as f32 / COLS as f32 * 360.0, 0.8, 0.75).into();
commands
.spawn((
EaseFunctionPlot(*function, color),
Transform::from_xyz(
-half_extent.x + EXTENT.x / (COLS - 1) as f32 * col as f32,
half_extent.y - EXTENT.y / (max_rows - 1) as f32 * row as f32,
0.0,
),
))
.with_children(|p| {
// Marks the y value on the right side of the plot
p.spawn((
Sprite::from_color(color, Vec2::splat(5.0)),
Transform::from_xyz(half_size.x + 5.0, -half_size.y, 0.0),
));
// Marks the x and y value inside the plot
p.spawn((
Sprite::from_color(color, Vec2::splat(4.0)),
Transform::from_xyz(-half_size.x, -half_size.y, 0.0),
));
// Label
p.spawn((
Text2d(format!("{:?}", function)),
text_font.clone(),
TextColor(color),
Transform::from_xyz(0.0, -half_size.y - 15.0, 0.0),
));
});
}
}
commands.spawn((
Text::default(),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.0),
left: Val::Px(12.0),
..default()
},
));
}
fn display_curves(
mut gizmos: Gizmos,
ease_functions: Query<(&EaseFunctionPlot, &Transform, &Children)>,
mut transforms: Query<&mut Transform, Without<EaseFunctionPlot>>,
mut ui_text: Single<&mut Text>,
time: Res<Time>,
) {
let samples = 100;
let duration = 2.5;
let time_margin = 0.5;
let now = ((time.elapsed_secs() % (duration + time_margin * 2.0) - time_margin) / duration)
.clamp(0.0, 1.0);
ui_text.0 = format!("Progress: {:.2}", now);
for (EaseFunctionPlot(function, color), transform, children) in &ease_functions {
let center = transform.translation.xy();
let half_size = PLOT_SIZE / 2.0;
// Draw a box around the curve
gizmos.linestrip_2d(
[
center + half_size,
center + half_size * Vec2::new(-1., 1.),
center + half_size * Vec2::new(-1., -1.),
center + half_size * Vec2::new(1., -1.),
center + half_size,
],
color.darker(0.4),
);
// Draw the curve
let f = EasingCurve::new(0.0, 1.0, *function);
let drawn_curve = f
.by_ref()
.graph()
.map(|(x, y)| center - half_size + Vec2::new(x, y) * PLOT_SIZE);
gizmos.curve_2d(
&drawn_curve,
drawn_curve.domain().spaced_points(samples).unwrap(),
*color,
);
// Show progress along the curve for the current time
let y = f.sample(now).unwrap() * PLOT_SIZE.y;
transforms.get_mut(children[0]).unwrap().translation.y = -half_size.y + y;
transforms.get_mut(children[1]).unwrap().translation =
-half_size.extend(0.0) + Vec3::new(now * PLOT_SIZE.x, y, 0.0);
// Show horizontal bar at y value
gizmos.linestrip_2d(
[
center - half_size + Vec2::Y * y,
center - half_size + Vec2::new(PLOT_SIZE.x, y),
],
color.darker(0.2),
);
}
}

View File

@@ -0,0 +1,71 @@
//! Skinned mesh example with mesh and joints data loaded from a glTF file.
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
use std::f32::consts::*;
use bevy::{math::ops, prelude::*, render::mesh::skinning::SkinnedMesh};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.insert_resource(AmbientLight {
brightness: 750.0,
..default()
})
.add_systems(Startup, setup)
.add_systems(Update, joint_animation)
.run();
}
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
// Create a camera
commands.spawn((
Camera3d::default(),
Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::new(0.0, 1.0, 0.0), Vec3::Y),
));
// Spawn the first scene in `models/SimpleSkin/SimpleSkin.gltf`
commands.spawn(SceneRoot(asset_server.load(
GltfAssetLabel::Scene(0).from_asset("models/SimpleSkin/SimpleSkin.gltf"),
)));
}
/// The scene hierarchy currently looks somewhat like this:
///
/// ```text
/// <Parent entity>
/// + Mesh node (without `Mesh3d` or `SkinnedMesh` component)
/// + Skinned mesh entity (with `Mesh3d` and `SkinnedMesh` component, created by glTF loader)
/// + First joint
/// + Second joint
/// ```
///
/// In this example, we want to get and animate the second joint.
/// It is similar to the animation defined in `models/SimpleSkin/SimpleSkin.gltf`.
fn joint_animation(
time: Res<Time>,
children: Query<&ChildOf, With<SkinnedMesh>>,
parents: Query<&Children>,
mut transform_query: Query<&mut Transform>,
) {
// Iter skinned mesh entity
for child_of in &children {
// Mesh node is the parent of the skinned mesh entity.
let mesh_node_entity = child_of.parent();
// Get `Children` in the mesh node.
let mesh_node_parent = parents.get(mesh_node_entity).unwrap();
// First joint is the second child of the mesh node.
let first_joint_entity = mesh_node_parent[1];
// Get `Children` in the first joint.
let first_joint_children = parents.get(first_joint_entity).unwrap();
// Second joint is the first child of the first joint.
let second_joint_entity = first_joint_children[0];
// Get `Transform` in the second joint.
let mut second_joint_transform = transform_query.get_mut(second_joint_entity).unwrap();
second_joint_transform.rotation =
Quat::from_rotation_z(FRAC_PI_2 * ops::sin(time.elapsed_secs()));
}
}

View File

@@ -0,0 +1,112 @@
//! Controls morph targets in a loaded scene.
//!
//! Illustrates:
//!
//! - How to access and modify individual morph target weights.
//! See the `update_weights` system for details.
//! - How to read morph target names in `name_morphs`.
//! - How to play morph target animations in `setup_animations`.
use bevy::prelude::*;
use std::f32::consts::PI;
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
primary_window: Some(Window {
title: "morph targets".to_string(),
..default()
}),
..default()
}))
.insert_resource(AmbientLight {
brightness: 150.0,
..default()
})
.add_systems(Startup, setup)
.add_systems(Update, (name_morphs, setup_animations))
.run();
}
#[derive(Resource)]
struct MorphData {
the_wave: Handle<AnimationClip>,
mesh: Handle<Mesh>,
}
fn setup(asset_server: Res<AssetServer>, mut commands: Commands) {
commands.insert_resource(MorphData {
the_wave: asset_server
.load(GltfAssetLabel::Animation(2).from_asset("models/animated/MorphStressTest.gltf")),
mesh: asset_server.load(
GltfAssetLabel::Primitive {
mesh: 0,
primitive: 0,
}
.from_asset("models/animated/MorphStressTest.gltf"),
),
});
commands.spawn(SceneRoot(asset_server.load(
GltfAssetLabel::Scene(0).from_asset("models/animated/MorphStressTest.gltf"),
)));
commands.spawn((
DirectionalLight::default(),
Transform::from_rotation(Quat::from_rotation_z(PI / 2.0)),
));
commands.spawn((
Camera3d::default(),
Transform::from_xyz(3.0, 2.1, 10.2).looking_at(Vec3::ZERO, Vec3::Y),
));
}
/// Plays an [`AnimationClip`] from the loaded [`Gltf`] on the [`AnimationPlayer`] created by the spawned scene.
fn setup_animations(
mut has_setup: Local<bool>,
mut commands: Commands,
mut players: Query<(Entity, &Name, &mut AnimationPlayer)>,
morph_data: Res<MorphData>,
mut graphs: ResMut<Assets<AnimationGraph>>,
) {
if *has_setup {
return;
}
for (entity, name, mut player) in &mut players {
// The name of the entity in the GLTF scene containing the AnimationPlayer for our morph targets is "Main"
if name.as_str() != "Main" {
continue;
}
let (graph, animation) = AnimationGraph::from_clip(morph_data.the_wave.clone());
commands
.entity(entity)
.insert(AnimationGraphHandle(graphs.add(graph)));
player.play(animation).repeat();
*has_setup = true;
}
}
/// You can get the target names in their corresponding [`Mesh`].
/// They are in the order of the weights.
fn name_morphs(
mut has_printed: Local<bool>,
morph_data: Res<MorphData>,
meshes: Res<Assets<Mesh>>,
) {
if *has_printed {
return;
}
let Some(mesh) = meshes.get(&morph_data.mesh) else {
return;
};
let Some(names) = mesh.morph_target_names() else {
return;
};
info!("Target names:");
for name in names {
info!(" {name}");
}
*has_printed = true;
}