Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

View File

@@ -0,0 +1 @@
{"files":{"CHANGELOG.md":"6e8a6185cb02ca76f58a29feb15cf075807b89e578c4da1b7d6228e2598c0e01","Cargo.toml":"187f241aad3a4370b6e112f2f5ec5ee212e8ad36d7919d2db29bc4245e70f76f","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"5734ed989dfca1f625b40281ee9f4530f91b2411ec01cb748223e7eb87e201ab","README.md":"88a50c7a414f6d8431061f0741dc6b46db012ec338b4e57d5d3e9746eeaaa543","src/array_queue.rs":"86c732c258c8b929a259e22d772241de80ec2741b18fce8cbb23815e4dd731d4","src/lib.rs":"e3b6c8dacf2f9f18d66c82cafdc0b2a06d3b13af91a303e66f81f069bbff4627","src/seg_queue.rs":"49db03c80c97a44213a98e73b2db0be60b7d1253cd9d90bc01e8d3aa5e83bce3","tests/array_queue.rs":"426dd0ff6698bd63108b3a567703ec2e635bce0f337134116e237b11925a7716","tests/seg_queue.rs":"8dfa361d8f82467a58aff3741a3410689631d3c28d8e32b5c104148ba330ef74"},"package":"0f58bbc28f91df819d0aa2a2c00cd19754769c2fad90579b3592b1c9ba7a3115"}

88
vendor/crossbeam-queue/CHANGELOG.md vendored Normal file
View File

@@ -0,0 +1,88 @@
# Version 0.3.12
- Fix stack overflow when pushing large value to `SegQueue`. (#1146, #1147, #1159)
# Version 0.3.11
- Remove dependency on `cfg-if`. (#1072)
# Version 0.3.10
- Relax the minimum supported Rust version to 1.60. (#1056)
- Implement `UnwindSafe` and `RefUnwindSafe` for `ArrayQueue` and `SegQueue`. (#1053)
- Optimize `Drop` implementation of `ArrayQueue`. (#1057)
# Version 0.3.9
- Bump the minimum supported Rust version to 1.61. (#1037)
- Improve support for targets without atomic CAS. (#1037)
- Remove build script. (#1037)
# Version 0.3.8
- Fix build script bug introduced in 0.3.7. (#932)
# Version 0.3.7
**Note:** This release has been yanked due to regression fixed in 0.3.8.
- Improve support for custom targets. (#922)
# Version 0.3.6
- Bump the minimum supported Rust version to 1.38. (#877)
# Version 0.3.5
- Add `ArrayQueue::force_push`. (#789)
# Version 0.3.4
- Implement `IntoIterator` for `ArrayQueue` and `SegQueue`. (#772)
# Version 0.3.3
- Fix stacked borrows violation in `ArrayQueue` when `-Zmiri-tag-raw-pointers` is enabled. (#763)
# Version 0.3.2
- Support targets that do not have atomic CAS on stable Rust. (#698)
# Version 0.3.1
- Make `SegQueue::new` const fn. (#584)
- Change license to "MIT OR Apache-2.0".
# Version 0.3.0
- Bump the minimum supported Rust version to 1.36.
- Remove `PushError` and `PopError`.
# Version 0.2.3
- Fix bug in release (yanking 0.2.2)
# Version 0.2.2
- Fix unsoundness issues by adopting `MaybeUninit`. (#458)
# Version 0.2.1
- Add `no_std` support.
# Version 0.2.0
- Bump the minimum required version to 1.28.
- Bump `crossbeam-utils` to `0.7`.
# Version 0.1.2
- Update `crossbeam-utils` to `0.6.5`.
# Version 0.1.1
- Update `crossbeam-utils` to `0.6.4`.
# Version 0.1.0
- Initial version with `ArrayQueue` and `SegQueue`.

83
vendor/crossbeam-queue/Cargo.toml vendored Normal file
View File

@@ -0,0 +1,83 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies.
#
# If you are reading this file be aware that the original Cargo.toml
# will likely look very different (and much more reasonable).
# See Cargo.toml.orig for the original contents.
[package]
edition = "2021"
rust-version = "1.60"
name = "crossbeam-queue"
version = "0.3.12"
build = false
autolib = false
autobins = false
autoexamples = false
autotests = false
autobenches = false
description = "Concurrent queues"
homepage = "https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-queue"
readme = "README.md"
keywords = [
"queue",
"mpmc",
"lock-free",
"producer",
"consumer",
]
categories = [
"concurrency",
"data-structures",
"no-std",
]
license = "MIT OR Apache-2.0"
repository = "https://github.com/crossbeam-rs/crossbeam"
[lib]
name = "crossbeam_queue"
path = "src/lib.rs"
[[test]]
name = "array_queue"
path = "tests/array_queue.rs"
[[test]]
name = "seg_queue"
path = "tests/seg_queue.rs"
[dependencies.crossbeam-utils]
version = "0.8.18"
default-features = false
[dev-dependencies.rand]
version = "0.8"
[features]
alloc = []
default = ["std"]
nightly = ["crossbeam-utils/nightly"]
std = [
"alloc",
"crossbeam-utils/std",
]
[lints.clippy.declare_interior_mutable_const]
level = "allow"
priority = 1
[lints.clippy.lint_groups_priority]
level = "allow"
priority = 1
[lints.rust.unexpected_cfgs]
level = "warn"
priority = 0
check-cfg = [
"cfg(crossbeam_loom)",
"cfg(crossbeam_sanitize)",
]

201
vendor/crossbeam-queue/LICENSE-APACHE vendored Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

27
vendor/crossbeam-queue/LICENSE-MIT vendored Normal file
View File

@@ -0,0 +1,27 @@
The MIT License (MIT)
Copyright (c) 2019 The Crossbeam Project Developers
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

54
vendor/crossbeam-queue/README.md vendored Normal file
View File

@@ -0,0 +1,54 @@
# Crossbeam Queue
[![Build Status](https://github.com/crossbeam-rs/crossbeam/workflows/CI/badge.svg)](
https://github.com/crossbeam-rs/crossbeam/actions)
[![License](https://img.shields.io/badge/license-MIT_OR_Apache--2.0-blue.svg)](
https://github.com/crossbeam-rs/crossbeam/tree/master/crossbeam-queue#license)
[![Cargo](https://img.shields.io/crates/v/crossbeam-queue.svg)](
https://crates.io/crates/crossbeam-queue)
[![Documentation](https://docs.rs/crossbeam-queue/badge.svg)](
https://docs.rs/crossbeam-queue)
[![Rust 1.60+](https://img.shields.io/badge/rust-1.60+-lightgray.svg)](
https://www.rust-lang.org)
[![chat](https://img.shields.io/discord/569610676205781012.svg?logo=discord)](https://discord.com/invite/JXYwgWZ)
This crate provides concurrent queues that can be shared among threads:
* [`ArrayQueue`], a bounded MPMC queue that allocates a fixed-capacity buffer on construction.
* [`SegQueue`], an unbounded MPMC queue that allocates small buffers, segments, on demand.
Everything in this crate can be used in `no_std` environments, provided that `alloc` feature is
enabled.
[`ArrayQueue`]: https://docs.rs/crossbeam-queue/*/crossbeam_queue/struct.ArrayQueue.html
[`SegQueue`]: https://docs.rs/crossbeam-queue/*/crossbeam_queue/struct.SegQueue.html
## Usage
Add this to your `Cargo.toml`:
```toml
[dependencies]
crossbeam-queue = "0.3"
```
## Compatibility
Crossbeam Queue supports stable Rust releases going back at least six months,
and every time the minimum supported Rust version is increased, a new minor
version is released. Currently, the minimum supported Rust version is 1.60.
## License
Licensed under either of
* Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
* MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.
#### Contribution
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in the work by you, as defined in the Apache-2.0 license, shall be
dual licensed as above, without any additional terms or conditions.

View File

@@ -0,0 +1,541 @@
//! The implementation is based on Dmitry Vyukov's bounded MPMC queue.
//!
//! Source:
//! - <http://www.1024cores.net/home/lock-free-algorithms/queues/bounded-mpmc-queue>
use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::fmt;
use core::mem::{self, MaybeUninit};
use core::panic::{RefUnwindSafe, UnwindSafe};
use core::sync::atomic::{self, AtomicUsize, Ordering};
use crossbeam_utils::{Backoff, CachePadded};
/// A slot in a queue.
struct Slot<T> {
/// The current stamp.
///
/// If the stamp equals the tail, this node will be next written to. If it equals head + 1,
/// this node will be next read from.
stamp: AtomicUsize,
/// The value in this slot.
value: UnsafeCell<MaybeUninit<T>>,
}
/// A bounded multi-producer multi-consumer queue.
///
/// This queue allocates a fixed-capacity buffer on construction, which is used to store pushed
/// elements. The queue cannot hold more elements than the buffer allows. Attempting to push an
/// element into a full queue will fail. Alternatively, [`force_push`] makes it possible for
/// this queue to be used as a ring-buffer. Having a buffer allocated upfront makes this queue
/// a bit faster than [`SegQueue`].
///
/// [`force_push`]: ArrayQueue::force_push
/// [`SegQueue`]: super::SegQueue
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(2);
///
/// assert_eq!(q.push('a'), Ok(()));
/// assert_eq!(q.push('b'), Ok(()));
/// assert_eq!(q.push('c'), Err('c'));
/// assert_eq!(q.pop(), Some('a'));
/// ```
pub struct ArrayQueue<T> {
/// The head of the queue.
///
/// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
/// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
///
/// Elements are popped from the head of the queue.
head: CachePadded<AtomicUsize>,
/// The tail of the queue.
///
/// This value is a "stamp" consisting of an index into the buffer and a lap, but packed into a
/// single `usize`. The lower bits represent the index, while the upper bits represent the lap.
///
/// Elements are pushed into the tail of the queue.
tail: CachePadded<AtomicUsize>,
/// The buffer holding slots.
buffer: Box<[Slot<T>]>,
/// The queue capacity.
cap: usize,
/// A stamp with the value of `{ lap: 1, index: 0 }`.
one_lap: usize,
}
unsafe impl<T: Send> Sync for ArrayQueue<T> {}
unsafe impl<T: Send> Send for ArrayQueue<T> {}
impl<T> UnwindSafe for ArrayQueue<T> {}
impl<T> RefUnwindSafe for ArrayQueue<T> {}
impl<T> ArrayQueue<T> {
/// Creates a new bounded queue with the given capacity.
///
/// # Panics
///
/// Panics if the capacity is zero.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::<i32>::new(100);
/// ```
pub fn new(cap: usize) -> ArrayQueue<T> {
assert!(cap > 0, "capacity must be non-zero");
// Head is initialized to `{ lap: 0, index: 0 }`.
// Tail is initialized to `{ lap: 0, index: 0 }`.
let head = 0;
let tail = 0;
// Allocate a buffer of `cap` slots initialized
// with stamps.
let buffer: Box<[Slot<T>]> = (0..cap)
.map(|i| {
// Set the stamp to `{ lap: 0, index: i }`.
Slot {
stamp: AtomicUsize::new(i),
value: UnsafeCell::new(MaybeUninit::uninit()),
}
})
.collect();
// One lap is the smallest power of two greater than `cap`.
let one_lap = (cap + 1).next_power_of_two();
ArrayQueue {
buffer,
cap,
one_lap,
head: CachePadded::new(AtomicUsize::new(head)),
tail: CachePadded::new(AtomicUsize::new(tail)),
}
}
fn push_or_else<F>(&self, mut value: T, f: F) -> Result<(), T>
where
F: Fn(T, usize, usize, &Slot<T>) -> Result<T, T>,
{
let backoff = Backoff::new();
let mut tail = self.tail.load(Ordering::Relaxed);
loop {
// Deconstruct the tail.
let index = tail & (self.one_lap - 1);
let lap = tail & !(self.one_lap - 1);
let new_tail = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, index: index + 1 }`.
tail + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Inspect the corresponding slot.
debug_assert!(index < self.buffer.len());
let slot = unsafe { self.buffer.get_unchecked(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the tail and the stamp match, we may attempt to push.
if tail == stamp {
// Try moving the tail.
match self.tail.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Write the value into the slot and update the stamp.
unsafe {
slot.value.get().write(MaybeUninit::new(value));
}
slot.stamp.store(tail + 1, Ordering::Release);
return Ok(());
}
Err(t) => {
tail = t;
backoff.spin();
}
}
} else if stamp.wrapping_add(self.one_lap) == tail + 1 {
atomic::fence(Ordering::SeqCst);
value = f(value, tail, new_tail, slot)?;
backoff.spin();
tail = self.tail.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
tail = self.tail.load(Ordering::Relaxed);
}
}
}
/// Attempts to push an element into the queue.
///
/// If the queue is full, the element is returned back as an error.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(1);
///
/// assert_eq!(q.push(10), Ok(()));
/// assert_eq!(q.push(20), Err(20));
/// ```
pub fn push(&self, value: T) -> Result<(), T> {
self.push_or_else(value, |v, tail, _, _| {
let head = self.head.load(Ordering::Relaxed);
// If the head lags one lap behind the tail as well...
if head.wrapping_add(self.one_lap) == tail {
// ...then the queue is full.
Err(v)
} else {
Ok(v)
}
})
}
/// Pushes an element into the queue, replacing the oldest element if necessary.
///
/// If the queue is full, the oldest element is replaced and returned,
/// otherwise `None` is returned.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(2);
///
/// assert_eq!(q.force_push(10), None);
/// assert_eq!(q.force_push(20), None);
/// assert_eq!(q.force_push(30), Some(10));
/// assert_eq!(q.pop(), Some(20));
/// ```
pub fn force_push(&self, value: T) -> Option<T> {
self.push_or_else(value, |v, tail, new_tail, slot| {
let head = tail.wrapping_sub(self.one_lap);
let new_head = new_tail.wrapping_sub(self.one_lap);
// Try moving the head.
if self
.head
.compare_exchange_weak(head, new_head, Ordering::SeqCst, Ordering::Relaxed)
.is_ok()
{
// Move the tail.
self.tail.store(new_tail, Ordering::SeqCst);
// Swap the previous value.
let old = unsafe { slot.value.get().replace(MaybeUninit::new(v)).assume_init() };
// Update the stamp.
slot.stamp.store(tail + 1, Ordering::Release);
Err(old)
} else {
Ok(v)
}
})
.err()
}
/// Attempts to pop an element from the queue.
///
/// If the queue is empty, `None` is returned.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(1);
/// assert_eq!(q.push(10), Ok(()));
///
/// assert_eq!(q.pop(), Some(10));
/// assert!(q.pop().is_none());
/// ```
pub fn pop(&self) -> Option<T> {
let backoff = Backoff::new();
let mut head = self.head.load(Ordering::Relaxed);
loop {
// Deconstruct the head.
let index = head & (self.one_lap - 1);
let lap = head & !(self.one_lap - 1);
// Inspect the corresponding slot.
debug_assert!(index < self.buffer.len());
let slot = unsafe { self.buffer.get_unchecked(index) };
let stamp = slot.stamp.load(Ordering::Acquire);
// If the stamp is ahead of the head by 1, we may attempt to pop.
if head + 1 == stamp {
let new = if index + 1 < self.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, index: index + 1 }`.
head + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
lap.wrapping_add(self.one_lap)
};
// Try moving the head.
match self.head.compare_exchange_weak(
head,
new,
Ordering::SeqCst,
Ordering::Relaxed,
) {
Ok(_) => {
// Read the value from the slot and update the stamp.
let msg = unsafe { slot.value.get().read().assume_init() };
slot.stamp
.store(head.wrapping_add(self.one_lap), Ordering::Release);
return Some(msg);
}
Err(h) => {
head = h;
backoff.spin();
}
}
} else if stamp == head {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if tail == head {
return None;
}
backoff.spin();
head = self.head.load(Ordering::Relaxed);
} else {
// Snooze because we need to wait for the stamp to get updated.
backoff.snooze();
head = self.head.load(Ordering::Relaxed);
}
}
}
/// Returns the capacity of the queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::<i32>::new(100);
///
/// assert_eq!(q.capacity(), 100);
/// ```
pub fn capacity(&self) -> usize {
self.cap
}
/// Returns `true` if the queue is empty.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(100);
///
/// assert!(q.is_empty());
/// q.push(1).unwrap();
/// assert!(!q.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
let head = self.head.load(Ordering::SeqCst);
let tail = self.tail.load(Ordering::SeqCst);
// Is the tail lagging one lap behind head?
// Is the tail equal to the head?
//
// Note: If the head changes just before we load the tail, that means there was a moment
// when the channel was not empty, so it is safe to just return `false`.
tail == head
}
/// Returns `true` if the queue is full.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(1);
///
/// assert!(!q.is_full());
/// q.push(1).unwrap();
/// assert!(q.is_full());
/// ```
pub fn is_full(&self) -> bool {
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// Is the head lagging one lap behind tail?
//
// Note: If the tail changes just before we load the head, that means there was a moment
// when the queue was not full, so it is safe to just return `false`.
head.wrapping_add(self.one_lap) == tail
}
/// Returns the number of elements in the queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::ArrayQueue;
///
/// let q = ArrayQueue::new(100);
/// assert_eq!(q.len(), 0);
///
/// q.push(10).unwrap();
/// assert_eq!(q.len(), 1);
///
/// q.push(20).unwrap();
/// assert_eq!(q.len(), 2);
/// ```
pub fn len(&self) -> usize {
loop {
// Load the tail, then load the head.
let tail = self.tail.load(Ordering::SeqCst);
let head = self.head.load(Ordering::SeqCst);
// If the tail didn't change, we've got consistent values to work with.
if self.tail.load(Ordering::SeqCst) == tail {
let hix = head & (self.one_lap - 1);
let tix = tail & (self.one_lap - 1);
return if hix < tix {
tix - hix
} else if hix > tix {
self.cap - hix + tix
} else if tail == head {
0
} else {
self.cap
};
}
}
}
}
impl<T> Drop for ArrayQueue<T> {
fn drop(&mut self) {
if mem::needs_drop::<T>() {
// Get the index of the head.
let head = *self.head.get_mut();
let tail = *self.tail.get_mut();
let hix = head & (self.one_lap - 1);
let tix = tail & (self.one_lap - 1);
let len = if hix < tix {
tix - hix
} else if hix > tix {
self.cap - hix + tix
} else if tail == head {
0
} else {
self.cap
};
// Loop over all slots that hold a message and drop them.
for i in 0..len {
// Compute the index of the next slot holding a message.
let index = if hix + i < self.cap {
hix + i
} else {
hix + i - self.cap
};
unsafe {
debug_assert!(index < self.buffer.len());
let slot = self.buffer.get_unchecked_mut(index);
(*slot.value.get()).assume_init_drop();
}
}
}
}
}
impl<T> fmt::Debug for ArrayQueue<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("ArrayQueue { .. }")
}
}
impl<T> IntoIterator for ArrayQueue<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter { value: self }
}
}
#[derive(Debug)]
pub struct IntoIter<T> {
value: ArrayQueue<T>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let value = &mut self.value;
let head = *value.head.get_mut();
if value.head.get_mut() != value.tail.get_mut() {
let index = head & (value.one_lap - 1);
let lap = head & !(value.one_lap - 1);
// SAFETY: We have mutable access to this, so we can read without
// worrying about concurrency. Furthermore, we know this is
// initialized because it is the value pointed at by `value.head`
// and this is a non-empty queue.
let val = unsafe {
debug_assert!(index < value.buffer.len());
let slot = value.buffer.get_unchecked_mut(index);
slot.value.get().read().assume_init()
};
let new = if index + 1 < value.cap {
// Same lap, incremented index.
// Set to `{ lap: lap, index: index + 1 }`.
head + 1
} else {
// One lap forward, index wraps around to zero.
// Set to `{ lap: lap.wrapping_add(1), index: 0 }`.
lap.wrapping_add(value.one_lap)
};
*value.head.get_mut() = new;
Option::Some(val)
} else {
Option::None
}
}
}

34
vendor/crossbeam-queue/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,34 @@
//! Concurrent queues.
//!
//! This crate provides concurrent queues that can be shared among threads:
//!
//! * [`ArrayQueue`], a bounded MPMC queue that allocates a fixed-capacity buffer on construction.
//! * [`SegQueue`], an unbounded MPMC queue that allocates small buffers, segments, on demand.
#![no_std]
#![doc(test(
no_crate_inject,
attr(
deny(warnings, rust_2018_idioms),
allow(dead_code, unused_assignments, unused_variables)
)
))]
#![warn(
missing_docs,
missing_debug_implementations,
rust_2018_idioms,
unreachable_pub
)]
#[cfg(all(feature = "alloc", target_has_atomic = "ptr"))]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
#[cfg(all(feature = "alloc", target_has_atomic = "ptr"))]
mod array_queue;
#[cfg(all(feature = "alloc", target_has_atomic = "ptr"))]
mod seg_queue;
#[cfg(all(feature = "alloc", target_has_atomic = "ptr"))]
pub use crate::{array_queue::ArrayQueue, seg_queue::SegQueue};

566
vendor/crossbeam-queue/src/seg_queue.rs vendored Normal file
View File

@@ -0,0 +1,566 @@
use alloc::alloc::{alloc_zeroed, handle_alloc_error, Layout};
use alloc::boxed::Box;
use core::cell::UnsafeCell;
use core::fmt;
use core::marker::PhantomData;
use core::mem::MaybeUninit;
use core::panic::{RefUnwindSafe, UnwindSafe};
use core::ptr;
use core::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use crossbeam_utils::{Backoff, CachePadded};
// Bits indicating the state of a slot:
// * If a value has been written into the slot, `WRITE` is set.
// * If a value has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;
// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of values a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Indicates that the block is not the last one.
const HAS_NEXT: usize = 1;
/// A slot in a block.
struct Slot<T> {
/// The value.
value: UnsafeCell<MaybeUninit<T>>,
/// The state of the slot.
state: AtomicUsize,
}
impl<T> Slot<T> {
/// Waits until a value is written into the slot.
fn wait_write(&self) {
let backoff = Backoff::new();
while self.state.load(Ordering::Acquire) & WRITE == 0 {
backoff.snooze();
}
}
}
/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` values.
struct Block<T> {
/// The next block in the linked list.
next: AtomicPtr<Block<T>>,
/// Slots for values.
slots: [Slot<T>; BLOCK_CAP],
}
impl<T> Block<T> {
const LAYOUT: Layout = {
let layout = Layout::new::<Self>();
assert!(
layout.size() != 0,
"Block should never be zero-sized, as it has an AtomicPtr field"
);
layout
};
/// Creates an empty block.
fn new() -> Box<Self> {
// SAFETY: layout is not zero-sized
let ptr = unsafe { alloc_zeroed(Self::LAYOUT) };
// Handle allocation failure
if ptr.is_null() {
handle_alloc_error(Self::LAYOUT)
}
// SAFETY: This is safe because:
// [1] `Block::next` (AtomicPtr) may be safely zero initialized.
// [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
// [3] `Slot::value` (UnsafeCell) may be safely zero initialized because it
// holds a MaybeUninit.
// [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
// TODO: unsafe { Box::new_zeroed().assume_init() }
unsafe { Box::from_raw(ptr.cast()) }
}
/// Waits until the next pointer is set.
fn wait_next(&self) -> *mut Block<T> {
let backoff = Backoff::new();
loop {
let next = self.next.load(Ordering::Acquire);
if !next.is_null() {
return next;
}
backoff.snooze();
}
}
/// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
unsafe fn destroy(this: *mut Block<T>, start: usize) {
// It is not necessary to set the `DESTROY` bit in the last slot because that slot has
// begun destruction of the block.
for i in start..BLOCK_CAP - 1 {
let slot = (*this).slots.get_unchecked(i);
// Mark the `DESTROY` bit if a thread is still using the slot.
if slot.state.load(Ordering::Acquire) & READ == 0
&& slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
{
// If a thread is still using the slot, it will continue destruction of the block.
return;
}
}
// No thread is using the block, now it is safe to destroy it.
drop(Box::from_raw(this));
}
}
/// A position in a queue.
struct Position<T> {
/// The index in the queue.
index: AtomicUsize,
/// The block in the linked list.
block: AtomicPtr<Block<T>>,
}
/// An unbounded multi-producer multi-consumer queue.
///
/// This queue is implemented as a linked list of segments, where each segment is a small buffer
/// that can hold a handful of elements. There is no limit to how many elements can be in the queue
/// at a time. However, since segments need to be dynamically allocated as elements get pushed,
/// this queue is somewhat slower than [`ArrayQueue`].
///
/// [`ArrayQueue`]: super::ArrayQueue
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push('a');
/// q.push('b');
///
/// assert_eq!(q.pop(), Some('a'));
/// assert_eq!(q.pop(), Some('b'));
/// assert!(q.pop().is_none());
/// ```
pub struct SegQueue<T> {
/// The head of the queue.
head: CachePadded<Position<T>>,
/// The tail of the queue.
tail: CachePadded<Position<T>>,
/// Indicates that dropping a `SegQueue<T>` may drop values of type `T`.
_marker: PhantomData<T>,
}
unsafe impl<T: Send> Send for SegQueue<T> {}
unsafe impl<T: Send> Sync for SegQueue<T> {}
impl<T> UnwindSafe for SegQueue<T> {}
impl<T> RefUnwindSafe for SegQueue<T> {}
impl<T> SegQueue<T> {
/// Creates a new unbounded queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::<i32>::new();
/// ```
pub const fn new() -> SegQueue<T> {
SegQueue {
head: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
tail: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
_marker: PhantomData,
}
}
/// Pushes back an element to the tail.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push(10);
/// q.push(20);
/// ```
pub fn push(&self, value: T) {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
let mut block = self.tail.block.load(Ordering::Acquire);
let mut next_block = None;
loop {
// Calculate the offset of the index into the block.
let offset = (tail >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
// If we're going to have to install the next block, allocate it in advance in order to
// make the wait for other threads as short as possible.
if offset + 1 == BLOCK_CAP && next_block.is_none() {
next_block = Some(Block::<T>::new());
}
// If this is the first push operation, we need to allocate the first block.
if block.is_null() {
let new = Box::into_raw(Block::<T>::new());
if self
.tail
.block
.compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
self.head.block.store(new, Ordering::Release);
block = new;
} else {
next_block = unsafe { Some(Box::from_raw(new)) };
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
}
let new_tail = tail + (1 << SHIFT);
// Try advancing the tail forward.
match self.tail.index.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, install the next one.
if offset + 1 == BLOCK_CAP {
let next_block = Box::into_raw(next_block.unwrap());
let next_index = new_tail.wrapping_add(1 << SHIFT);
self.tail.block.store(next_block, Ordering::Release);
self.tail.index.store(next_index, Ordering::Release);
(*block).next.store(next_block, Ordering::Release);
}
// Write the value into the slot.
let slot = (*block).slots.get_unchecked(offset);
slot.value.get().write(MaybeUninit::new(value));
slot.state.fetch_or(WRITE, Ordering::Release);
return;
},
Err(t) => {
tail = t;
block = self.tail.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Pops the head element from the queue.
///
/// If the queue is empty, `None` is returned.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// q.push(10);
/// q.push(20);
/// assert_eq!(q.pop(), Some(10));
/// assert_eq!(q.pop(), Some(20));
/// assert!(q.pop().is_none());
/// ```
pub fn pop(&self) -> Option<T> {
let backoff = Backoff::new();
let mut head = self.head.index.load(Ordering::Acquire);
let mut block = self.head.block.load(Ordering::Acquire);
loop {
// Calculate the offset of the index into the block.
let offset = (head >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
let mut new_head = head + (1 << SHIFT);
if new_head & HAS_NEXT == 0 {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::Relaxed);
// If the tail equals the head, that means the queue is empty.
if head >> SHIFT == tail >> SHIFT {
return None;
}
// If head and tail are not in the same block, set `HAS_NEXT` in head.
if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
new_head |= HAS_NEXT;
}
}
// The block can be null here only if the first push operation is in progress. In that
// case, just wait until it gets initialized.
if block.is_null() {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
// Try moving the head index forward.
match self.head.index.compare_exchange_weak(
head,
new_head,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, move to the next one.
if offset + 1 == BLOCK_CAP {
let next = (*block).wait_next();
let mut next_index = (new_head & !HAS_NEXT).wrapping_add(1 << SHIFT);
if !(*next).next.load(Ordering::Relaxed).is_null() {
next_index |= HAS_NEXT;
}
self.head.block.store(next, Ordering::Release);
self.head.index.store(next_index, Ordering::Release);
}
// Read the value.
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let value = slot.value.get().read().assume_init();
// Destroy the block if we've reached the end, or if another thread wanted to
// destroy but couldn't because we were busy reading from the slot.
if offset + 1 == BLOCK_CAP {
Block::destroy(block, 0);
} else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
Block::destroy(block, offset + 1);
}
return Some(value);
},
Err(h) => {
head = h;
block = self.head.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Returns `true` if the queue is empty.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
///
/// assert!(q.is_empty());
/// q.push(1);
/// assert!(!q.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
let head = self.head.index.load(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::SeqCst);
head >> SHIFT == tail >> SHIFT
}
/// Returns the number of elements in the queue.
///
/// # Examples
///
/// ```
/// use crossbeam_queue::SegQueue;
///
/// let q = SegQueue::new();
/// assert_eq!(q.len(), 0);
///
/// q.push(10);
/// assert_eq!(q.len(), 1);
///
/// q.push(20);
/// assert_eq!(q.len(), 2);
/// ```
pub fn len(&self) -> usize {
loop {
// Load the tail index, then load the head index.
let mut tail = self.tail.index.load(Ordering::SeqCst);
let mut head = self.head.index.load(Ordering::SeqCst);
// If the tail index didn't change, we've got consistent indices to work with.
if self.tail.index.load(Ordering::SeqCst) == tail {
// Erase the lower bits.
tail &= !((1 << SHIFT) - 1);
head &= !((1 << SHIFT) - 1);
// Fix up indices if they fall onto block ends.
if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
tail = tail.wrapping_add(1 << SHIFT);
}
if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
head = head.wrapping_add(1 << SHIFT);
}
// Rotate indices so that head falls into the first block.
let lap = (head >> SHIFT) / LAP;
tail = tail.wrapping_sub((lap * LAP) << SHIFT);
head = head.wrapping_sub((lap * LAP) << SHIFT);
// Remove the lower bits.
tail >>= SHIFT;
head >>= SHIFT;
// Return the difference minus the number of blocks between tail and head.
return tail - head - tail / LAP;
}
}
}
}
impl<T> Drop for SegQueue<T> {
fn drop(&mut self) {
let mut head = *self.head.index.get_mut();
let mut tail = *self.tail.index.get_mut();
let mut block = *self.head.block.get_mut();
// Erase the lower bits.
head &= !((1 << SHIFT) - 1);
tail &= !((1 << SHIFT) - 1);
unsafe {
// Drop all values between `head` and `tail` and deallocate the heap-allocated blocks.
while head != tail {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the value in the slot.
let slot = (*block).slots.get_unchecked(offset);
(*slot.value.get()).assume_init_drop();
} else {
// Deallocate the block and move to the next one.
let next = *(*block).next.get_mut();
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
}
}
impl<T> fmt::Debug for SegQueue<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad("SegQueue { .. }")
}
}
impl<T> Default for SegQueue<T> {
fn default() -> SegQueue<T> {
SegQueue::new()
}
}
impl<T> IntoIterator for SegQueue<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter { value: self }
}
}
#[derive(Debug)]
pub struct IntoIter<T> {
value: SegQueue<T>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let value = &mut self.value;
let head = *value.head.index.get_mut();
let tail = *value.tail.index.get_mut();
if head >> SHIFT == tail >> SHIFT {
None
} else {
let block = *value.head.block.get_mut();
let offset = (head >> SHIFT) % LAP;
// SAFETY: We have mutable access to this, so we can read without
// worrying about concurrency. Furthermore, we know this is
// initialized because it is the value pointed at by `value.head`
// and this is a non-empty queue.
let item = unsafe {
let slot = (*block).slots.get_unchecked(offset);
slot.value.get().read().assume_init()
};
if offset + 1 == BLOCK_CAP {
// Deallocate the block and move to the next one.
// SAFETY: The block is initialized because we've been reading
// from it this entire time. We can drop it b/c everything has
// been read out of it, so nothing is pointing to it anymore.
unsafe {
let next = *(*block).next.get_mut();
drop(Box::from_raw(block));
*value.head.block.get_mut() = next;
}
// The last value in a block is empty, so skip it
*value.head.index.get_mut() = head.wrapping_add(2 << SHIFT);
// Double-check that we're pointing to the first item in a block.
debug_assert_eq!((*value.head.index.get_mut() >> SHIFT) % LAP, 0);
} else {
*value.head.index.get_mut() = head.wrapping_add(1 << SHIFT);
}
Some(item)
}
}
}

View File

@@ -0,0 +1,374 @@
use std::sync::atomic::{AtomicUsize, Ordering};
use crossbeam_queue::ArrayQueue;
use crossbeam_utils::thread::scope;
use rand::{thread_rng, Rng};
#[test]
fn smoke() {
let q = ArrayQueue::new(1);
q.push(7).unwrap();
assert_eq!(q.pop(), Some(7));
q.push(8).unwrap();
assert_eq!(q.pop(), Some(8));
assert!(q.pop().is_none());
}
#[test]
fn capacity() {
for i in 1..10 {
let q = ArrayQueue::<i32>::new(i);
assert_eq!(q.capacity(), i);
}
}
#[test]
#[should_panic(expected = "capacity must be non-zero")]
fn zero_capacity() {
let _ = ArrayQueue::<i32>::new(0);
}
#[test]
fn len_empty_full() {
let q = ArrayQueue::new(2);
assert_eq!(q.len(), 0);
assert!(q.is_empty());
assert!(!q.is_full());
q.push(()).unwrap();
assert_eq!(q.len(), 1);
assert!(!q.is_empty());
assert!(!q.is_full());
q.push(()).unwrap();
assert_eq!(q.len(), 2);
assert!(!q.is_empty());
assert!(q.is_full());
q.pop().unwrap();
assert_eq!(q.len(), 1);
assert!(!q.is_empty());
assert!(!q.is_full());
}
#[test]
fn len() {
#[cfg(miri)]
const COUNT: usize = 30;
#[cfg(not(miri))]
const COUNT: usize = 25_000;
#[cfg(miri)]
const CAP: usize = 40;
#[cfg(not(miri))]
const CAP: usize = 1000;
const ITERS: usize = CAP / 20;
let q = ArrayQueue::new(CAP);
assert_eq!(q.len(), 0);
for _ in 0..CAP / 10 {
for i in 0..ITERS {
q.push(i).unwrap();
assert_eq!(q.len(), i + 1);
}
for i in 0..ITERS {
q.pop().unwrap();
assert_eq!(q.len(), ITERS - i - 1);
}
}
assert_eq!(q.len(), 0);
for i in 0..CAP {
q.push(i).unwrap();
assert_eq!(q.len(), i + 1);
}
for _ in 0..CAP {
q.pop().unwrap();
}
assert_eq!(q.len(), 0);
scope(|scope| {
scope.spawn(|_| {
for i in 0..COUNT {
loop {
if let Some(x) = q.pop() {
assert_eq!(x, i);
break;
}
}
let len = q.len();
assert!(len <= CAP);
}
});
scope.spawn(|_| {
for i in 0..COUNT {
while q.push(i).is_err() {}
let len = q.len();
assert!(len <= CAP);
}
});
})
.unwrap();
assert_eq!(q.len(), 0);
}
#[test]
fn spsc() {
#[cfg(miri)]
const COUNT: usize = 50;
#[cfg(not(miri))]
const COUNT: usize = 100_000;
let q = ArrayQueue::new(3);
scope(|scope| {
scope.spawn(|_| {
for i in 0..COUNT {
loop {
if let Some(x) = q.pop() {
assert_eq!(x, i);
break;
}
}
}
assert!(q.pop().is_none());
});
scope.spawn(|_| {
for i in 0..COUNT {
while q.push(i).is_err() {}
}
});
})
.unwrap();
}
#[test]
fn spsc_ring_buffer() {
#[cfg(miri)]
const COUNT: usize = 50;
#[cfg(not(miri))]
const COUNT: usize = 100_000;
let t = AtomicUsize::new(1);
let q = ArrayQueue::<usize>::new(3);
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
scope(|scope| {
scope.spawn(|_| loop {
match t.load(Ordering::SeqCst) {
0 if q.is_empty() => break,
_ => {
while let Some(n) = q.pop() {
v[n].fetch_add(1, Ordering::SeqCst);
}
}
}
});
scope.spawn(|_| {
for i in 0..COUNT {
if let Some(n) = q.force_push(i) {
v[n].fetch_add(1, Ordering::SeqCst);
}
}
t.fetch_sub(1, Ordering::SeqCst);
});
})
.unwrap();
for c in v {
assert_eq!(c.load(Ordering::SeqCst), 1);
}
}
#[test]
fn mpmc() {
#[cfg(miri)]
const COUNT: usize = 50;
#[cfg(not(miri))]
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let q = ArrayQueue::<usize>::new(3);
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
scope(|scope| {
for _ in 0..THREADS {
scope.spawn(|_| {
for _ in 0..COUNT {
let n = loop {
if let Some(x) = q.pop() {
break x;
}
};
v[n].fetch_add(1, Ordering::SeqCst);
}
});
}
for _ in 0..THREADS {
scope.spawn(|_| {
for i in 0..COUNT {
while q.push(i).is_err() {}
}
});
}
})
.unwrap();
for c in v {
assert_eq!(c.load(Ordering::SeqCst), THREADS);
}
}
#[test]
fn mpmc_ring_buffer() {
#[cfg(miri)]
const COUNT: usize = 50;
#[cfg(not(miri))]
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let t = AtomicUsize::new(THREADS);
let q = ArrayQueue::<usize>::new(3);
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
scope(|scope| {
for _ in 0..THREADS {
scope.spawn(|_| loop {
match t.load(Ordering::SeqCst) {
0 if q.is_empty() => break,
_ => {
while let Some(n) = q.pop() {
v[n].fetch_add(1, Ordering::SeqCst);
}
}
}
});
}
for _ in 0..THREADS {
scope.spawn(|_| {
for i in 0..COUNT {
if let Some(n) = q.force_push(i) {
v[n].fetch_add(1, Ordering::SeqCst);
}
}
t.fetch_sub(1, Ordering::SeqCst);
});
}
})
.unwrap();
for c in v {
assert_eq!(c.load(Ordering::SeqCst), THREADS);
}
}
#[test]
fn drops() {
let runs: usize = if cfg!(miri) { 3 } else { 100 };
let steps: usize = if cfg!(miri) { 50 } else { 10_000 };
let additional: usize = if cfg!(miri) { 10 } else { 50 };
static DROPS: AtomicUsize = AtomicUsize::new(0);
#[derive(Debug, PartialEq)]
struct DropCounter;
impl Drop for DropCounter {
fn drop(&mut self) {
DROPS.fetch_add(1, Ordering::SeqCst);
}
}
let mut rng = thread_rng();
for _ in 0..runs {
let steps = rng.gen_range(0..steps);
let additional = rng.gen_range(0..additional);
DROPS.store(0, Ordering::SeqCst);
let q = ArrayQueue::new(50);
scope(|scope| {
scope.spawn(|_| {
for _ in 0..steps {
while q.pop().is_none() {}
}
});
scope.spawn(|_| {
for _ in 0..steps {
while q.push(DropCounter).is_err() {
DROPS.fetch_sub(1, Ordering::SeqCst);
}
}
});
})
.unwrap();
for _ in 0..additional {
q.push(DropCounter).unwrap();
}
assert_eq!(DROPS.load(Ordering::SeqCst), steps);
drop(q);
assert_eq!(DROPS.load(Ordering::SeqCst), steps + additional);
}
}
#[test]
fn linearizable() {
#[cfg(miri)]
const COUNT: usize = 100;
#[cfg(not(miri))]
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let q = ArrayQueue::new(THREADS);
scope(|scope| {
for _ in 0..THREADS / 2 {
scope.spawn(|_| {
for _ in 0..COUNT {
while q.push(0).is_err() {}
q.pop().unwrap();
}
});
scope.spawn(|_| {
for _ in 0..COUNT {
if q.force_push(0).is_none() {
q.pop().unwrap();
}
}
});
}
})
.unwrap();
}
#[test]
fn into_iter() {
let q = ArrayQueue::new(100);
for i in 0..100 {
q.push(i).unwrap();
}
for (i, j) in q.into_iter().enumerate() {
assert_eq!(i, j);
}
}

View File

@@ -0,0 +1,210 @@
use std::sync::atomic::{AtomicUsize, Ordering};
use crossbeam_queue::SegQueue;
use crossbeam_utils::thread::scope;
use rand::{thread_rng, Rng};
#[test]
fn smoke() {
let q = SegQueue::new();
q.push(7);
assert_eq!(q.pop(), Some(7));
q.push(8);
assert_eq!(q.pop(), Some(8));
assert!(q.pop().is_none());
}
#[test]
fn len_empty_full() {
let q = SegQueue::new();
assert_eq!(q.len(), 0);
assert!(q.is_empty());
q.push(());
assert_eq!(q.len(), 1);
assert!(!q.is_empty());
q.pop().unwrap();
assert_eq!(q.len(), 0);
assert!(q.is_empty());
}
#[test]
fn len() {
let q = SegQueue::new();
assert_eq!(q.len(), 0);
for i in 0..50 {
q.push(i);
assert_eq!(q.len(), i + 1);
}
for i in 0..50 {
q.pop().unwrap();
assert_eq!(q.len(), 50 - i - 1);
}
assert_eq!(q.len(), 0);
}
#[test]
fn spsc() {
#[cfg(miri)]
const COUNT: usize = 100;
#[cfg(not(miri))]
const COUNT: usize = 100_000;
let q = SegQueue::new();
scope(|scope| {
scope.spawn(|_| {
for i in 0..COUNT {
loop {
if let Some(x) = q.pop() {
assert_eq!(x, i);
break;
}
}
}
assert!(q.pop().is_none());
});
scope.spawn(|_| {
for i in 0..COUNT {
q.push(i);
}
});
})
.unwrap();
}
#[test]
fn mpmc() {
#[cfg(miri)]
const COUNT: usize = 50;
#[cfg(not(miri))]
const COUNT: usize = 25_000;
const THREADS: usize = 4;
let q = SegQueue::<usize>::new();
let v = (0..COUNT).map(|_| AtomicUsize::new(0)).collect::<Vec<_>>();
scope(|scope| {
for _ in 0..THREADS {
scope.spawn(|_| {
for _ in 0..COUNT {
let n = loop {
if let Some(x) = q.pop() {
break x;
}
};
v[n].fetch_add(1, Ordering::SeqCst);
}
});
}
for _ in 0..THREADS {
scope.spawn(|_| {
for i in 0..COUNT {
q.push(i);
}
});
}
})
.unwrap();
for c in v {
assert_eq!(c.load(Ordering::SeqCst), THREADS);
}
}
#[test]
fn drops() {
let runs: usize = if cfg!(miri) { 5 } else { 100 };
let steps: usize = if cfg!(miri) { 50 } else { 10_000 };
let additional: usize = if cfg!(miri) { 100 } else { 1_000 };
static DROPS: AtomicUsize = AtomicUsize::new(0);
#[derive(Debug, PartialEq)]
struct DropCounter;
impl Drop for DropCounter {
fn drop(&mut self) {
DROPS.fetch_add(1, Ordering::SeqCst);
}
}
let mut rng = thread_rng();
for _ in 0..runs {
let steps = rng.gen_range(0..steps);
let additional = rng.gen_range(0..additional);
DROPS.store(0, Ordering::SeqCst);
let q = SegQueue::new();
scope(|scope| {
scope.spawn(|_| {
for _ in 0..steps {
while q.pop().is_none() {}
}
});
scope.spawn(|_| {
for _ in 0..steps {
q.push(DropCounter);
}
});
})
.unwrap();
for _ in 0..additional {
q.push(DropCounter);
}
assert_eq!(DROPS.load(Ordering::SeqCst), steps);
drop(q);
assert_eq!(DROPS.load(Ordering::SeqCst), steps + additional);
}
}
#[test]
fn into_iter() {
let q = SegQueue::new();
for i in 0..100 {
q.push(i);
}
for (i, j) in q.into_iter().enumerate() {
assert_eq!(i, j);
}
}
#[test]
fn into_iter_drop() {
let q = SegQueue::new();
for i in 0..100 {
q.push(i);
}
for (i, j) in q.into_iter().enumerate().take(50) {
assert_eq!(i, j);
}
}
// If `Block` is created on the stack, the array of slots will multiply this `BigStruct` and
// probably overflow the thread stack. It's now directly created on the heap to avoid this.
#[test]
fn stack_overflow() {
const N: usize = 32_768;
struct BigStruct {
_data: [u8; N],
}
let q = SegQueue::new();
q.push(BigStruct { _data: [0u8; N] });
for _data in q.into_iter() {}
}