Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

272
vendor/bevy_animation/src/animatable.rs vendored Normal file
View File

@@ -0,0 +1,272 @@
//! Traits and type for interpolating between values.
use crate::util;
use bevy_color::{Laba, LinearRgba, Oklaba, Srgba, Xyza};
use bevy_math::*;
use bevy_reflect::Reflect;
use bevy_transform::prelude::Transform;
/// An individual input for [`Animatable::blend`].
pub struct BlendInput<T> {
/// The individual item's weight. This may not be bound to the range `[0.0, 1.0]`.
pub weight: f32,
/// The input value to be blended.
pub value: T,
/// Whether or not to additively blend this input into the final result.
pub additive: bool,
}
/// An animatable value type.
pub trait Animatable: Reflect + Sized + Send + Sync + 'static {
/// Interpolates between `a` and `b` with an interpolation factor of `time`.
///
/// The `time` parameter here may not be clamped to the range `[0.0, 1.0]`.
fn interpolate(a: &Self, b: &Self, time: f32) -> Self;
/// Blends one or more values together.
///
/// Implementors should return a default value when no inputs are provided here.
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self;
}
macro_rules! impl_float_animatable {
($ty: ty, $base: ty) => {
impl Animatable for $ty {
#[inline]
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
let t = <$base>::from(t);
(*a) * (1.0 - t) + (*b) * t
}
#[inline]
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
let mut value = Default::default();
for input in inputs {
if input.additive {
value += <$base>::from(input.weight) * input.value;
} else {
value = Self::interpolate(&value, &input.value, input.weight);
}
}
value
}
}
};
}
macro_rules! impl_color_animatable {
($ty: ident) => {
impl Animatable for $ty {
#[inline]
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
let value = *a * (1. - t) + *b * t;
value
}
#[inline]
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
let mut value = Default::default();
for input in inputs {
if input.additive {
value += input.weight * input.value;
} else {
value = Self::interpolate(&value, &input.value, input.weight);
}
}
value
}
}
};
}
impl_float_animatable!(f32, f32);
impl_float_animatable!(Vec2, f32);
impl_float_animatable!(Vec3A, f32);
impl_float_animatable!(Vec4, f32);
impl_float_animatable!(f64, f64);
impl_float_animatable!(DVec2, f64);
impl_float_animatable!(DVec3, f64);
impl_float_animatable!(DVec4, f64);
impl_color_animatable!(LinearRgba);
impl_color_animatable!(Laba);
impl_color_animatable!(Oklaba);
impl_color_animatable!(Srgba);
impl_color_animatable!(Xyza);
// Vec3 is special cased to use Vec3A internally for blending
impl Animatable for Vec3 {
#[inline]
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
(*a) * (1.0 - t) + (*b) * t
}
#[inline]
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
let mut value = Vec3A::ZERO;
for input in inputs {
if input.additive {
value += input.weight * Vec3A::from(input.value);
} else {
value = Vec3A::interpolate(&value, &Vec3A::from(input.value), input.weight);
}
}
Self::from(value)
}
}
impl Animatable for bool {
#[inline]
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
util::step_unclamped(*a, *b, t)
}
#[inline]
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
inputs
.max_by_key(|x| FloatOrd(x.weight))
.is_some_and(|input| input.value)
}
}
impl Animatable for Transform {
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
Self {
translation: Vec3::interpolate(&a.translation, &b.translation, t),
rotation: Quat::interpolate(&a.rotation, &b.rotation, t),
scale: Vec3::interpolate(&a.scale, &b.scale, t),
}
}
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
let mut translation = Vec3A::ZERO;
let mut scale = Vec3A::ZERO;
let mut rotation = Quat::IDENTITY;
for input in inputs {
if input.additive {
translation += input.weight * Vec3A::from(input.value.translation);
scale += input.weight * Vec3A::from(input.value.scale);
rotation =
Quat::slerp(Quat::IDENTITY, input.value.rotation, input.weight) * rotation;
} else {
translation = Vec3A::interpolate(
&translation,
&Vec3A::from(input.value.translation),
input.weight,
);
scale = Vec3A::interpolate(&scale, &Vec3A::from(input.value.scale), input.weight);
rotation = Quat::interpolate(&rotation, &input.value.rotation, input.weight);
}
}
Self {
translation: Vec3::from(translation),
rotation,
scale: Vec3::from(scale),
}
}
}
impl Animatable for Quat {
/// Performs a slerp to smoothly interpolate between quaternions.
#[inline]
fn interpolate(a: &Self, b: &Self, t: f32) -> Self {
// We want to smoothly interpolate between the two quaternions by default,
// rather than using a quicker but less correct linear interpolation.
a.slerp(*b, t)
}
#[inline]
fn blend(inputs: impl Iterator<Item = BlendInput<Self>>) -> Self {
let mut value = Self::IDENTITY;
for BlendInput {
weight,
value: incoming_value,
additive,
} in inputs
{
if additive {
value = Self::slerp(Self::IDENTITY, incoming_value, weight) * value;
} else {
value = Self::interpolate(&value, &incoming_value, weight);
}
}
value
}
}
/// Evaluates a cubic Bézier curve at a value `t`, given two endpoints and the
/// derivatives at those endpoints.
///
/// The derivatives are linearly scaled by `duration`.
pub fn interpolate_with_cubic_bezier<T>(p0: &T, d0: &T, d3: &T, p3: &T, t: f32, duration: f32) -> T
where
T: Animatable + Clone,
{
// We're given two endpoints, along with the derivatives at those endpoints,
// and have to evaluate the cubic Bézier curve at time t using only
// (additive) blending and linear interpolation.
//
// Evaluating a Bézier curve via repeated linear interpolation when the
// control points are known is straightforward via [de Casteljau
// subdivision]. So the only remaining problem is to get the two off-curve
// control points. The [derivative of the cubic Bézier curve] is:
//
// B(t) = 3(1 - t)²(P₁ - P₀) + 6(1 - t)t(P₂ - P₁) + 3t²(P₃ - P₂)
//
// Setting t = 0 and t = 1 and solving gives us:
//
// P₁ = P₀ + B(0) / 3
// P₂ = P₃ - B(1) / 3
//
// These P₁ and P₂ formulas can be expressed as additive blends.
//
// So, to sum up, first we calculate the off-curve control points via
// additive blending, and then we use repeated linear interpolation to
// evaluate the curve.
//
// [de Casteljau subdivision]: https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
// [derivative of the cubic Bézier curve]: https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B%C3%A9zier_curves
// Compute control points from derivatives.
let p1 = T::blend(
[
BlendInput {
weight: duration / 3.0,
value: (*d0).clone(),
additive: true,
},
BlendInput {
weight: 1.0,
value: (*p0).clone(),
additive: true,
},
]
.into_iter(),
);
let p2 = T::blend(
[
BlendInput {
weight: duration / -3.0,
value: (*d3).clone(),
additive: true,
},
BlendInput {
weight: 1.0,
value: (*p3).clone(),
additive: true,
},
]
.into_iter(),
);
// Use de Casteljau subdivision to evaluate.
let p0p1 = T::interpolate(p0, &p1, t);
let p1p2 = T::interpolate(&p1, &p2, t);
let p2p3 = T::interpolate(&p2, p3, t);
let p0p1p2 = T::interpolate(&p0p1, &p1p2, t);
let p1p2p3 = T::interpolate(&p1p2, &p2p3, t);
T::interpolate(&p0p1p2, &p1p2p3, t)
}