Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

1186
vendor/bevy_pbr/src/cluster/assign.rs vendored Normal file

File diff suppressed because it is too large Load Diff

859
vendor/bevy_pbr/src/cluster/mod.rs vendored Normal file
View File

@@ -0,0 +1,859 @@
//! Spatial clustering of objects, currently just point and spot lights.
use core::num::NonZero;
use bevy_core_pipeline::core_3d::Camera3d;
use bevy_ecs::{
component::Component,
entity::{Entity, EntityHashMap},
query::{With, Without},
reflect::ReflectComponent,
resource::Resource,
system::{Commands, Query, Res},
world::{FromWorld, World},
};
use bevy_math::{uvec4, AspectRatio, UVec2, UVec3, UVec4, Vec3Swizzles as _, Vec4};
use bevy_platform::collections::HashSet;
use bevy_reflect::{std_traits::ReflectDefault, Reflect};
use bevy_render::{
camera::Camera,
render_resource::{
BindingResource, BufferBindingType, ShaderSize as _, ShaderType, StorageBuffer,
UniformBuffer,
},
renderer::{RenderDevice, RenderQueue},
sync_world::RenderEntity,
Extract,
};
use tracing::warn;
pub(crate) use crate::cluster::assign::assign_objects_to_clusters;
use crate::MeshPipeline;
pub(crate) mod assign;
#[cfg(test)]
mod test;
// NOTE: this must be kept in sync with the same constants in
// `mesh_view_types.wgsl`.
pub const MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS: usize = 204;
// Make sure that the clusterable object buffer doesn't overflow the maximum
// size of a UBO on WebGL 2.
const _: () =
assert!(size_of::<GpuClusterableObject>() * MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS <= 16384);
// NOTE: Clustered-forward rendering requires 3 storage buffer bindings so check that
// at least that many are supported using this constant and SupportedBindingType::from_device()
pub const CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT: u32 = 3;
// this must match CLUSTER_COUNT_SIZE in pbr.wgsl
// and must be large enough to contain MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS
const CLUSTER_COUNT_SIZE: u32 = 9;
const CLUSTER_OFFSET_MASK: u32 = (1 << (32 - (CLUSTER_COUNT_SIZE * 2))) - 1;
const CLUSTER_COUNT_MASK: u32 = (1 << CLUSTER_COUNT_SIZE) - 1;
// Clustered-forward rendering notes
// The main initial reference material used was this rather accessible article:
// http://www.aortiz.me/2018/12/21/CG.html
// Some inspiration was taken from “Practical Clustered Shading” which is part 2 of:
// https://efficientshading.com/2015/01/01/real-time-many-light-management-and-shadows-with-clustered-shading/
// (Also note that Part 3 of the above shows how we could support the shadow mapping for many lights.)
// The z-slicing method mentioned in the aortiz article is originally from Tiago Sousa's Siggraph 2016 talk about Doom 2016:
// http://advances.realtimerendering.com/s2016/Siggraph2016_idTech6.pdf
/// Configure the far z-plane mode used for the furthest depth slice for clustered forward
/// rendering
#[derive(Debug, Copy, Clone, Reflect)]
#[reflect(Clone)]
pub enum ClusterFarZMode {
/// Calculate the required maximum z-depth based on currently visible
/// clusterable objects. Makes better use of available clusters, speeding
/// up GPU lighting operations at the expense of some CPU time and using
/// more indices in the clusterable object index lists.
MaxClusterableObjectRange,
/// Constant max z-depth
Constant(f32),
}
/// Configure the depth-slicing strategy for clustered forward rendering
#[derive(Debug, Copy, Clone, Reflect)]
#[reflect(Default, Clone)]
pub struct ClusterZConfig {
/// Far `Z` plane of the first depth slice
pub first_slice_depth: f32,
/// Strategy for how to evaluate the far `Z` plane of the furthest depth slice
pub far_z_mode: ClusterFarZMode,
}
/// Configuration of the clustering strategy for clustered forward rendering
#[derive(Debug, Copy, Clone, Component, Reflect)]
#[reflect(Component, Debug, Default, Clone)]
pub enum ClusterConfig {
/// Disable cluster calculations for this view
None,
/// One single cluster. Optimal for low-light complexity scenes or scenes where
/// most lights affect the entire scene.
Single,
/// Explicit `X`, `Y` and `Z` counts (may yield non-square `X/Y` clusters depending on the aspect ratio)
XYZ {
dimensions: UVec3,
z_config: ClusterZConfig,
/// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
/// the available cluster-object index limit
dynamic_resizing: bool,
},
/// Fixed number of `Z` slices, `X` and `Y` calculated to give square clusters
/// with at most total clusters. For top-down games where lights will generally always be within a
/// short depth range, it may be useful to use this configuration with 1 or few `Z` slices. This
/// would reduce the number of lights per cluster by distributing more clusters in screen space
/// `X/Y` which matches how lights are distributed in the scene.
FixedZ {
total: u32,
z_slices: u32,
z_config: ClusterZConfig,
/// Specify if clusters should automatically resize in `X/Y` if there is a risk of exceeding
/// the available clusterable object index limit
dynamic_resizing: bool,
},
}
#[derive(Component, Debug, Default)]
pub struct Clusters {
/// Tile size
pub(crate) tile_size: UVec2,
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
pub(crate) dimensions: UVec3,
/// Distance to the far plane of the first depth slice. The first depth slice is special
/// and explicitly-configured to avoid having unnecessarily many slices close to the camera.
pub(crate) near: f32,
pub(crate) far: f32,
pub(crate) clusterable_objects: Vec<VisibleClusterableObjects>,
}
#[derive(Clone, Component, Debug, Default)]
pub struct VisibleClusterableObjects {
pub(crate) entities: Vec<Entity>,
counts: ClusterableObjectCounts,
}
#[derive(Resource, Default)]
pub struct GlobalVisibleClusterableObjects {
pub(crate) entities: HashSet<Entity>,
}
#[derive(Resource)]
pub struct GlobalClusterableObjectMeta {
pub gpu_clusterable_objects: GpuClusterableObjects,
pub entity_to_index: EntityHashMap<usize>,
}
#[derive(Copy, Clone, ShaderType, Default, Debug)]
pub struct GpuClusterableObject {
// For point lights: the lower-right 2x2 values of the projection matrix [2][2] [2][3] [3][2] [3][3]
// For spot lights: 2 components of the direction (x,z), spot_scale and spot_offset
pub(crate) light_custom_data: Vec4,
pub(crate) color_inverse_square_range: Vec4,
pub(crate) position_radius: Vec4,
pub(crate) flags: u32,
pub(crate) shadow_depth_bias: f32,
pub(crate) shadow_normal_bias: f32,
pub(crate) spot_light_tan_angle: f32,
pub(crate) soft_shadow_size: f32,
pub(crate) shadow_map_near_z: f32,
pub(crate) pad_a: f32,
pub(crate) pad_b: f32,
}
pub enum GpuClusterableObjects {
Uniform(UniformBuffer<GpuClusterableObjectsUniform>),
Storage(StorageBuffer<GpuClusterableObjectsStorage>),
}
#[derive(ShaderType)]
pub struct GpuClusterableObjectsUniform {
data: Box<[GpuClusterableObject; MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS]>,
}
#[derive(ShaderType, Default)]
pub struct GpuClusterableObjectsStorage {
#[size(runtime)]
data: Vec<GpuClusterableObject>,
}
#[derive(Component)]
pub struct ExtractedClusterConfig {
/// Special near value for cluster calculations
pub(crate) near: f32,
pub(crate) far: f32,
/// Number of clusters in `X` / `Y` / `Z` in the view frustum
pub(crate) dimensions: UVec3,
}
/// Stores the number of each type of clusterable object in a single cluster.
///
/// Note that `reflection_probes` and `irradiance_volumes` won't be clustered if
/// fewer than 3 SSBOs are available, which usually means on WebGL 2.
#[derive(Clone, Copy, Default, Debug)]
struct ClusterableObjectCounts {
/// The number of point lights in the cluster.
point_lights: u32,
/// The number of spot lights in the cluster.
spot_lights: u32,
/// The number of reflection probes in the cluster.
reflection_probes: u32,
/// The number of irradiance volumes in the cluster.
irradiance_volumes: u32,
/// The number of decals in the cluster.
decals: u32,
}
enum ExtractedClusterableObjectElement {
ClusterHeader(ClusterableObjectCounts),
ClusterableObjectEntity(Entity),
}
#[derive(Component)]
pub struct ExtractedClusterableObjects {
data: Vec<ExtractedClusterableObjectElement>,
}
#[derive(ShaderType)]
struct GpuClusterOffsetsAndCountsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
#[derive(ShaderType, Default)]
struct GpuClusterableObjectIndexListsStorage {
#[size(runtime)]
data: Vec<u32>,
}
#[derive(ShaderType, Default)]
struct GpuClusterOffsetsAndCountsStorage {
/// The starting offset, followed by the number of point lights, spot
/// lights, reflection probes, and irradiance volumes in each cluster, in
/// that order. The remaining fields are filled with zeroes.
#[size(runtime)]
data: Vec<[UVec4; 2]>,
}
enum ViewClusterBuffers {
Uniform {
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
clusterable_object_index_lists: UniformBuffer<GpuClusterableObjectIndexListsUniform>,
// NOTE: UVec4 is because all arrays in Std140 layout have 16-byte alignment
cluster_offsets_and_counts: UniformBuffer<GpuClusterOffsetsAndCountsUniform>,
},
Storage {
clusterable_object_index_lists: StorageBuffer<GpuClusterableObjectIndexListsStorage>,
cluster_offsets_and_counts: StorageBuffer<GpuClusterOffsetsAndCountsStorage>,
},
}
#[derive(Component)]
pub struct ViewClusterBindings {
n_indices: usize,
n_offsets: usize,
buffers: ViewClusterBuffers,
}
impl Default for ClusterZConfig {
fn default() -> Self {
Self {
first_slice_depth: 5.0,
far_z_mode: ClusterFarZMode::MaxClusterableObjectRange,
}
}
}
impl Default for ClusterConfig {
fn default() -> Self {
// 24 depth slices, square clusters with at most 4096 total clusters
// use max light distance as clusters max `Z`-depth, first slice extends to 5.0
Self::FixedZ {
total: 4096,
z_slices: 24,
z_config: ClusterZConfig::default(),
dynamic_resizing: true,
}
}
}
impl ClusterConfig {
fn dimensions_for_screen_size(&self, screen_size: UVec2) -> UVec3 {
match &self {
ClusterConfig::None => UVec3::ZERO,
ClusterConfig::Single => UVec3::ONE,
ClusterConfig::XYZ { dimensions, .. } => *dimensions,
ClusterConfig::FixedZ {
total, z_slices, ..
} => {
let aspect_ratio: f32 = AspectRatio::try_from_pixels(screen_size.x, screen_size.y)
.expect("Failed to calculate aspect ratio for Cluster: screen dimensions must be positive, non-zero values")
.ratio();
let mut z_slices = *z_slices;
if *total < z_slices {
warn!("ClusterConfig has more z-slices than total clusters!");
z_slices = *total;
}
let per_layer = *total as f32 / z_slices as f32;
let y = f32::sqrt(per_layer / aspect_ratio);
let mut x = (y * aspect_ratio) as u32;
let mut y = y as u32;
// check extremes
if x == 0 {
x = 1;
y = per_layer as u32;
}
if y == 0 {
x = per_layer as u32;
y = 1;
}
UVec3::new(x, y, z_slices)
}
}
}
fn first_slice_depth(&self) -> f32 {
match self {
ClusterConfig::None | ClusterConfig::Single => 0.0,
ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
z_config.first_slice_depth
}
}
}
fn far_z_mode(&self) -> ClusterFarZMode {
match self {
ClusterConfig::None => ClusterFarZMode::Constant(0.0),
ClusterConfig::Single => ClusterFarZMode::MaxClusterableObjectRange,
ClusterConfig::XYZ { z_config, .. } | ClusterConfig::FixedZ { z_config, .. } => {
z_config.far_z_mode
}
}
}
fn dynamic_resizing(&self) -> bool {
match self {
ClusterConfig::None | ClusterConfig::Single => false,
ClusterConfig::XYZ {
dynamic_resizing, ..
}
| ClusterConfig::FixedZ {
dynamic_resizing, ..
} => *dynamic_resizing,
}
}
}
impl Clusters {
fn update(&mut self, screen_size: UVec2, requested_dimensions: UVec3) {
debug_assert!(
requested_dimensions.x > 0 && requested_dimensions.y > 0 && requested_dimensions.z > 0
);
let tile_size = (screen_size.as_vec2() / requested_dimensions.xy().as_vec2())
.ceil()
.as_uvec2()
.max(UVec2::ONE);
self.tile_size = tile_size;
self.dimensions = (screen_size.as_vec2() / tile_size.as_vec2())
.ceil()
.as_uvec2()
.extend(requested_dimensions.z)
.max(UVec3::ONE);
// NOTE: Maximum 4096 clusters due to uniform buffer size constraints
debug_assert!(self.dimensions.x * self.dimensions.y * self.dimensions.z <= 4096);
}
fn clear(&mut self) {
self.tile_size = UVec2::ONE;
self.dimensions = UVec3::ZERO;
self.near = 0.0;
self.far = 0.0;
self.clusterable_objects.clear();
}
}
pub fn add_clusters(
mut commands: Commands,
cameras: Query<(Entity, Option<&ClusterConfig>, &Camera), (Without<Clusters>, With<Camera3d>)>,
) {
for (entity, config, camera) in &cameras {
if !camera.is_active {
continue;
}
let config = config.copied().unwrap_or_default();
// actual settings here don't matter - they will be overwritten in
// `assign_objects_to_clusters``
commands
.entity(entity)
.insert((Clusters::default(), config));
}
}
impl VisibleClusterableObjects {
#[inline]
pub fn iter(&self) -> impl DoubleEndedIterator<Item = &Entity> {
self.entities.iter()
}
#[inline]
pub fn len(&self) -> usize {
self.entities.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.entities.is_empty()
}
}
impl GlobalVisibleClusterableObjects {
#[inline]
pub fn iter(&self) -> impl Iterator<Item = &Entity> {
self.entities.iter()
}
#[inline]
pub fn contains(&self, entity: Entity) -> bool {
self.entities.contains(&entity)
}
}
impl FromWorld for GlobalClusterableObjectMeta {
fn from_world(world: &mut World) -> Self {
Self::new(
world
.resource::<RenderDevice>()
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT),
)
}
}
impl GlobalClusterableObjectMeta {
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
gpu_clusterable_objects: GpuClusterableObjects::new(buffer_binding_type),
entity_to_index: EntityHashMap::default(),
}
}
}
impl GpuClusterableObjects {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
Self::Uniform(UniformBuffer::default())
}
fn storage() -> Self {
Self::Storage(StorageBuffer::default())
}
pub(crate) fn set(&mut self, mut clusterable_objects: Vec<GpuClusterableObject>) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
let len = clusterable_objects
.len()
.min(MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS);
let src = &clusterable_objects[..len];
let dst = &mut buffer.get_mut().data[..len];
dst.copy_from_slice(src);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.get_mut().data.clear();
buffer.get_mut().data.append(&mut clusterable_objects);
}
}
}
pub(crate) fn write_buffer(
&mut self,
render_device: &RenderDevice,
render_queue: &RenderQueue,
) {
match self {
GpuClusterableObjects::Uniform(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
GpuClusterableObjects::Storage(buffer) => {
buffer.write_buffer(render_device, render_queue);
}
}
}
pub fn binding(&self) -> Option<BindingResource> {
match self {
GpuClusterableObjects::Uniform(buffer) => buffer.binding(),
GpuClusterableObjects::Storage(buffer) => buffer.binding(),
}
}
pub fn min_size(buffer_binding_type: BufferBindingType) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectsUniform::min_size(),
}
}
}
impl Default for GpuClusterableObjectsUniform {
fn default() -> Self {
Self {
data: Box::new(
[GpuClusterableObject::default(); MAX_UNIFORM_BUFFER_CLUSTERABLE_OBJECTS],
),
}
}
}
/// Extracts clusters from the main world from the render world.
pub fn extract_clusters(
mut commands: Commands,
views: Extract<Query<(RenderEntity, &Clusters, &Camera)>>,
mapper: Extract<Query<RenderEntity>>,
) {
for (entity, clusters, camera) in &views {
let mut entity_commands = commands
.get_entity(entity)
.expect("Clusters entity wasn't synced.");
if !camera.is_active {
entity_commands.remove::<(ExtractedClusterableObjects, ExtractedClusterConfig)>();
continue;
}
let num_entities: usize = clusters
.clusterable_objects
.iter()
.map(|l| l.entities.len())
.sum();
let mut data = Vec::with_capacity(clusters.clusterable_objects.len() + num_entities);
for cluster_objects in &clusters.clusterable_objects {
data.push(ExtractedClusterableObjectElement::ClusterHeader(
cluster_objects.counts,
));
for clusterable_entity in &cluster_objects.entities {
if let Ok(entity) = mapper.get(*clusterable_entity) {
data.push(ExtractedClusterableObjectElement::ClusterableObjectEntity(
entity,
));
}
}
}
entity_commands.insert((
ExtractedClusterableObjects { data },
ExtractedClusterConfig {
near: clusters.near,
far: clusters.far,
dimensions: clusters.dimensions,
},
));
}
}
pub fn prepare_clusters(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mesh_pipeline: Res<MeshPipeline>,
global_clusterable_object_meta: Res<GlobalClusterableObjectMeta>,
views: Query<(Entity, &ExtractedClusterableObjects)>,
) {
let render_device = render_device.into_inner();
let supports_storage_buffers = matches!(
mesh_pipeline.clustered_forward_buffer_binding_type,
BufferBindingType::Storage { .. }
);
for (entity, extracted_clusters) in &views {
let mut view_clusters_bindings =
ViewClusterBindings::new(mesh_pipeline.clustered_forward_buffer_binding_type);
view_clusters_bindings.clear();
for record in &extracted_clusters.data {
match record {
ExtractedClusterableObjectElement::ClusterHeader(counts) => {
let offset = view_clusters_bindings.n_indices();
view_clusters_bindings.push_offset_and_counts(offset, counts);
}
ExtractedClusterableObjectElement::ClusterableObjectEntity(entity) => {
if let Some(clusterable_object_index) =
global_clusterable_object_meta.entity_to_index.get(entity)
{
if view_clusters_bindings.n_indices() >= ViewClusterBindings::MAX_INDICES
&& !supports_storage_buffers
{
warn!(
"Clusterable object index lists are full! The clusterable \
objects in the view are present in too many clusters."
);
break;
}
view_clusters_bindings.push_index(*clusterable_object_index);
}
}
}
}
view_clusters_bindings.write_buffers(render_device, &render_queue);
commands.entity(entity).insert(view_clusters_bindings);
}
}
impl ViewClusterBindings {
pub const MAX_OFFSETS: usize = 16384 / 4;
const MAX_UNIFORM_ITEMS: usize = Self::MAX_OFFSETS / 4;
pub const MAX_INDICES: usize = 16384;
pub fn new(buffer_binding_type: BufferBindingType) -> Self {
Self {
n_indices: 0,
n_offsets: 0,
buffers: ViewClusterBuffers::new(buffer_binding_type),
}
}
pub fn clear(&mut self) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
*clusterable_object_index_lists.get_mut().data =
[UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
*cluster_offsets_and_counts.get_mut().data = [UVec4::ZERO; Self::MAX_UNIFORM_ITEMS];
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
..
} => {
clusterable_object_index_lists.get_mut().data.clear();
cluster_offsets_and_counts.get_mut().data.clear();
}
}
}
fn push_offset_and_counts(&mut self, offset: usize, counts: &ClusterableObjectCounts) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => {
let array_index = self.n_offsets >> 2; // >> 2 is equivalent to / 4
if array_index >= Self::MAX_UNIFORM_ITEMS {
warn!("cluster offset and count out of bounds!");
return;
}
let component = self.n_offsets & ((1 << 2) - 1);
let packed =
pack_offset_and_counts(offset, counts.point_lights, counts.spot_lights);
cluster_offsets_and_counts.get_mut().data[array_index][component] = packed;
}
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => {
cluster_offsets_and_counts.get_mut().data.push([
uvec4(
offset as u32,
counts.point_lights,
counts.spot_lights,
counts.reflection_probes,
),
uvec4(counts.irradiance_volumes, counts.decals, 0, 0),
]);
}
}
self.n_offsets += 1;
}
pub fn n_indices(&self) -> usize {
self.n_indices
}
pub fn push_index(&mut self, index: usize) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => {
let array_index = self.n_indices >> 4; // >> 4 is equivalent to / 16
let component = (self.n_indices >> 2) & ((1 << 2) - 1);
let sub_index = self.n_indices & ((1 << 2) - 1);
let index = index as u32;
clusterable_object_index_lists.get_mut().data[array_index][component] |=
index << (8 * sub_index);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => {
clusterable_object_index_lists
.get_mut()
.data
.push(index as u32);
}
}
self.n_indices += 1;
}
pub fn write_buffers(&mut self, render_device: &RenderDevice, render_queue: &RenderQueue) {
match &mut self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
cluster_offsets_and_counts,
} => {
clusterable_object_index_lists.write_buffer(render_device, render_queue);
cluster_offsets_and_counts.write_buffer(render_device, render_queue);
}
}
}
pub fn clusterable_object_index_lists_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
ViewClusterBuffers::Storage {
clusterable_object_index_lists,
..
} => clusterable_object_index_lists.binding(),
}
}
pub fn offsets_and_counts_binding(&self) -> Option<BindingResource> {
match &self.buffers {
ViewClusterBuffers::Uniform {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
ViewClusterBuffers::Storage {
cluster_offsets_and_counts,
..
} => cluster_offsets_and_counts.binding(),
}
}
pub fn min_size_clusterable_object_index_lists(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterableObjectIndexListsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterableObjectIndexListsUniform::min_size(),
}
}
pub fn min_size_cluster_offsets_and_counts(
buffer_binding_type: BufferBindingType,
) -> NonZero<u64> {
match buffer_binding_type {
BufferBindingType::Storage { .. } => GpuClusterOffsetsAndCountsStorage::min_size(),
BufferBindingType::Uniform => GpuClusterOffsetsAndCountsUniform::min_size(),
}
}
}
impl ViewClusterBuffers {
fn new(buffer_binding_type: BufferBindingType) -> Self {
match buffer_binding_type {
BufferBindingType::Storage { .. } => Self::storage(),
BufferBindingType::Uniform => Self::uniform(),
}
}
fn uniform() -> Self {
ViewClusterBuffers::Uniform {
clusterable_object_index_lists: UniformBuffer::default(),
cluster_offsets_and_counts: UniformBuffer::default(),
}
}
fn storage() -> Self {
ViewClusterBuffers::Storage {
clusterable_object_index_lists: StorageBuffer::default(),
cluster_offsets_and_counts: StorageBuffer::default(),
}
}
}
// Compresses the offset and counts of point and spot lights so that they fit in
// a UBO.
//
// This function is only used if storage buffers are unavailable on this
// platform: typically, on WebGL 2.
//
// NOTE: With uniform buffer max binding size as 16384 bytes
// that means we can fit 204 clusterable objects in one uniform
// buffer, which means the count can be at most 204 so it
// needs 9 bits.
// The array of indices can also use u8 and that means the
// offset in to the array of indices needs to be able to address
// 16384 values. log2(16384) = 14 bits.
// We use 32 bits to store the offset and counts so
// we pack the offset into the upper 14 bits of a u32,
// the point light count into bits 9-17, and the spot light count into bits 0-8.
// [ 31 .. 18 | 17 .. 9 | 8 .. 0 ]
// [ offset | point light count | spot light count ]
//
// NOTE: This assumes CPU and GPU endianness are the same which is true
// for all common and tested x86/ARM CPUs and AMD/NVIDIA/Intel/Apple/etc GPUs
//
// NOTE: On platforms that use this function, we don't cluster light probes, so
// the number of light probes is irrelevant.
fn pack_offset_and_counts(offset: usize, point_count: u32, spot_count: u32) -> u32 {
((offset as u32 & CLUSTER_OFFSET_MASK) << (CLUSTER_COUNT_SIZE * 2))
| ((point_count & CLUSTER_COUNT_MASK) << CLUSTER_COUNT_SIZE)
| (spot_count & CLUSTER_COUNT_MASK)
}
#[derive(ShaderType)]
struct GpuClusterableObjectIndexListsUniform {
data: Box<[UVec4; ViewClusterBindings::MAX_UNIFORM_ITEMS]>,
}
// NOTE: Assert at compile time that GpuClusterableObjectIndexListsUniform
// fits within the maximum uniform buffer binding size
const _: () = assert!(GpuClusterableObjectIndexListsUniform::SHADER_SIZE.get() <= 16384);
impl Default for GpuClusterableObjectIndexListsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}
impl Default for GpuClusterOffsetsAndCountsUniform {
fn default() -> Self {
Self {
data: Box::new([UVec4::ZERO; ViewClusterBindings::MAX_UNIFORM_ITEMS]),
}
}
}

54
vendor/bevy_pbr/src/cluster/test.rs vendored Normal file
View File

@@ -0,0 +1,54 @@
use bevy_math::UVec2;
use crate::{ClusterConfig, Clusters};
fn test_cluster_tiling(config: ClusterConfig, screen_size: UVec2) -> Clusters {
let dims = config.dimensions_for_screen_size(screen_size);
// note: near & far do not affect tiling
let mut clusters = Clusters::default();
clusters.update(screen_size, dims);
// check we cover the screen
assert!(clusters.tile_size.x * clusters.dimensions.x >= screen_size.x);
assert!(clusters.tile_size.y * clusters.dimensions.y >= screen_size.y);
// check a smaller number of clusters would not cover the screen
assert!(clusters.tile_size.x * (clusters.dimensions.x - 1) < screen_size.x);
assert!(clusters.tile_size.y * (clusters.dimensions.y - 1) < screen_size.y);
// check a smaller tile size would not cover the screen
assert!((clusters.tile_size.x - 1) * clusters.dimensions.x < screen_size.x);
assert!((clusters.tile_size.y - 1) * clusters.dimensions.y < screen_size.y);
// check we don't have more clusters than pixels
assert!(clusters.dimensions.x <= screen_size.x);
assert!(clusters.dimensions.y <= screen_size.y);
clusters
}
#[test]
// check tiling for small screen sizes
fn test_default_cluster_setup_small_screensizes() {
for x in 1..100 {
for y in 1..100 {
let screen_size = UVec2::new(x, y);
let clusters = test_cluster_tiling(ClusterConfig::default(), screen_size);
assert!(clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z <= 4096);
}
}
}
#[test]
// check tiling for long thin screen sizes
fn test_default_cluster_setup_small_x() {
for x in 1..10 {
for y in 1..5000 {
let screen_size = UVec2::new(x, y);
let clusters = test_cluster_tiling(ClusterConfig::default(), screen_size);
assert!(clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z <= 4096);
let screen_size = UVec2::new(y, x);
let clusters = test_cluster_tiling(ClusterConfig::default(), screen_size);
assert!(clusters.dimensions.x * clusters.dimensions.y * clusters.dimensions.z <= 4096);
}
}
}