Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

1525
vendor/crossbeam-channel/src/channel.rs vendored Normal file

File diff suppressed because it is too large Load Diff

178
vendor/crossbeam-channel/src/context.rs vendored Normal file
View File

@@ -0,0 +1,178 @@
//! Thread-local context used in select.
use std::cell::Cell;
use std::ptr;
use std::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
use std::sync::Arc;
use std::thread::{self, Thread, ThreadId};
use std::time::Instant;
use crossbeam_utils::Backoff;
use crate::select::Selected;
/// Thread-local context used in select.
// This is a private API that is used by the select macro.
#[derive(Debug, Clone)]
pub struct Context {
inner: Arc<Inner>,
}
/// Inner representation of `Context`.
#[derive(Debug)]
struct Inner {
/// Selected operation.
select: AtomicUsize,
/// A slot into which another thread may store a pointer to its `Packet`.
packet: AtomicPtr<()>,
/// Thread handle.
thread: Thread,
/// Thread id.
thread_id: ThreadId,
}
impl Context {
/// Creates a new context for the duration of the closure.
#[inline]
pub fn with<F, R>(f: F) -> R
where
F: FnOnce(&Context) -> R,
{
std::thread_local! {
/// Cached thread-local context.
static CONTEXT: Cell<Option<Context>> = Cell::new(Some(Context::new()));
}
let mut f = Some(f);
let mut f = |cx: &Context| -> R {
let f = f.take().unwrap();
f(cx)
};
CONTEXT
.try_with(|cell| match cell.take() {
None => f(&Context::new()),
Some(cx) => {
cx.reset();
let res = f(&cx);
cell.set(Some(cx));
res
}
})
.unwrap_or_else(|_| f(&Context::new()))
}
/// Creates a new `Context`.
#[cold]
fn new() -> Context {
Context {
inner: Arc::new(Inner {
select: AtomicUsize::new(Selected::Waiting.into()),
packet: AtomicPtr::new(ptr::null_mut()),
thread: thread::current(),
thread_id: thread::current().id(),
}),
}
}
/// Resets `select` and `packet`.
#[inline]
fn reset(&self) {
self.inner
.select
.store(Selected::Waiting.into(), Ordering::Release);
self.inner.packet.store(ptr::null_mut(), Ordering::Release);
}
/// Attempts to select an operation.
///
/// On failure, the previously selected operation is returned.
#[inline]
pub fn try_select(&self, select: Selected) -> Result<(), Selected> {
self.inner
.select
.compare_exchange(
Selected::Waiting.into(),
select.into(),
Ordering::AcqRel,
Ordering::Acquire,
)
.map(|_| ())
.map_err(|e| e.into())
}
/// Returns the selected operation.
#[inline]
pub fn selected(&self) -> Selected {
Selected::from(self.inner.select.load(Ordering::Acquire))
}
/// Stores a packet.
///
/// This method must be called after `try_select` succeeds and there is a packet to provide.
#[inline]
pub fn store_packet(&self, packet: *mut ()) {
if !packet.is_null() {
self.inner.packet.store(packet, Ordering::Release);
}
}
/// Waits until a packet is provided and returns it.
#[inline]
pub fn wait_packet(&self) -> *mut () {
let backoff = Backoff::new();
loop {
let packet = self.inner.packet.load(Ordering::Acquire);
if !packet.is_null() {
return packet;
}
backoff.snooze();
}
}
/// Waits until an operation is selected and returns it.
///
/// If the deadline is reached, `Selected::Aborted` will be selected.
#[inline]
pub fn wait_until(&self, deadline: Option<Instant>) -> Selected {
loop {
// Check whether an operation has been selected.
let sel = Selected::from(self.inner.select.load(Ordering::Acquire));
if sel != Selected::Waiting {
return sel;
}
// If there's a deadline, park the current thread until the deadline is reached.
if let Some(end) = deadline {
let now = Instant::now();
if now < end {
thread::park_timeout(end - now);
} else {
// The deadline has been reached. Try aborting select.
return match self.try_select(Selected::Aborted) {
Ok(()) => Selected::Aborted,
Err(s) => s,
};
}
} else {
thread::park();
}
}
}
/// Unparks the thread this context belongs to.
#[inline]
pub fn unpark(&self) {
self.inner.thread.unpark();
}
/// Returns the id of the thread this context belongs to.
#[inline]
pub fn thread_id(&self) -> ThreadId {
self.inner.thread_id
}
}

145
vendor/crossbeam-channel/src/counter.rs vendored Normal file
View File

@@ -0,0 +1,145 @@
//! Reference counter for channels.
use std::boxed::Box;
use std::isize;
use std::ops;
use std::process;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
/// Reference counter internals.
struct Counter<C> {
/// The number of senders associated with the channel.
senders: AtomicUsize,
/// The number of receivers associated with the channel.
receivers: AtomicUsize,
/// Set to `true` if the last sender or the last receiver reference deallocates the channel.
destroy: AtomicBool,
/// The internal channel.
chan: C,
}
/// Wraps a channel into the reference counter.
pub(crate) fn new<C>(chan: C) -> (Sender<C>, Receiver<C>) {
let counter = Box::into_raw(Box::new(Counter {
senders: AtomicUsize::new(1),
receivers: AtomicUsize::new(1),
destroy: AtomicBool::new(false),
chan,
}));
let s = Sender { counter };
let r = Receiver { counter };
(s, r)
}
/// The sending side.
pub(crate) struct Sender<C> {
counter: *mut Counter<C>,
}
impl<C> Sender<C> {
/// Returns the internal `Counter`.
fn counter(&self) -> &Counter<C> {
unsafe { &*self.counter }
}
/// Acquires another sender reference.
pub(crate) fn acquire(&self) -> Sender<C> {
let count = self.counter().senders.fetch_add(1, Ordering::Relaxed);
// Cloning senders and calling `mem::forget` on the clones could potentially overflow the
// counter. It's very difficult to recover sensibly from such degenerate scenarios so we
// just abort when the count becomes very large.
if count > isize::MAX as usize {
process::abort();
}
Sender {
counter: self.counter,
}
}
/// Releases the sender reference.
///
/// Function `disconnect` will be called if this is the last sender reference.
pub(crate) unsafe fn release<F: FnOnce(&C) -> bool>(&self, disconnect: F) {
if self.counter().senders.fetch_sub(1, Ordering::AcqRel) == 1 {
disconnect(&self.counter().chan);
if self.counter().destroy.swap(true, Ordering::AcqRel) {
drop(Box::from_raw(self.counter));
}
}
}
}
impl<C> ops::Deref for Sender<C> {
type Target = C;
fn deref(&self) -> &C {
&self.counter().chan
}
}
impl<C> PartialEq for Sender<C> {
fn eq(&self, other: &Sender<C>) -> bool {
self.counter == other.counter
}
}
/// The receiving side.
pub(crate) struct Receiver<C> {
counter: *mut Counter<C>,
}
impl<C> Receiver<C> {
/// Returns the internal `Counter`.
fn counter(&self) -> &Counter<C> {
unsafe { &*self.counter }
}
/// Acquires another receiver reference.
pub(crate) fn acquire(&self) -> Receiver<C> {
let count = self.counter().receivers.fetch_add(1, Ordering::Relaxed);
// Cloning receivers and calling `mem::forget` on the clones could potentially overflow the
// counter. It's very difficult to recover sensibly from such degenerate scenarios so we
// just abort when the count becomes very large.
if count > isize::MAX as usize {
process::abort();
}
Receiver {
counter: self.counter,
}
}
/// Releases the receiver reference.
///
/// Function `disconnect` will be called if this is the last receiver reference.
pub(crate) unsafe fn release<F: FnOnce(&C) -> bool>(&self, disconnect: F) {
if self.counter().receivers.fetch_sub(1, Ordering::AcqRel) == 1 {
disconnect(&self.counter().chan);
if self.counter().destroy.swap(true, Ordering::AcqRel) {
drop(Box::from_raw(self.counter));
}
}
}
}
impl<C> ops::Deref for Receiver<C> {
type Target = C;
fn deref(&self) -> &C {
&self.counter().chan
}
}
impl<C> PartialEq for Receiver<C> {
fn eq(&self, other: &Receiver<C>) -> bool {
self.counter == other.counter
}
}

378
vendor/crossbeam-channel/src/err.rs vendored Normal file
View File

@@ -0,0 +1,378 @@
use std::error;
use std::fmt;
/// An error returned from the [`send`] method.
///
/// The message could not be sent because the channel is disconnected.
///
/// The error contains the message so it can be recovered.
///
/// [`send`]: super::Sender::send
#[derive(PartialEq, Eq, Clone, Copy)]
pub struct SendError<T>(pub T);
/// An error returned from the [`try_send`] method.
///
/// The error contains the message being sent so it can be recovered.
///
/// [`try_send`]: super::Sender::try_send
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum TrySendError<T> {
/// The message could not be sent because the channel is full.
///
/// If this is a zero-capacity channel, then the error indicates that there was no receiver
/// available to receive the message at the time.
Full(T),
/// The message could not be sent because the channel is disconnected.
Disconnected(T),
}
/// An error returned from the [`send_timeout`] method.
///
/// The error contains the message being sent so it can be recovered.
///
/// [`send_timeout`]: super::Sender::send_timeout
#[derive(PartialEq, Eq, Clone, Copy)]
pub enum SendTimeoutError<T> {
/// The message could not be sent because the channel is full and the operation timed out.
///
/// If this is a zero-capacity channel, then the error indicates that there was no receiver
/// available to receive the message and the operation timed out.
Timeout(T),
/// The message could not be sent because the channel is disconnected.
Disconnected(T),
}
/// An error returned from the [`recv`] method.
///
/// A message could not be received because the channel is empty and disconnected.
///
/// [`recv`]: super::Receiver::recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct RecvError;
/// An error returned from the [`try_recv`] method.
///
/// [`try_recv`]: super::Receiver::try_recv
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum TryRecvError {
/// A message could not be received because the channel is empty.
///
/// If this is a zero-capacity channel, then the error indicates that there was no sender
/// available to send a message at the time.
Empty,
/// The message could not be received because the channel is empty and disconnected.
Disconnected,
}
/// An error returned from the [`recv_timeout`] method.
///
/// [`recv_timeout`]: super::Receiver::recv_timeout
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub enum RecvTimeoutError {
/// A message could not be received because the channel is empty and the operation timed out.
///
/// If this is a zero-capacity channel, then the error indicates that there was no sender
/// available to send a message and the operation timed out.
Timeout,
/// The message could not be received because the channel is empty and disconnected.
Disconnected,
}
/// An error returned from the [`try_select`] method.
///
/// Failed because none of the channel operations were ready.
///
/// [`try_select`]: super::Select::try_select
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct TrySelectError;
/// An error returned from the [`select_timeout`] method.
///
/// Failed because none of the channel operations became ready before the timeout.
///
/// [`select_timeout`]: super::Select::select_timeout
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct SelectTimeoutError;
/// An error returned from the [`try_ready`] method.
///
/// Failed because none of the channel operations were ready.
///
/// [`try_ready`]: super::Select::try_ready
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct TryReadyError;
/// An error returned from the [`ready_timeout`] method.
///
/// Failed because none of the channel operations became ready before the timeout.
///
/// [`ready_timeout`]: super::Select::ready_timeout
#[derive(PartialEq, Eq, Clone, Copy, Debug)]
pub struct ReadyTimeoutError;
impl<T> fmt::Debug for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"SendError(..)".fmt(f)
}
}
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"sending on a disconnected channel".fmt(f)
}
}
impl<T: Send> error::Error for SendError<T> {}
impl<T> SendError<T> {
/// Unwraps the message.
///
/// # Examples
///
/// ```
/// use crossbeam_channel::unbounded;
///
/// let (s, r) = unbounded();
/// drop(r);
///
/// if let Err(err) = s.send("foo") {
/// assert_eq!(err.into_inner(), "foo");
/// }
/// ```
pub fn into_inner(self) -> T {
self.0
}
}
impl<T> fmt::Debug for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TrySendError::Full(..) => "Full(..)".fmt(f),
TrySendError::Disconnected(..) => "Disconnected(..)".fmt(f),
}
}
}
impl<T> fmt::Display for TrySendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TrySendError::Full(..) => "sending on a full channel".fmt(f),
TrySendError::Disconnected(..) => "sending on a disconnected channel".fmt(f),
}
}
}
impl<T: Send> error::Error for TrySendError<T> {}
impl<T> From<SendError<T>> for TrySendError<T> {
fn from(err: SendError<T>) -> TrySendError<T> {
match err {
SendError(t) => TrySendError::Disconnected(t),
}
}
}
impl<T> TrySendError<T> {
/// Unwraps the message.
///
/// # Examples
///
/// ```
/// use crossbeam_channel::bounded;
///
/// let (s, r) = bounded(0);
///
/// if let Err(err) = s.try_send("foo") {
/// assert_eq!(err.into_inner(), "foo");
/// }
/// ```
pub fn into_inner(self) -> T {
match self {
TrySendError::Full(v) => v,
TrySendError::Disconnected(v) => v,
}
}
/// Returns `true` if the send operation failed because the channel is full.
pub fn is_full(&self) -> bool {
match self {
TrySendError::Full(_) => true,
_ => false,
}
}
/// Returns `true` if the send operation failed because the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
match self {
TrySendError::Disconnected(_) => true,
_ => false,
}
}
}
impl<T> fmt::Debug for SendTimeoutError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"SendTimeoutError(..)".fmt(f)
}
}
impl<T> fmt::Display for SendTimeoutError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
SendTimeoutError::Timeout(..) => "timed out waiting on send operation".fmt(f),
SendTimeoutError::Disconnected(..) => "sending on a disconnected channel".fmt(f),
}
}
}
impl<T: Send> error::Error for SendTimeoutError<T> {}
impl<T> From<SendError<T>> for SendTimeoutError<T> {
fn from(err: SendError<T>) -> SendTimeoutError<T> {
match err {
SendError(e) => SendTimeoutError::Disconnected(e),
}
}
}
impl<T> SendTimeoutError<T> {
/// Unwraps the message.
///
/// # Examples
///
/// ```
/// use std::time::Duration;
/// use crossbeam_channel::unbounded;
///
/// let (s, r) = unbounded();
///
/// if let Err(err) = s.send_timeout("foo", Duration::from_secs(1)) {
/// assert_eq!(err.into_inner(), "foo");
/// }
/// ```
pub fn into_inner(self) -> T {
match self {
SendTimeoutError::Timeout(v) => v,
SendTimeoutError::Disconnected(v) => v,
}
}
/// Returns `true` if the send operation timed out.
pub fn is_timeout(&self) -> bool {
match self {
SendTimeoutError::Timeout(_) => true,
_ => false,
}
}
/// Returns `true` if the send operation failed because the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
match self {
SendTimeoutError::Disconnected(_) => true,
_ => false,
}
}
}
impl fmt::Display for RecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"receiving on an empty and disconnected channel".fmt(f)
}
}
impl error::Error for RecvError {}
impl fmt::Display for TryRecvError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TryRecvError::Empty => "receiving on an empty channel".fmt(f),
TryRecvError::Disconnected => "receiving on an empty and disconnected channel".fmt(f),
}
}
}
impl error::Error for TryRecvError {}
impl From<RecvError> for TryRecvError {
fn from(err: RecvError) -> TryRecvError {
match err {
RecvError => TryRecvError::Disconnected,
}
}
}
impl TryRecvError {
/// Returns `true` if the receive operation failed because the channel is empty.
pub fn is_empty(&self) -> bool {
match self {
TryRecvError::Empty => true,
_ => false,
}
}
/// Returns `true` if the receive operation failed because the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
match self {
TryRecvError::Disconnected => true,
_ => false,
}
}
}
impl fmt::Display for RecvTimeoutError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
RecvTimeoutError::Timeout => "timed out waiting on receive operation".fmt(f),
RecvTimeoutError::Disconnected => "channel is empty and disconnected".fmt(f),
}
}
}
impl error::Error for RecvTimeoutError {}
impl From<RecvError> for RecvTimeoutError {
fn from(err: RecvError) -> RecvTimeoutError {
match err {
RecvError => RecvTimeoutError::Disconnected,
}
}
}
impl RecvTimeoutError {
/// Returns `true` if the receive operation timed out.
pub fn is_timeout(&self) -> bool {
match self {
RecvTimeoutError::Timeout => true,
_ => false,
}
}
/// Returns `true` if the receive operation failed because the channel is disconnected.
pub fn is_disconnected(&self) -> bool {
match self {
RecvTimeoutError::Disconnected => true,
_ => false,
}
}
}
impl fmt::Display for TrySelectError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"all operations in select would block".fmt(f)
}
}
impl error::Error for TrySelectError {}
impl fmt::Display for SelectTimeoutError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"timed out waiting on select".fmt(f)
}
}
impl error::Error for SelectTimeoutError {}

View File

@@ -0,0 +1,637 @@
//! Bounded channel based on a preallocated array.
//!
//! This flavor has a fixed, positive capacity.
//!
//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
//!
//! Source:
//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
//! - <https://docs.google.com/document/d/1yIAYmbvL3JxOKOjuCyon7JhW4cSv1wy5hC0ApeGMV9s/pub>
use std::boxed::Box;
use std::cell::UnsafeCell;
use std::mem::{self, MaybeUninit};
use std::ptr;
use std::sync::atomic::{self, AtomicUsize, Ordering};
use std::time::Instant;
use crossbeam_utils::{Backoff, CachePadded};
use crate::context::Context;
use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
use crate::select::{Operation, SelectHandle, Selected, Token};
use crate::waker::SyncWaker;
/// A slot in a channel.
struct Slot<T> {
/// The current stamp.
stamp: AtomicUsize,
/// The message in this slot.
msg: UnsafeCell<MaybeUninit<T>>,
}
/// The token type for the array flavor.
#[derive(Debug)]
pub(crate) struct ArrayToken {
/// Slot to read from or write to.
slot: *const u8,
/// Stamp to store into the slot after reading or writing.
stamp: usize,
}
impl Default for ArrayToken {
#[inline]
fn default() -> Self {
ArrayToken {
slot: ptr::null(),
stamp: 0,
}
}
}
/// Bounded channel based on a preallocated array.
pub(crate) struct Channel<T> {
/// The head of the channel.
///
/// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
/// packed into a single `usize`. The lower bits represent the index, while the upper bits
/// represent the lap. The mark bit in the head is always zero.
///
/// Messages are popped from the head of the channel.
head: CachePadded<AtomicUsize>,
/// The tail of the channel.
///
/// This value is a "stamp" consisting of an index into the buffer, a mark bit, and a lap, but
/// packed into a single `usize`. The lower bits represent the index, while the upper bits
/// represent the lap. The mark bit indicates that the channel is disconnected.
///
/// Messages are pushed into the tail of the channel.
tail: CachePadded<AtomicUsize>,
/// The buffer holding slots.
buffer: Box<[Slot<T>]>,
/// The channel capacity.
cap: usize,
/// A stamp with the value of `{ lap: 1, mark: 0, index: 0 }`.
one_lap: usize,
/// If this bit is set in the tail, that means the channel is disconnected.
mark_bit: usize,
/// Senders waiting while the channel is full.
senders: SyncWaker,
/// Receivers waiting while the channel is empty and not disconnected.
receivers: SyncWaker,
}
impl<T> Channel<T> {
/// Creates a bounded channel of capacity `cap`.
pub(crate) fn with_capacity(cap: usize) -> Self {
assert!(cap > 0, "capacity must be positive");
// Compute constants `mark_bit` and `one_lap`.
let mark_bit = (cap + 1).next_power_of_two();
let one_lap = mark_bit * 2;
// Head is initialized to `{ lap: 0, mark: 0, index: 0 }`.
let head = 0;
// Tail is initialized to `{ lap: 0, mark: 0, index: 0 }`.
let tail = 0;
// Allocate a buffer of `cap` slots initialized
// with stamps.
let buffer: Box<[Slot<T>]> = (0..cap)
.map(|i| {
// Set the stamp to `{ lap: 0, mark: 0, index: i }`.
Slot {
stamp: AtomicUsize::new(i),
msg: UnsafeCell::new(MaybeUninit::uninit()),
}
})
.collect();
Channel {
buffer,
cap,
one_lap,
mark_bit,
head: CachePadded::new(AtomicUsize::new(head)),
tail: CachePadded::new(AtomicUsize::new(tail)),
senders: SyncWaker::new(),
receivers: SyncWaker::new(),
}
}
/// Returns a receiver handle to the channel.
pub(crate) fn receiver(&self) -> Receiver<'_, T> {
Receiver(self)
}
/// Returns a sender handle to the channel.
pub(crate) fn sender(&self) -> Sender<'_, T> {
Sender(self)
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut tail = self.tail.load(Ordering::Relaxed);
loop {
// Check if the channel is disconnected.
if tail & self.mark_bit != 0 {
token.array.slot = ptr::null();
token.array.stamp = 0;
return true;
}
// Deconstruct the tail.
let index = tail & (self.mark_bit - 1);
let lap = tail & !(self.one_lap - 1);
// Inspect the corresponding slot.
debug_assert!(index < self.buffer.len());
let slot = unsafe { self.buffer.get_unchecked(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the tail and the stamp match, we may attempt to push.
if tail == stamp {
let new_tail = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, mark: 0, index: index + 1 }`.
tail + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Try moving the tail.
match self.tail.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Prepare the token for the follow-up call to `write`.
token.array.slot = slot as *const Slot<T> as *const u8;
token.array.stamp = tail + 1;
return true;
}
Err(t) => {
tail = t;
backoff.spin();
}
}
} else if stamp.wrapping_add(self.one_lap) == tail + 1 {
atomic::fence(Ordering::SeqCst);
let head = self.head.load(Ordering::Relaxed);
// If the head lags one lap behind the tail as well...
if head.wrapping_add(self.one_lap) == tail {
// ...then the channel is full.
return false;
}
backoff.spin();
tail = self.tail.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
tail = self.tail.load(Ordering::Relaxed);
}
}
}
/// Writes a message into the channel.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no slot, the channel is disconnected.
if token.array.slot.is_null() {
return Err(msg);
}
let slot: &Slot<T> = &*token.array.slot.cast::<Slot<T>>();
// Write the message into the slot and update the stamp.
slot.msg.get().write(MaybeUninit::new(msg));
slot.stamp.store(token.array.stamp, Ordering::Release);
// Wake a sleeping receiver.
self.receivers.notify();
Ok(())
}
/// Attempts to reserve a slot for receiving a message.
fn start_recv(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut head = self.head.load(Ordering::Relaxed);
loop {
// Deconstruct the head.
let index = head & (self.mark_bit - 1);
let lap = head & !(self.one_lap - 1);
// Inspect the corresponding slot.
debug_assert!(index < self.buffer.len());
let slot = unsafe { self.buffer.get_unchecked(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the stamp is ahead of the head by 1, we may attempt to pop.
if head + 1 == stamp {
let new = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, mark: 0, index: index + 1 }`.
head + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), mark: 0, index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Try moving the head.
match self.head.compare_exchange_weak(
head,
new,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Prepare the token for the follow-up call to `read`.
token.array.slot = slot as *const Slot<T> as *const u8;
token.array.stamp = head.wrapping_add(self.one_lap);
return true;
}
Err(h) => {
head = h;
backoff.spin();
}
}
} else if stamp == head {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if (tail & !self.mark_bit) == head {
// If the channel is disconnected...
if tail & self.mark_bit != 0 {
// ...then receive an error.
token.array.slot = ptr::null();
token.array.stamp = 0;
return true;
} else {
// Otherwise, the receive operation is not ready.
return false;
}
}
backoff.spin();
head = self.head.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
head = self.head.load(Ordering::Relaxed);
}
}
}
/// Reads a message from the channel.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
if token.array.slot.is_null() {
// The channel is disconnected.
return Err(());
}
let slot: &Slot<T> = &*token.array.slot.cast::<Slot<T>>();
// Read the message from the slot and update the stamp.
let msg = slot.msg.get().read().assume_init();
slot.stamp.store(token.array.stamp, Ordering::Release);
// Wake a sleeping sender.
self.senders.notify();
Ok(msg)
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
let token = &mut Token::default();
if self.start_send(token) {
unsafe { self.write(token, msg).map_err(TrySendError::Disconnected) }
} else {
Err(TrySendError::Full(msg))
}
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
loop {
// Try sending a message several times.
let backoff = Backoff::new();
loop {
if self.start_send(token) {
let res = unsafe { self.write(token, msg) };
return res.map_err(SendTimeoutError::Disconnected);
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(SendTimeoutError::Timeout(msg));
}
}
Context::with(|cx| {
// Prepare for blocking until a receiver wakes us up.
let oper = Operation::hook(token);
self.senders.register(oper, cx);
// Has the channel become ready just now?
if !self.is_full() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.senders.unregister(oper).unwrap();
}
Selected::Operation(_) => {}
}
});
}
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
if self.start_recv(token) {
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
loop {
// Try receiving a message several times.
let backoff = Backoff::new();
loop {
if self.start_recv(token) {
let res = unsafe { self.read(token) };
return res.map_err(|_| RecvTimeoutError::Disconnected);
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(RecvTimeoutError::Timeout);
}
}
Context::with(|cx| {
// Prepare for blocking until a sender wakes us up.
let oper = Operation::hook(token);
self.receivers.register(oper, cx);
// Has the channel become ready just now?
if !self.is_empty() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.receivers.unregister(oper).unwrap();
// If the channel was disconnected, we still have to check for remaining
// messages.
}
Selected::Operation(_) => {}
}
});
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
loop {
// Load the tail, then load the head.
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// If the tail didn't change, we've got consistent values to work with.
if self.tail.load(Ordering::SeqCst) == tail {
let hix = head & (self.mark_bit - 1);
let tix = tail & (self.mark_bit - 1);
return if hix < tix {
tix - hix
} else if hix > tix {
self.cap - hix + tix
} else if (tail & !self.mark_bit) == head {
0
} else {
self.cap
};
}
}
}
/// Returns the capacity of the channel.
pub(crate) fn capacity(&self) -> Option<usize> {
Some(self.cap)
}
/// Disconnects the channel and wakes up all blocked senders and receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect(&self) -> bool {
let tail = self.tail.fetch_or(self.mark_bit, Ordering::SeqCst);
if tail & self.mark_bit == 0 {
self.senders.disconnect();
self.receivers.disconnect();
true
} else {
false
}
}
/// Returns `true` if the channel is disconnected.
pub(crate) fn is_disconnected(&self) -> bool {
self.tail.load(Ordering::SeqCst) & self.mark_bit != 0
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
let head = self.head.load(Ordering::SeqCst);
let tail = self.tail.load(Ordering::SeqCst);
// Is the tail equal to the head?
//
// Note: If the head changes just before we load the tail, that means there was a moment
// when the channel was not empty, so it is safe to just return `false`.
(tail & !self.mark_bit) == head
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// Is the head lagging one lap behind tail?
//
// Note: If the tail changes just before we load the head, that means there was a moment
// when the channel was not full, so it is safe to just return `false`.
head.wrapping_add(self.one_lap) == tail & !self.mark_bit
}
}
impl<T> Drop for Channel<T> {
fn drop(&mut self) {
if mem::needs_drop::<T>() {
// Get the index of the head.
let head = *self.head.get_mut();
let tail = *self.tail.get_mut();
let hix = head & (self.mark_bit - 1);
let tix = tail & (self.mark_bit - 1);
let len = if hix < tix {
tix - hix
} else if hix > tix {
self.cap - hix + tix
} else if (tail & !self.mark_bit) == head {
0
} else {
self.cap
};
// Loop over all slots that hold a message and drop them.
for i in 0..len {
// Compute the index of the next slot holding a message.
let index = if hix + i < self.cap {
hix + i
} else {
hix + i - self.cap
};
unsafe {
debug_assert!(index < self.buffer.len());
let slot = self.buffer.get_unchecked_mut(index);
(*slot.msg.get()).assume_init_drop();
}
}
}
}
}
/// Receiver handle to a channel.
pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
/// Sender handle to a channel.
pub(crate) struct Sender<'a, T>(&'a Channel<T>);
impl<T> SelectHandle for Receiver<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_recv(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.receivers.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_empty() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.receivers.unwatch(oper);
}
}
impl<T> SelectHandle for Sender<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_send(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.senders.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.senders.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_full() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.senders.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.senders.unwatch(oper);
}
}

View File

@@ -0,0 +1,197 @@
//! Channel that delivers a message at a certain moment in time.
//!
//! Messages cannot be sent into this kind of channel; they are materialized on demand.
use std::sync::atomic::{AtomicBool, Ordering};
use std::thread;
use std::time::Instant;
use crate::context::Context;
use crate::err::{RecvTimeoutError, TryRecvError};
use crate::select::{Operation, SelectHandle, Token};
use crate::utils;
/// Result of a receive operation.
pub(crate) type AtToken = Option<Instant>;
/// Channel that delivers a message at a certain moment in time
pub(crate) struct Channel {
/// The instant at which the message will be delivered.
delivery_time: Instant,
/// `true` if the message has been received.
received: AtomicBool,
}
impl Channel {
/// Creates a channel that delivers a message at a certain instant in time.
#[inline]
pub(crate) fn new_deadline(when: Instant) -> Self {
Channel {
delivery_time: when,
received: AtomicBool::new(false),
}
}
/// Attempts to receive a message without blocking.
#[inline]
pub(crate) fn try_recv(&self) -> Result<Instant, TryRecvError> {
// We use relaxed ordering because this is just an optional optimistic check.
if self.received.load(Ordering::Relaxed) {
// The message has already been received.
return Err(TryRecvError::Empty);
}
if Instant::now() < self.delivery_time {
// The message was not delivered yet.
return Err(TryRecvError::Empty);
}
// Try receiving the message if it is still available.
if !self.received.swap(true, Ordering::SeqCst) {
// Success! Return delivery time as the message.
Ok(self.delivery_time)
} else {
// The message was already received.
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
#[inline]
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<Instant, RecvTimeoutError> {
// We use relaxed ordering because this is just an optional optimistic check.
if self.received.load(Ordering::Relaxed) {
// The message has already been received.
utils::sleep_until(deadline);
return Err(RecvTimeoutError::Timeout);
}
// Wait until the message is received or the deadline is reached.
loop {
let now = Instant::now();
let deadline = match deadline {
// Check if we can receive the next message.
_ if now >= self.delivery_time => break,
// Check if the timeout deadline has been reached.
Some(d) if now >= d => return Err(RecvTimeoutError::Timeout),
// Sleep until one of the above happens
Some(d) if d < self.delivery_time => d,
_ => self.delivery_time,
};
thread::sleep(deadline - now);
}
// Try receiving the message if it is still available.
if !self.received.swap(true, Ordering::SeqCst) {
// Success! Return the message, which is the instant at which it was delivered.
Ok(self.delivery_time)
} else {
// The message was already received. Block forever.
utils::sleep_until(None);
unreachable!()
}
}
/// Reads a message from the channel.
#[inline]
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<Instant, ()> {
token.at.ok_or(())
}
/// Returns `true` if the channel is empty.
#[inline]
pub(crate) fn is_empty(&self) -> bool {
// We use relaxed ordering because this is just an optional optimistic check.
if self.received.load(Ordering::Relaxed) {
return true;
}
// If the delivery time hasn't been reached yet, the channel is empty.
if Instant::now() < self.delivery_time {
return true;
}
// The delivery time has been reached. The channel is empty only if the message has already
// been received.
self.received.load(Ordering::SeqCst)
}
/// Returns `true` if the channel is full.
#[inline]
pub(crate) fn is_full(&self) -> bool {
!self.is_empty()
}
/// Returns the number of messages in the channel.
#[inline]
pub(crate) fn len(&self) -> usize {
if self.is_empty() {
0
} else {
1
}
}
/// Returns the capacity of the channel.
#[inline]
pub(crate) fn capacity(&self) -> Option<usize> {
Some(1)
}
}
impl SelectHandle for Channel {
#[inline]
fn try_select(&self, token: &mut Token) -> bool {
match self.try_recv() {
Ok(msg) => {
token.at = Some(msg);
true
}
Err(TryRecvError::Disconnected) => {
token.at = None;
true
}
Err(TryRecvError::Empty) => false,
}
}
#[inline]
fn deadline(&self) -> Option<Instant> {
// We use relaxed ordering because this is just an optional optimistic check.
if self.received.load(Ordering::Relaxed) {
None
} else {
Some(self.delivery_time)
}
}
#[inline]
fn register(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unregister(&self, _oper: Operation) {}
#[inline]
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
#[inline]
fn is_ready(&self) -> bool {
!self.is_empty()
}
#[inline]
fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unwatch(&self, _oper: Operation) {}
}

View File

@@ -0,0 +1,773 @@
//! Unbounded channel implemented as a linked list.
use std::alloc::{alloc_zeroed, handle_alloc_error, Layout};
use std::boxed::Box;
use std::cell::UnsafeCell;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ptr;
use std::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use std::time::Instant;
use crossbeam_utils::{Backoff, CachePadded};
use crate::context::Context;
use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
use crate::select::{Operation, SelectHandle, Selected, Token};
use crate::waker::SyncWaker;
// TODO(stjepang): Once we bump the minimum required Rust version to 1.28 or newer, re-apply the
// following changes by @kleimkuhler:
//
// 1. https://github.com/crossbeam-rs/crossbeam-channel/pull/100
// 2. https://github.com/crossbeam-rs/crossbeam-channel/pull/101
// Bits indicating the state of a slot:
// * If a message has been written into the slot, `WRITE` is set.
// * If a message has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;
// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of messages a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Has two different purposes:
// * If set in head, indicates that the block is not the last one.
// * If set in tail, indicates that the channel is disconnected.
const MARK_BIT: usize = 1;
/// A slot in a block.
struct Slot<T> {
/// The message.
msg: UnsafeCell<MaybeUninit<T>>,
/// The state of the slot.
state: AtomicUsize,
}
impl<T> Slot<T> {
/// Waits until a message is written into the slot.
fn wait_write(&self) {
let backoff = Backoff::new();
while self.state.load(Ordering::Acquire) & WRITE == 0 {
backoff.snooze();
}
}
}
/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` messages.
struct Block<T> {
/// The next block in the linked list.
next: AtomicPtr<Block<T>>,
/// Slots for messages.
slots: [Slot<T>; BLOCK_CAP],
}
impl<T> Block<T> {
const LAYOUT: Layout = {
let layout = Layout::new::<Self>();
assert!(
layout.size() != 0,
"Block should never be zero-sized, as it has an AtomicPtr field"
);
layout
};
/// Creates an empty block.
fn new() -> Box<Self> {
// SAFETY: layout is not zero-sized
let ptr = unsafe { alloc_zeroed(Self::LAYOUT) };
// Handle allocation failure
if ptr.is_null() {
handle_alloc_error(Self::LAYOUT)
}
// SAFETY: This is safe because:
// [1] `Block::next` (AtomicPtr) may be safely zero initialized.
// [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
// [3] `Slot::msg` (UnsafeCell) may be safely zero initialized because it
// holds a MaybeUninit.
// [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
// TODO: unsafe { Box::new_zeroed().assume_init() }
unsafe { Box::from_raw(ptr.cast()) }
}
/// Waits until the next pointer is set.
fn wait_next(&self) -> *mut Block<T> {
let backoff = Backoff::new();
loop {
let next = self.next.load(Ordering::Acquire);
if !next.is_null() {
return next;
}
backoff.snooze();
}
}
/// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
unsafe fn destroy(this: *mut Block<T>, start: usize) {
// It is not necessary to set the `DESTROY` bit in the last slot because that slot has
// begun destruction of the block.
for i in start..BLOCK_CAP - 1 {
let slot = (*this).slots.get_unchecked(i);
// Mark the `DESTROY` bit if a thread is still using the slot.
if slot.state.load(Ordering::Acquire) & READ == 0
&& slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
{
// If a thread is still using the slot, it will continue destruction of the block.
return;
}
}
// No thread is using the block, now it is safe to destroy it.
drop(Box::from_raw(this));
}
}
/// A position in a channel.
#[derive(Debug)]
struct Position<T> {
/// The index in the channel.
index: AtomicUsize,
/// The block in the linked list.
block: AtomicPtr<Block<T>>,
}
/// The token type for the list flavor.
#[derive(Debug)]
pub(crate) struct ListToken {
/// The block of slots.
block: *const u8,
/// The offset into the block.
offset: usize,
}
impl Default for ListToken {
#[inline]
fn default() -> Self {
ListToken {
block: ptr::null(),
offset: 0,
}
}
}
/// Unbounded channel implemented as a linked list.
///
/// Each message sent into the channel is assigned a sequence number, i.e. an index. Indices are
/// represented as numbers of type `usize` and wrap on overflow.
///
/// Consecutive messages are grouped into blocks in order to put less pressure on the allocator and
/// improve cache efficiency.
pub(crate) struct Channel<T> {
/// The head of the channel.
head: CachePadded<Position<T>>,
/// The tail of the channel.
tail: CachePadded<Position<T>>,
/// Receivers waiting while the channel is empty and not disconnected.
receivers: SyncWaker,
/// Indicates that dropping a `Channel<T>` may drop messages of type `T`.
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Creates a new unbounded channel.
pub(crate) fn new() -> Self {
Channel {
head: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
tail: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
receivers: SyncWaker::new(),
_marker: PhantomData,
}
}
/// Returns a receiver handle to the channel.
pub(crate) fn receiver(&self) -> Receiver<'_, T> {
Receiver(self)
}
/// Returns a sender handle to the channel.
pub(crate) fn sender(&self) -> Sender<'_, T> {
Sender(self)
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
let mut block = self.tail.block.load(Ordering::Acquire);
let mut next_block = None;
loop {
// Check if the channel is disconnected.
if tail & MARK_BIT != 0 {
token.list.block = ptr::null();
return true;
}
// Calculate the offset of the index into the block.
let offset = (tail >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
// If we're going to have to install the next block, allocate it in advance in order to
// make the wait for other threads as short as possible.
if offset + 1 == BLOCK_CAP && next_block.is_none() {
next_block = Some(Block::<T>::new());
}
// If this is the first message to be sent into the channel, we need to allocate the
// first block and install it.
if block.is_null() {
let new = Box::into_raw(Block::<T>::new());
if self
.tail
.block
.compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
self.head.block.store(new, Ordering::Release);
block = new;
} else {
next_block = unsafe { Some(Box::from_raw(new)) };
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
}
let new_tail = tail + (1 << SHIFT);
// Try advancing the tail forward.
match self.tail.index.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, install the next one.
if offset + 1 == BLOCK_CAP {
let next_block = Box::into_raw(next_block.unwrap());
self.tail.block.store(next_block, Ordering::Release);
self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
(*block).next.store(next_block, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(t) => {
tail = t;
block = self.tail.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Writes a message into the channel.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no slot, the channel is disconnected.
if token.list.block.is_null() {
return Err(msg);
}
// Write the message into the slot.
let block = token.list.block.cast::<Block<T>>();
let offset = token.list.offset;
let slot = (*block).slots.get_unchecked(offset);
slot.msg.get().write(MaybeUninit::new(msg));
slot.state.fetch_or(WRITE, Ordering::Release);
// Wake a sleeping receiver.
self.receivers.notify();
Ok(())
}
/// Attempts to reserve a slot for receiving a message.
fn start_recv(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut head = self.head.index.load(Ordering::Acquire);
let mut block = self.head.block.load(Ordering::Acquire);
loop {
// Calculate the offset of the index into the block.
let offset = (head >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
let mut new_head = head + (1 << SHIFT);
if new_head & MARK_BIT == 0 {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if head >> SHIFT == tail >> SHIFT {
// If the channel is disconnected...
if tail & MARK_BIT != 0 {
// ...then receive an error.
token.list.block = ptr::null();
return true;
} else {
// Otherwise, the receive operation is not ready.
return false;
}
}
// If head and tail are not in the same block, set `MARK_BIT` in head.
if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
new_head |= MARK_BIT;
}
}
// The block can be null here only if the first message is being sent into the channel.
// In that case, just wait until it gets initialized.
if block.is_null() {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
// Try moving the head index forward.
match self.head.index.compare_exchange_weak(
head,
new_head,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, move to the next one.
if offset + 1 == BLOCK_CAP {
let next = (*block).wait_next();
let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
if !(*next).next.load(Ordering::Relaxed).is_null() {
next_index |= MARK_BIT;
}
self.head.block.store(next, Ordering::Release);
self.head.index.store(next_index, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(h) => {
head = h;
block = self.head.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Reads a message from the channel.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
if token.list.block.is_null() {
// The channel is disconnected.
return Err(());
}
// Read the message.
let block = token.list.block as *mut Block<T>;
let offset = token.list.offset;
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let msg = slot.msg.get().read().assume_init();
// Destroy the block if we've reached the end, or if another thread wanted to destroy but
// couldn't because we were busy reading from the slot.
if offset + 1 == BLOCK_CAP {
Block::destroy(block, 0);
} else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
Block::destroy(block, offset + 1);
}
Ok(msg)
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
self.send(msg, None).map_err(|err| match err {
SendTimeoutError::Disconnected(msg) => TrySendError::Disconnected(msg),
SendTimeoutError::Timeout(_) => unreachable!(),
})
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
_deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
assert!(self.start_send(token));
unsafe {
self.write(token, msg)
.map_err(SendTimeoutError::Disconnected)
}
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
if self.start_recv(token) {
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
loop {
// Try receiving a message several times.
let backoff = Backoff::new();
loop {
if self.start_recv(token) {
unsafe {
return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
}
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(RecvTimeoutError::Timeout);
}
}
// Prepare for blocking until a sender wakes us up.
Context::with(|cx| {
let oper = Operation::hook(token);
self.receivers.register(oper, cx);
// Has the channel become ready just now?
if !self.is_empty() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.receivers.unregister(oper).unwrap();
// If the channel was disconnected, we still have to check for remaining
// messages.
}
Selected::Operation(_) => {}
}
});
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
loop {
// Load the tail index, then load the head index.
let mut tail = self.tail.index.load(Ordering::SeqCst);
let mut head = self.head.index.load(Ordering::SeqCst);
// If the tail index didn't change, we've got consistent indices to work with.
if self.tail.index.load(Ordering::SeqCst) == tail {
// Erase the lower bits.
tail &= !((1 << SHIFT) - 1);
head &= !((1 << SHIFT) - 1);
// Fix up indices if they fall onto block ends.
if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
tail = tail.wrapping_add(1 << SHIFT);
}
if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
head = head.wrapping_add(1 << SHIFT);
}
// Rotate indices so that head falls into the first block.
let lap = (head >> SHIFT) / LAP;
tail = tail.wrapping_sub((lap * LAP) << SHIFT);
head = head.wrapping_sub((lap * LAP) << SHIFT);
// Remove the lower bits.
tail >>= SHIFT;
head >>= SHIFT;
// Return the difference minus the number of blocks between tail and head.
return tail - head - tail / LAP;
}
}
}
/// Returns the capacity of the channel.
pub(crate) fn capacity(&self) -> Option<usize> {
None
}
/// Disconnects senders and wakes up all blocked receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_senders(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
self.receivers.disconnect();
true
} else {
false
}
}
/// Disconnects receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_receivers(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
// If receivers are dropped first, discard all messages to free
// memory eagerly.
self.discard_all_messages();
true
} else {
false
}
}
/// Discards all messages.
///
/// This method should only be called when all receivers are dropped.
fn discard_all_messages(&self) {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
loop {
let offset = (tail >> SHIFT) % LAP;
if offset != BLOCK_CAP {
break;
}
// New updates to tail will be rejected by MARK_BIT and aborted unless it's
// at boundary. We need to wait for the updates take affect otherwise there
// can be memory leaks.
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
}
let mut head = self.head.index.load(Ordering::Acquire);
// The channel may be uninitialized, so we have to swap to avoid overwriting any sender's attempts
// to initialize the first block before noticing that the receivers disconnected. Late allocations
// will be deallocated by the sender in Drop
let mut block = self.head.block.swap(ptr::null_mut(), Ordering::AcqRel);
// If we're going to be dropping messages we need to synchronize with initialization
if head >> SHIFT != tail >> SHIFT {
// The block can be null here only if a sender is in the process of initializing the
// channel while another sender managed to send a message by inserting it into the
// semi-initialized channel and advanced the tail.
// In that case, just wait until it gets initialized.
while block.is_null() {
backoff.snooze();
block = self.head.block.swap(ptr::null_mut(), Ordering::AcqRel);
}
}
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head >> SHIFT != tail >> SHIFT {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
(*slot.msg.get()).assume_init_drop();
} else {
(*block).wait_next();
// Deallocate the block and move to the next one.
let next = (*block).next.load(Ordering::Acquire);
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
head &= !MARK_BIT;
self.head.index.store(head, Ordering::Release);
}
/// Returns `true` if the channel is disconnected.
pub(crate) fn is_disconnected(&self) -> bool {
self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
let head = self.head.index.load(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::SeqCst);
head >> SHIFT == tail >> SHIFT
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
false
}
}
impl<T> Drop for Channel<T> {
fn drop(&mut self) {
let mut head = *self.head.index.get_mut();
let mut tail = *self.tail.index.get_mut();
let mut block = *self.head.block.get_mut();
// Erase the lower bits.
head &= !((1 << SHIFT) - 1);
tail &= !((1 << SHIFT) - 1);
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head != tail {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
(*slot.msg.get()).assume_init_drop();
} else {
// Deallocate the block and move to the next one.
let next = *(*block).next.get_mut();
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
}
}
/// Receiver handle to a channel.
pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
/// Sender handle to a channel.
pub(crate) struct Sender<'a, T>(&'a Channel<T>);
impl<T> SelectHandle for Receiver<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_recv(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.receivers.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_empty() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.receivers.unwatch(oper);
}
}
impl<T> SelectHandle for Sender<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_send(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
fn unregister(&self, _oper: Operation) {}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
true
}
fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
fn unwatch(&self, _oper: Operation) {}
}

View File

@@ -0,0 +1,17 @@
//! Channel flavors.
//!
//! There are six flavors:
//!
//! 1. `at` - Channel that delivers a message after a certain amount of time.
//! 2. `array` - Bounded channel based on a preallocated array.
//! 3. `list` - Unbounded channel implemented as a linked list.
//! 4. `never` - Channel that never delivers messages.
//! 5. `tick` - Channel that delivers messages periodically.
//! 6. `zero` - Zero-capacity channel.
pub(crate) mod array;
pub(crate) mod at;
pub(crate) mod list;
pub(crate) mod never;
pub(crate) mod tick;
pub(crate) mod zero;

View File

@@ -0,0 +1,110 @@
//! Channel that never delivers messages.
//!
//! Messages cannot be sent into this kind of channel.
use std::marker::PhantomData;
use std::time::Instant;
use crate::context::Context;
use crate::err::{RecvTimeoutError, TryRecvError};
use crate::select::{Operation, SelectHandle, Token};
use crate::utils;
/// This flavor doesn't need a token.
pub(crate) type NeverToken = ();
/// Channel that never delivers messages.
pub(crate) struct Channel<T> {
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Creates a channel that never delivers messages.
#[inline]
pub(crate) fn new() -> Self {
Channel {
_marker: PhantomData,
}
}
/// Attempts to receive a message without blocking.
#[inline]
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
Err(TryRecvError::Empty)
}
/// Receives a message from the channel.
#[inline]
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
utils::sleep_until(deadline);
Err(RecvTimeoutError::Timeout)
}
/// Reads a message from the channel.
#[inline]
pub(crate) unsafe fn read(&self, _token: &mut Token) -> Result<T, ()> {
Err(())
}
/// Returns `true` if the channel is empty.
#[inline]
pub(crate) fn is_empty(&self) -> bool {
true
}
/// Returns `true` if the channel is full.
#[inline]
pub(crate) fn is_full(&self) -> bool {
true
}
/// Returns the number of messages in the channel.
#[inline]
pub(crate) fn len(&self) -> usize {
0
}
/// Returns the capacity of the channel.
#[inline]
pub(crate) fn capacity(&self) -> Option<usize> {
Some(0)
}
}
impl<T> SelectHandle for Channel<T> {
#[inline]
fn try_select(&self, _token: &mut Token) -> bool {
false
}
#[inline]
fn deadline(&self) -> Option<Instant> {
None
}
#[inline]
fn register(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unregister(&self, _oper: Operation) {}
#[inline]
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
#[inline]
fn is_ready(&self) -> bool {
false
}
#[inline]
fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unwatch(&self, _oper: Operation) {}
}

View File

@@ -0,0 +1,167 @@
//! Channel that delivers messages periodically.
//!
//! Messages cannot be sent into this kind of channel; they are materialized on demand.
use std::thread;
use std::time::{Duration, Instant};
use crossbeam_utils::atomic::AtomicCell;
use crate::context::Context;
use crate::err::{RecvTimeoutError, TryRecvError};
use crate::select::{Operation, SelectHandle, Token};
/// Result of a receive operation.
pub(crate) type TickToken = Option<Instant>;
/// Channel that delivers messages periodically.
pub(crate) struct Channel {
/// The instant at which the next message will be delivered.
delivery_time: AtomicCell<Instant>,
/// The time interval in which messages get delivered.
duration: Duration,
}
impl Channel {
/// Creates a channel that delivers messages periodically.
#[inline]
pub(crate) fn new(delivery_time: Instant, dur: Duration) -> Self {
Channel {
delivery_time: AtomicCell::new(delivery_time),
duration: dur,
}
}
/// Attempts to receive a message without blocking.
#[inline]
pub(crate) fn try_recv(&self) -> Result<Instant, TryRecvError> {
loop {
let now = Instant::now();
let delivery_time = self.delivery_time.load();
if now < delivery_time {
return Err(TryRecvError::Empty);
}
if self
.delivery_time
.compare_exchange(delivery_time, now + self.duration)
.is_ok()
{
return Ok(delivery_time);
}
}
}
/// Receives a message from the channel.
#[inline]
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<Instant, RecvTimeoutError> {
loop {
let delivery_time = self.delivery_time.load();
let now = Instant::now();
if let Some(d) = deadline {
if d < delivery_time {
if now < d {
thread::sleep(d - now);
}
return Err(RecvTimeoutError::Timeout);
}
}
if self
.delivery_time
.compare_exchange(delivery_time, delivery_time.max(now) + self.duration)
.is_ok()
{
if now < delivery_time {
thread::sleep(delivery_time - now);
}
return Ok(delivery_time);
}
}
}
/// Reads a message from the channel.
#[inline]
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<Instant, ()> {
token.tick.ok_or(())
}
/// Returns `true` if the channel is empty.
#[inline]
pub(crate) fn is_empty(&self) -> bool {
Instant::now() < self.delivery_time.load()
}
/// Returns `true` if the channel is full.
#[inline]
pub(crate) fn is_full(&self) -> bool {
!self.is_empty()
}
/// Returns the number of messages in the channel.
#[inline]
pub(crate) fn len(&self) -> usize {
if self.is_empty() {
0
} else {
1
}
}
/// Returns the capacity of the channel.
#[inline]
pub(crate) fn capacity(&self) -> Option<usize> {
Some(1)
}
}
impl SelectHandle for Channel {
#[inline]
fn try_select(&self, token: &mut Token) -> bool {
match self.try_recv() {
Ok(msg) => {
token.tick = Some(msg);
true
}
Err(TryRecvError::Disconnected) => {
token.tick = None;
true
}
Err(TryRecvError::Empty) => false,
}
}
#[inline]
fn deadline(&self) -> Option<Instant> {
Some(self.delivery_time.load())
}
#[inline]
fn register(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unregister(&self, _oper: Operation) {}
#[inline]
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
#[inline]
fn is_ready(&self) -> bool {
!self.is_empty()
}
#[inline]
fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
#[inline]
fn unwatch(&self, _oper: Operation) {}
}

View File

@@ -0,0 +1,496 @@
//! Zero-capacity channel.
//!
//! This kind of channel is also known as *rendezvous* channel.
use std::boxed::Box;
use std::cell::UnsafeCell;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Mutex;
use std::time::Instant;
use std::{fmt, ptr};
use crossbeam_utils::Backoff;
use crate::context::Context;
use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
use crate::select::{Operation, SelectHandle, Selected, Token};
use crate::waker::Waker;
/// A pointer to a packet.
pub(crate) struct ZeroToken(*mut ());
impl Default for ZeroToken {
fn default() -> Self {
Self(ptr::null_mut())
}
}
impl fmt::Debug for ZeroToken {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&(self.0 as usize), f)
}
}
/// A slot for passing one message from a sender to a receiver.
struct Packet<T> {
/// Equals `true` if the packet is allocated on the stack.
on_stack: bool,
/// Equals `true` once the packet is ready for reading or writing.
ready: AtomicBool,
/// The message.
msg: UnsafeCell<Option<T>>,
}
impl<T> Packet<T> {
/// Creates an empty packet on the stack.
fn empty_on_stack() -> Packet<T> {
Packet {
on_stack: true,
ready: AtomicBool::new(false),
msg: UnsafeCell::new(None),
}
}
/// Creates an empty packet on the heap.
fn empty_on_heap() -> Box<Packet<T>> {
Box::new(Packet {
on_stack: false,
ready: AtomicBool::new(false),
msg: UnsafeCell::new(None),
})
}
/// Creates a packet on the stack, containing a message.
fn message_on_stack(msg: T) -> Packet<T> {
Packet {
on_stack: true,
ready: AtomicBool::new(false),
msg: UnsafeCell::new(Some(msg)),
}
}
/// Waits until the packet becomes ready for reading or writing.
fn wait_ready(&self) {
let backoff = Backoff::new();
while !self.ready.load(Ordering::Acquire) {
backoff.snooze();
}
}
}
/// Inner representation of a zero-capacity channel.
struct Inner {
/// Senders waiting to pair up with a receive operation.
senders: Waker,
/// Receivers waiting to pair up with a send operation.
receivers: Waker,
/// Equals `true` when the channel is disconnected.
is_disconnected: bool,
}
/// Zero-capacity channel.
pub(crate) struct Channel<T> {
/// Inner representation of the channel.
inner: Mutex<Inner>,
/// Indicates that dropping a `Channel<T>` may drop values of type `T`.
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Constructs a new zero-capacity channel.
pub(crate) fn new() -> Self {
Channel {
inner: Mutex::new(Inner {
senders: Waker::new(),
receivers: Waker::new(),
is_disconnected: false,
}),
_marker: PhantomData,
}
}
/// Returns a receiver handle to the channel.
pub(crate) fn receiver(&self) -> Receiver<'_, T> {
Receiver(self)
}
/// Returns a sender handle to the channel.
pub(crate) fn sender(&self) -> Sender<'_, T> {
Sender(self)
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let mut inner = self.inner.lock().unwrap();
// If there's a waiting receiver, pair up with it.
if let Some(operation) = inner.receivers.try_select() {
token.zero.0 = operation.packet;
true
} else if inner.is_disconnected {
token.zero.0 = ptr::null_mut();
true
} else {
false
}
}
/// Writes a message into the packet.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no packet, the channel is disconnected.
if token.zero.0.is_null() {
return Err(msg);
}
let packet = &*(token.zero.0 as *const Packet<T>);
packet.msg.get().write(Some(msg));
packet.ready.store(true, Ordering::Release);
Ok(())
}
/// Attempts to pair up with a sender.
fn start_recv(&self, token: &mut Token) -> bool {
let mut inner = self.inner.lock().unwrap();
// If there's a waiting sender, pair up with it.
if let Some(operation) = inner.senders.try_select() {
token.zero.0 = operation.packet;
true
} else if inner.is_disconnected {
token.zero.0 = ptr::null_mut();
true
} else {
false
}
}
/// Reads a message from the packet.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
// If there is no packet, the channel is disconnected.
if token.zero.0.is_null() {
return Err(());
}
let packet = &*(token.zero.0 as *const Packet<T>);
if packet.on_stack {
// The message has been in the packet from the beginning, so there is no need to wait
// for it. However, after reading the message, we need to set `ready` to `true` in
// order to signal that the packet can be destroyed.
let msg = packet.msg.get().replace(None).unwrap();
packet.ready.store(true, Ordering::Release);
Ok(msg)
} else {
// Wait until the message becomes available, then read it and destroy the
// heap-allocated packet.
packet.wait_ready();
let msg = packet.msg.get().replace(None).unwrap();
drop(Box::from_raw(token.zero.0.cast::<Packet<T>>()));
Ok(msg)
}
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
let token = &mut Token::default();
let mut inner = self.inner.lock().unwrap();
// If there's a waiting receiver, pair up with it.
if let Some(operation) = inner.receivers.try_select() {
token.zero.0 = operation.packet;
drop(inner);
unsafe {
self.write(token, msg).ok().unwrap();
}
Ok(())
} else if inner.is_disconnected {
Err(TrySendError::Disconnected(msg))
} else {
Err(TrySendError::Full(msg))
}
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
let mut inner = self.inner.lock().unwrap();
// If there's a waiting receiver, pair up with it.
if let Some(operation) = inner.receivers.try_select() {
token.zero.0 = operation.packet;
drop(inner);
unsafe {
self.write(token, msg).ok().unwrap();
}
return Ok(());
}
if inner.is_disconnected {
return Err(SendTimeoutError::Disconnected(msg));
}
Context::with(|cx| {
// Prepare for blocking until a receiver wakes us up.
let oper = Operation::hook(token);
let mut packet = Packet::<T>::message_on_stack(msg);
inner
.senders
.register_with_packet(oper, &mut packet as *mut Packet<T> as *mut (), cx);
inner.receivers.notify();
drop(inner);
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted => {
self.inner.lock().unwrap().senders.unregister(oper).unwrap();
let msg = unsafe { packet.msg.get().replace(None).unwrap() };
Err(SendTimeoutError::Timeout(msg))
}
Selected::Disconnected => {
self.inner.lock().unwrap().senders.unregister(oper).unwrap();
let msg = unsafe { packet.msg.get().replace(None).unwrap() };
Err(SendTimeoutError::Disconnected(msg))
}
Selected::Operation(_) => {
// Wait until the message is read, then drop the packet.
packet.wait_ready();
Ok(())
}
}
})
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
let mut inner = self.inner.lock().unwrap();
// If there's a waiting sender, pair up with it.
if let Some(operation) = inner.senders.try_select() {
token.zero.0 = operation.packet;
drop(inner);
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else if inner.is_disconnected {
Err(TryRecvError::Disconnected)
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
let mut inner = self.inner.lock().unwrap();
// If there's a waiting sender, pair up with it.
if let Some(operation) = inner.senders.try_select() {
token.zero.0 = operation.packet;
drop(inner);
unsafe {
return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
}
}
if inner.is_disconnected {
return Err(RecvTimeoutError::Disconnected);
}
Context::with(|cx| {
// Prepare for blocking until a sender wakes us up.
let oper = Operation::hook(token);
let mut packet = Packet::<T>::empty_on_stack();
inner.receivers.register_with_packet(
oper,
&mut packet as *mut Packet<T> as *mut (),
cx,
);
inner.senders.notify();
drop(inner);
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted => {
self.inner
.lock()
.unwrap()
.receivers
.unregister(oper)
.unwrap();
Err(RecvTimeoutError::Timeout)
}
Selected::Disconnected => {
self.inner
.lock()
.unwrap()
.receivers
.unregister(oper)
.unwrap();
Err(RecvTimeoutError::Disconnected)
}
Selected::Operation(_) => {
// Wait until the message is provided, then read it.
packet.wait_ready();
unsafe { Ok(packet.msg.get().replace(None).unwrap()) }
}
}
})
}
/// Disconnects the channel and wakes up all blocked senders and receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect(&self) -> bool {
let mut inner = self.inner.lock().unwrap();
if !inner.is_disconnected {
inner.is_disconnected = true;
inner.senders.disconnect();
inner.receivers.disconnect();
true
} else {
false
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
0
}
/// Returns the capacity of the channel.
pub(crate) fn capacity(&self) -> Option<usize> {
Some(0)
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
true
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
true
}
}
/// Receiver handle to a channel.
pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
/// Sender handle to a channel.
pub(crate) struct Sender<'a, T>(&'a Channel<T>);
impl<T> SelectHandle for Receiver<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_recv(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
let packet = Box::into_raw(Packet::<T>::empty_on_heap());
let mut inner = self.0.inner.lock().unwrap();
inner
.receivers
.register_with_packet(oper, packet.cast::<()>(), cx);
inner.senders.notify();
inner.senders.can_select() || inner.is_disconnected
}
fn unregister(&self, oper: Operation) {
if let Some(operation) = self.0.inner.lock().unwrap().receivers.unregister(oper) {
unsafe {
drop(Box::from_raw(operation.packet.cast::<Packet<T>>()));
}
}
}
fn accept(&self, token: &mut Token, cx: &Context) -> bool {
token.zero.0 = cx.wait_packet();
true
}
fn is_ready(&self) -> bool {
let inner = self.0.inner.lock().unwrap();
inner.senders.can_select() || inner.is_disconnected
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
let mut inner = self.0.inner.lock().unwrap();
inner.receivers.watch(oper, cx);
inner.senders.can_select() || inner.is_disconnected
}
fn unwatch(&self, oper: Operation) {
let mut inner = self.0.inner.lock().unwrap();
inner.receivers.unwatch(oper);
}
}
impl<T> SelectHandle for Sender<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_send(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
let packet = Box::into_raw(Packet::<T>::empty_on_heap());
let mut inner = self.0.inner.lock().unwrap();
inner
.senders
.register_with_packet(oper, packet.cast::<()>(), cx);
inner.receivers.notify();
inner.receivers.can_select() || inner.is_disconnected
}
fn unregister(&self, oper: Operation) {
if let Some(operation) = self.0.inner.lock().unwrap().senders.unregister(oper) {
unsafe {
drop(Box::from_raw(operation.packet.cast::<Packet<T>>()));
}
}
}
fn accept(&self, token: &mut Token, cx: &Context) -> bool {
token.zero.0 = cx.wait_packet();
true
}
fn is_ready(&self) -> bool {
let inner = self.0.inner.lock().unwrap();
inner.receivers.can_select() || inner.is_disconnected
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
let mut inner = self.0.inner.lock().unwrap();
inner.senders.watch(oper, cx);
inner.receivers.can_select() || inner.is_disconnected
}
fn unwatch(&self, oper: Operation) {
let mut inner = self.0.inner.lock().unwrap();
inner.senders.unwatch(oper);
}
}

378
vendor/crossbeam-channel/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,378 @@
//! Multi-producer multi-consumer channels for message passing.
//!
//! This crate is an alternative to [`std::sync::mpsc`] with more features and better performance.
//!
//! # Hello, world!
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! // Create a channel of unbounded capacity.
//! let (s, r) = unbounded();
//!
//! // Send a message into the channel.
//! s.send("Hello, world!").unwrap();
//!
//! // Receive the message from the channel.
//! assert_eq!(r.recv(), Ok("Hello, world!"));
//! ```
//!
//! # Channel types
//!
//! Channels can be created using two functions:
//!
//! * [`bounded`] creates a channel of bounded capacity, i.e. there is a limit to how many messages
//! it can hold at a time.
//!
//! * [`unbounded`] creates a channel of unbounded capacity, i.e. it can hold any number of
//! messages at a time.
//!
//! Both functions return a [`Sender`] and a [`Receiver`], which represent the two opposite sides
//! of a channel.
//!
//! Creating a bounded channel:
//!
//! ```
//! use crossbeam_channel::bounded;
//!
//! // Create a channel that can hold at most 5 messages at a time.
//! let (s, r) = bounded(5);
//!
//! // Can send only 5 messages without blocking.
//! for i in 0..5 {
//! s.send(i).unwrap();
//! }
//!
//! // Another call to `send` would block because the channel is full.
//! // s.send(5).unwrap();
//! ```
//!
//! Creating an unbounded channel:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! // Create an unbounded channel.
//! let (s, r) = unbounded();
//!
//! // Can send any number of messages into the channel without blocking.
//! for i in 0..1000 {
//! s.send(i).unwrap();
//! }
//! ```
//!
//! A special case is zero-capacity channel, which cannot hold any messages. Instead, send and
//! receive operations must appear at the same time in order to pair up and pass the message over:
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::bounded;
//!
//! // Create a zero-capacity channel.
//! let (s, r) = bounded(0);
//!
//! // Sending blocks until a receive operation appears on the other side.
//! thread::spawn(move || s.send("Hi!").unwrap());
//!
//! // Receiving blocks until a send operation appears on the other side.
//! assert_eq!(r.recv(), Ok("Hi!"));
//! ```
//!
//! # Sharing channels
//!
//! Senders and receivers can be cloned and sent to other threads:
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::bounded;
//!
//! let (s1, r1) = bounded(0);
//! let (s2, r2) = (s1.clone(), r1.clone());
//!
//! // Spawn a thread that receives a message and then sends one.
//! thread::spawn(move || {
//! r2.recv().unwrap();
//! s2.send(2).unwrap();
//! });
//!
//! // Send a message and then receive one.
//! s1.send(1).unwrap();
//! r1.recv().unwrap();
//! ```
//!
//! Note that cloning only creates a new handle to the same sending or receiving side. It does not
//! create a separate stream of messages in any way:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (s1, r1) = unbounded();
//! let (s2, r2) = (s1.clone(), r1.clone());
//! let (s3, r3) = (s2.clone(), r2.clone());
//!
//! s1.send(10).unwrap();
//! s2.send(20).unwrap();
//! s3.send(30).unwrap();
//!
//! assert_eq!(r3.recv(), Ok(10));
//! assert_eq!(r1.recv(), Ok(20));
//! assert_eq!(r2.recv(), Ok(30));
//! ```
//!
//! It's also possible to share senders and receivers by reference:
//!
//! ```
//! use crossbeam_channel::bounded;
//! use crossbeam_utils::thread::scope;
//!
//! let (s, r) = bounded(0);
//!
//! scope(|scope| {
//! // Spawn a thread that receives a message and then sends one.
//! scope.spawn(|_| {
//! r.recv().unwrap();
//! s.send(2).unwrap();
//! });
//!
//! // Send a message and then receive one.
//! s.send(1).unwrap();
//! r.recv().unwrap();
//! }).unwrap();
//! ```
//!
//! # Disconnection
//!
//! When all senders or all receivers associated with a channel get dropped, the channel becomes
//! disconnected. No more messages can be sent, but any remaining messages can still be received.
//! Send and receive operations on a disconnected channel never block.
//!
//! ```
//! use crossbeam_channel::{unbounded, RecvError};
//!
//! let (s, r) = unbounded();
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//!
//! // The only sender is dropped, disconnecting the channel.
//! drop(s);
//!
//! // The remaining messages can be received.
//! assert_eq!(r.recv(), Ok(1));
//! assert_eq!(r.recv(), Ok(2));
//! assert_eq!(r.recv(), Ok(3));
//!
//! // There are no more messages in the channel.
//! assert!(r.is_empty());
//!
//! // Note that calling `r.recv()` does not block.
//! // Instead, `Err(RecvError)` is returned immediately.
//! assert_eq!(r.recv(), Err(RecvError));
//! ```
//!
//! # Blocking operations
//!
//! Send and receive operations come in three flavors:
//!
//! * Non-blocking (returns immediately with success or failure).
//! * Blocking (waits until the operation succeeds or the channel becomes disconnected).
//! * Blocking with a timeout (blocks only for a certain duration of time).
//!
//! A simple example showing the difference between non-blocking and blocking operations:
//!
//! ```
//! use crossbeam_channel::{bounded, RecvError, TryRecvError};
//!
//! let (s, r) = bounded(1);
//!
//! // Send a message into the channel.
//! s.send("foo").unwrap();
//!
//! // This call would block because the channel is full.
//! // s.send("bar").unwrap();
//!
//! // Receive the message.
//! assert_eq!(r.recv(), Ok("foo"));
//!
//! // This call would block because the channel is empty.
//! // r.recv();
//!
//! // Try receiving a message without blocking.
//! assert_eq!(r.try_recv(), Err(TryRecvError::Empty));
//!
//! // Disconnect the channel.
//! drop(s);
//!
//! // This call doesn't block because the channel is now disconnected.
//! assert_eq!(r.recv(), Err(RecvError));
//! ```
//!
//! # Iteration
//!
//! Receivers can be used as iterators. For example, method [`iter`] creates an iterator that
//! receives messages until the channel becomes empty and disconnected. Note that iteration may
//! block waiting for next message to arrive.
//!
//! ```
//! use std::thread;
//! use crossbeam_channel::unbounded;
//!
//! let (s, r) = unbounded();
//!
//! thread::spawn(move || {
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//! drop(s); // Disconnect the channel.
//! });
//!
//! // Collect all messages from the channel.
//! // Note that the call to `collect` blocks until the sender is dropped.
//! let v: Vec<_> = r.iter().collect();
//!
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! A non-blocking iterator can be created using [`try_iter`], which receives all available
//! messages without blocking:
//!
//! ```
//! use crossbeam_channel::unbounded;
//!
//! let (s, r) = unbounded();
//! s.send(1).unwrap();
//! s.send(2).unwrap();
//! s.send(3).unwrap();
//! // No need to drop the sender.
//!
//! // Receive all messages currently in the channel.
//! let v: Vec<_> = r.try_iter().collect();
//!
//! assert_eq!(v, [1, 2, 3]);
//! ```
//!
//! # Selection
//!
//! The [`select!`] macro allows you to define a set of channel operations, wait until any one of
//! them becomes ready, and finally execute it. If multiple operations are ready at the same time,
//! a random one among them is selected.
//!
//! It is also possible to define a `default` case that gets executed if none of the operations are
//! ready, either right away or for a certain duration of time.
//!
//! An operation is considered to be ready if it doesn't have to block. Note that it is ready even
//! when it will simply return an error because the channel is disconnected.
//!
//! An example of receiving a message from two channels:
//!
//! ```
//! use std::thread;
//! use std::time::Duration;
//! use crossbeam_channel::{select, unbounded};
//!
//! let (s1, r1) = unbounded();
//! let (s2, r2) = unbounded();
//!
//! thread::spawn(move || s1.send(10).unwrap());
//! thread::spawn(move || s2.send(20).unwrap());
//!
//! // At most one of these two receive operations will be executed.
//! select! {
//! recv(r1) -> msg => assert_eq!(msg, Ok(10)),
//! recv(r2) -> msg => assert_eq!(msg, Ok(20)),
//! default(Duration::from_secs(1)) => println!("timed out"),
//! }
//! ```
//!
//! If you need to select over a dynamically created list of channel operations, use [`Select`]
//! instead. The [`select!`] macro is just a convenience wrapper around [`Select`].
//!
//! # Extra channels
//!
//! Three functions can create special kinds of channels, all of which return just a [`Receiver`]
//! handle:
//!
//! * [`after`] creates a channel that delivers a single message after a certain duration of time.
//! * [`tick`] creates a channel that delivers messages periodically.
//! * [`never`](never()) creates a channel that never delivers messages.
//!
//! These channels are very efficient because messages get lazily generated on receive operations.
//!
//! An example that prints elapsed time every 50 milliseconds for the duration of 1 second:
//!
//! ```
//! use std::time::{Duration, Instant};
//! use crossbeam_channel::{after, select, tick};
//!
//! let start = Instant::now();
//! let ticker = tick(Duration::from_millis(50));
//! let timeout = after(Duration::from_secs(1));
//!
//! loop {
//! select! {
//! recv(ticker) -> _ => println!("elapsed: {:?}", start.elapsed()),
//! recv(timeout) -> _ => break,
//! }
//! }
//! ```
//!
//! [`send`]: Sender::send
//! [`recv`]: Receiver::recv
//! [`iter`]: Receiver::iter
//! [`try_iter`]: Receiver::try_iter
#![no_std]
#![doc(test(
no_crate_inject,
attr(
deny(warnings, rust_2018_idioms),
allow(dead_code, unused_assignments, unused_variables)
)
))]
#![warn(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
unreachable_pub
)]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "std")]
mod channel;
#[cfg(feature = "std")]
mod context;
#[cfg(feature = "std")]
mod counter;
#[cfg(feature = "std")]
mod err;
#[cfg(feature = "std")]
mod flavors;
#[cfg(feature = "std")]
mod select;
#[cfg(feature = "std")]
mod select_macro;
#[cfg(feature = "std")]
mod utils;
#[cfg(feature = "std")]
mod waker;
/// Crate internals used by the `select!` macro.
#[doc(hidden)]
#[cfg(feature = "std")]
pub mod internal {
pub use crate::select::{select, select_timeout, try_select, SelectHandle};
}
#[cfg(feature = "std")]
pub use crate::{
channel::{
after, at, bounded, never, tick, unbounded, IntoIter, Iter, Receiver, Sender, TryIter,
},
err::{
ReadyTimeoutError, RecvError, RecvTimeoutError, SelectTimeoutError, SendError,
SendTimeoutError, TryReadyError, TryRecvError, TrySelectError, TrySendError,
},
select::{Select, SelectedOperation},
};

1299
vendor/crossbeam-channel/src/select.rs vendored Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

58
vendor/crossbeam-channel/src/utils.rs vendored Normal file
View File

@@ -0,0 +1,58 @@
//! Miscellaneous utilities.
use std::cell::Cell;
use std::num::Wrapping;
use std::thread;
use std::time::{Duration, Instant};
/// Randomly shuffles a slice.
pub(crate) fn shuffle<T>(v: &mut [T]) {
let len = v.len();
if len <= 1 {
return;
}
std::thread_local! {
static RNG: Cell<Wrapping<u32>> = const { Cell::new(Wrapping(1_406_868_647)) };
}
let _ = RNG.try_with(|rng| {
for i in 1..len {
// This is the 32-bit variant of Xorshift.
//
// Source: https://en.wikipedia.org/wiki/Xorshift
let mut x = rng.get();
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
rng.set(x);
let x = x.0;
let n = i + 1;
// This is a fast alternative to `let j = x % n`.
//
// Author: Daniel Lemire
// Source: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
let j = ((x as u64).wrapping_mul(n as u64) >> 32) as u32 as usize;
v.swap(i, j);
}
});
}
/// Sleeps until the deadline, or forever if the deadline isn't specified.
pub(crate) fn sleep_until(deadline: Option<Instant>) {
loop {
match deadline {
None => thread::sleep(Duration::from_secs(1000)),
Some(d) => {
let now = Instant::now();
if now >= d {
break;
}
thread::sleep(d - now);
}
}
}
}

287
vendor/crossbeam-channel/src/waker.rs vendored Normal file
View File

@@ -0,0 +1,287 @@
//! Waking mechanism for threads blocked on channel operations.
use std::ptr;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Mutex;
use std::thread::{self, ThreadId};
use std::vec::Vec;
use crate::context::Context;
use crate::select::{Operation, Selected};
/// Represents a thread blocked on a specific channel operation.
pub(crate) struct Entry {
/// The operation.
pub(crate) oper: Operation,
/// Optional packet.
pub(crate) packet: *mut (),
/// Context associated with the thread owning this operation.
pub(crate) cx: Context,
}
/// A queue of threads blocked on channel operations.
///
/// This data structure is used by threads to register blocking operations and get woken up once
/// an operation becomes ready.
pub(crate) struct Waker {
/// A list of select operations.
selectors: Vec<Entry>,
/// A list of operations waiting to be ready.
observers: Vec<Entry>,
}
impl Waker {
/// Creates a new `Waker`.
#[inline]
pub(crate) fn new() -> Self {
Waker {
selectors: Vec::new(),
observers: Vec::new(),
}
}
/// Registers a select operation.
#[inline]
pub(crate) fn register(&mut self, oper: Operation, cx: &Context) {
self.register_with_packet(oper, ptr::null_mut(), cx);
}
/// Registers a select operation and a packet.
#[inline]
pub(crate) fn register_with_packet(&mut self, oper: Operation, packet: *mut (), cx: &Context) {
self.selectors.push(Entry {
oper,
packet,
cx: cx.clone(),
});
}
/// Unregisters a select operation.
#[inline]
pub(crate) fn unregister(&mut self, oper: Operation) -> Option<Entry> {
if let Some((i, _)) = self
.selectors
.iter()
.enumerate()
.find(|&(_, entry)| entry.oper == oper)
{
let entry = self.selectors.remove(i);
Some(entry)
} else {
None
}
}
/// Attempts to find another thread's entry, select the operation, and wake it up.
#[inline]
pub(crate) fn try_select(&mut self) -> Option<Entry> {
if self.selectors.is_empty() {
None
} else {
let thread_id = current_thread_id();
self.selectors
.iter()
.position(|selector| {
// Does the entry belong to a different thread?
selector.cx.thread_id() != thread_id
&& selector // Try selecting this operation.
.cx
.try_select(Selected::Operation(selector.oper))
.is_ok()
&& {
// Provide the packet.
selector.cx.store_packet(selector.packet);
// Wake the thread up.
selector.cx.unpark();
true
}
})
// Remove the entry from the queue to keep it clean and improve
// performance.
.map(|pos| self.selectors.remove(pos))
}
}
/// Returns `true` if there is an entry which can be selected by the current thread.
#[inline]
pub(crate) fn can_select(&self) -> bool {
if self.selectors.is_empty() {
false
} else {
let thread_id = current_thread_id();
self.selectors.iter().any(|entry| {
entry.cx.thread_id() != thread_id && entry.cx.selected() == Selected::Waiting
})
}
}
/// Registers an operation waiting to be ready.
#[inline]
pub(crate) fn watch(&mut self, oper: Operation, cx: &Context) {
self.observers.push(Entry {
oper,
packet: ptr::null_mut(),
cx: cx.clone(),
});
}
/// Unregisters an operation waiting to be ready.
#[inline]
pub(crate) fn unwatch(&mut self, oper: Operation) {
self.observers.retain(|e| e.oper != oper);
}
/// Notifies all operations waiting to be ready.
#[inline]
pub(crate) fn notify(&mut self) {
for entry in self.observers.drain(..) {
if entry.cx.try_select(Selected::Operation(entry.oper)).is_ok() {
entry.cx.unpark();
}
}
}
/// Notifies all registered operations that the channel is disconnected.
#[inline]
pub(crate) fn disconnect(&mut self) {
for entry in self.selectors.iter() {
if entry.cx.try_select(Selected::Disconnected).is_ok() {
// Wake the thread up.
//
// Here we don't remove the entry from the queue. Registered threads must
// unregister from the waker by themselves. They might also want to recover the
// packet value and destroy it, if necessary.
entry.cx.unpark();
}
}
self.notify();
}
}
impl Drop for Waker {
#[inline]
fn drop(&mut self) {
debug_assert_eq!(self.selectors.len(), 0);
debug_assert_eq!(self.observers.len(), 0);
}
}
/// A waker that can be shared among threads without locking.
///
/// This is a simple wrapper around `Waker` that internally uses a mutex for synchronization.
pub(crate) struct SyncWaker {
/// The inner `Waker`.
inner: Mutex<Waker>,
/// `true` if the waker is empty.
is_empty: AtomicBool,
}
impl SyncWaker {
/// Creates a new `SyncWaker`.
#[inline]
pub(crate) fn new() -> Self {
SyncWaker {
inner: Mutex::new(Waker::new()),
is_empty: AtomicBool::new(true),
}
}
/// Registers the current thread with an operation.
#[inline]
pub(crate) fn register(&self, oper: Operation, cx: &Context) {
let mut inner = self.inner.lock().unwrap();
inner.register(oper, cx);
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
}
/// Unregisters an operation previously registered by the current thread.
#[inline]
pub(crate) fn unregister(&self, oper: Operation) -> Option<Entry> {
let mut inner = self.inner.lock().unwrap();
let entry = inner.unregister(oper);
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
entry
}
/// Attempts to find one thread (not the current one), select its operation, and wake it up.
#[inline]
pub(crate) fn notify(&self) {
if !self.is_empty.load(Ordering::SeqCst) {
let mut inner = self.inner.lock().unwrap();
if !self.is_empty.load(Ordering::SeqCst) {
inner.try_select();
inner.notify();
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
}
}
}
/// Registers an operation waiting to be ready.
#[inline]
pub(crate) fn watch(&self, oper: Operation, cx: &Context) {
let mut inner = self.inner.lock().unwrap();
inner.watch(oper, cx);
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
}
/// Unregisters an operation waiting to be ready.
#[inline]
pub(crate) fn unwatch(&self, oper: Operation) {
let mut inner = self.inner.lock().unwrap();
inner.unwatch(oper);
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
}
/// Notifies all threads that the channel is disconnected.
#[inline]
pub(crate) fn disconnect(&self) {
let mut inner = self.inner.lock().unwrap();
inner.disconnect();
self.is_empty.store(
inner.selectors.is_empty() && inner.observers.is_empty(),
Ordering::SeqCst,
);
}
}
impl Drop for SyncWaker {
#[inline]
fn drop(&mut self) {
debug_assert!(self.is_empty.load(Ordering::SeqCst));
}
}
/// Returns the id of the current thread.
#[inline]
fn current_thread_id() -> ThreadId {
std::thread_local! {
/// Cached thread-local id.
static THREAD_ID: ThreadId = thread::current().id();
}
THREAD_ID
.try_with(|id| *id)
.unwrap_or_else(|_| thread::current().id())
}