Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

1
vendor/indexmap/.cargo-checksum.json vendored Normal file
View File

@@ -0,0 +1 @@
{"files":{"Cargo.lock":"1bf0f548cfb3a1a0ec7032c63df62f469d531b6535951a4327bf0d3960f5919b","Cargo.toml":"28e0d18a8dd2b95f6d29cfc7bd64422f7a14f5e1b1a3ee47f964a670087bb036","LICENSE-APACHE":"a60eea817514531668d7e00765731449fe14d059d3249e0bc93b36de45f759f2","LICENSE-MIT":"ecc269ef87fd38a1d98e30bfac9ba964a9dbd9315c3770fed98d4d7cb5882055","README.md":"732583852f9bbea9c82701394ddaca19f68ae4986300a11187fe539e1b57f8f5","RELEASES.md":"95f60b24b38caa1e735334ce5b4cf43f60c9097685a230587f38bd4e49d9b7e6","benches/bench.rs":"21a5cd6f025ed2ef7bd4a8a08db330449e117228a406c14991e56a37589ee558","benches/faststring.rs":"109761adf3e9ad558f5022361d041fe821d8750284a5c6e8ab710f82877894de","src/arbitrary.rs":"068713b1e8e762dbe9e4d19d555e77c17e59408335a40f4777d6100340605655","src/borsh.rs":"66a6bca84297fa9afa5324fe63c2ed0ff70e02bd1f44af2f879be7868ac85e87","src/lib.rs":"e5161f20460d85c2467bee77bd178116c67ea843f4c7bcfa7fc55d765cbcb3d1","src/macros.rs":"3f173a3cdbed13d06eb4db5f143dab1f9861039915994e10390c2cb894891301","src/map.rs":"d1f97ab6d9104c10001a3324329cb02e2906c13d2b1462d37467658f54e39440","src/map/core.rs":"14e11cd8bc785e4ae2eb524704e10182cb6ebbd17e12f430a216983846353cb9","src/map/core/entry.rs":"6ce12ba164cddd72e8de9ff0c7131465fa69bc2bcbe01e4aea478ccf33f481c2","src/map/core/extract.rs":"f937d88e1a49db286b4020679b275d1184699665de41f9161f7485b9fc90998a","src/map/core/raw_entry_v1.rs":"5fd06b3e4bbd8a5e636a98e2e2dfc037a34ea5ad2dc40ad4e5d26f80a0dd345c","src/map/iter.rs":"01a8fb31b5103c8779b2d7f3d42bcadfe751dc9fa50b0191713177a4538c5012","src/map/mutable.rs":"d35a5dd5c4ac1b15111ac5da49971e08e7b21a4e7032679821fdf2cb13d7f1a4","src/map/serde_seq.rs":"25e7e38467477adf045958d24eb719ac155a381a32f754368124708cc66d5567","src/map/slice.rs":"dc3a80cdc34c96d36b9126f4fe3758b977d3103a2eac63fa54ffcfd7f5914928","src/map/tests.rs":"a46cbd29b2a0b104d8825c1727ea9fd4ae41e6b410bc0a5c44537f9c2eeee39a","src/rayon/map.rs":"de90ac3a107618dc7cfe966ae470b26b85e78a19b97e68fc41f71bf6af3f4496","src/rayon/mod.rs":"da256bc6ce16bd7aee261b60e27fcc15cb20fd400ff022aade7a8ab9f0033482","src/rayon/set.rs":"e72dba6752cb25d34aec6994c6c3920638e6a8811811c7ff4850b8be8e35d6d2","src/serde.rs":"7055abe4c2a3e9d8a0c205b0ec75759ee2f9edca46d8f63b42ec98c175a06929","src/set.rs":"28e9ddd53c4aa382ff92df40f73e062f6a4b3851498fb7fc392f13153c9acdc0","src/set/iter.rs":"c51fff3636b11c9a686542a4eb0e892476782a1c9384cee83a4b93ab26fc6e99","src/set/mutable.rs":"b402e0d9f221754a3192b6657d19302e4130d33216fc557ff505775d121ecdf1","src/set/slice.rs":"7d17cc582aa940617057b916b50518fc7671d5d7c2ab6bdeaf7bcfab4838de17","src/set/tests.rs":"9c64101fb9be53dc212a446b099db2f5757a97c991449b126e4fbdc6cf89cec2","src/sval.rs":"30474f4a6cd820ff348d7a28017226152171ca7921f90a10faf7301429c46abf","src/util.rs":"a0e512cf0bc5ccdeff5a64629da2cd976d7f6586194cc6901c118bc8b6287132","tests/equivalent_trait.rs":"efe9393069e3cfc893d2c9c0343679979578e437fdb98a10baefeced027ba310","tests/macros_full_path.rs":"c33c86d7341581fdd08e2e6375a4afca507fa603540c54a3b9e51c4cd011cd71","tests/quick.rs":"2b06823186694cd1c0446c757ae916d3b12b6b51a43c54eeb7ef76ce45f16e4c","tests/tests.rs":"f6dbeeb0e2950402b0e66ac52bf74c9e4197d3c5d9c0dde64a7998a2ef74d327"},"package":"4b0f83760fb341a774ed326568e19f5a863af4a952def8c39f9ab92fd95b88e5"}

253
vendor/indexmap/Cargo.lock generated vendored Normal file
View File

@@ -0,0 +1,253 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "arbitrary"
version = "1.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c3d036a3c4ab069c7b410a2ce876bd74808d2d0888a82667669f8e783a898bf1"
[[package]]
name = "borsh"
version = "1.5.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ad8646f98db542e39fc66e68a20b2144f6a732636df7c2354e74645faaa433ce"
dependencies = [
"cfg_aliases",
]
[[package]]
name = "cfg-if"
version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2fd1289c04a9ea8cb22300a459a72a385d7c73d3259e2ed7dcb2af674838cfa9"
[[package]]
name = "cfg_aliases"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613afe47fcd5fac7ccf1db93babcb082c5994d996f20b8b159f2ad1658eb5724"
[[package]]
name = "crossbeam-deque"
version = "0.8.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9dd111b7b7f7d55b72c0a6ae361660ee5853c9af73f70c3c2ef6858b950e2e51"
dependencies = [
"crossbeam-epoch",
"crossbeam-utils",
]
[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-utils"
version = "0.8.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d0a5c400df2834b80a4c3327b3aad3a4c4cd4de0629063962b03235697506a28"
[[package]]
name = "either"
version = "1.15.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "48c757948c5ede0e46177b7add2e67155f70e33c07fea8284df6576da70b3719"
[[package]]
name = "equivalent"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "877a4ace8713b0bcf2a4e7eec82529c029f1d0619886d18145fea96c3ffe5c0f"
[[package]]
name = "fastrand"
version = "2.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37909eebbb50d72f9059c3b6d82c0463f2ff062c9e95845c43a6c9c0355411be"
[[package]]
name = "fnv"
version = "1.0.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3f9eec918d3f24069decb9af1554cad7c880e2da24a9afd88aca000531ab82c1"
[[package]]
name = "getrandom"
version = "0.2.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "335ff9f135e4384c8150d6f27c6daed433577f86b4750418338c01a1a2528592"
dependencies = [
"cfg-if",
"libc",
"wasi",
]
[[package]]
name = "hashbrown"
version = "0.15.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9229cfe53dfd69f0609a49f65461bd93001ea1ef889cd5529dd176593f5338a1"
[[package]]
name = "indexmap"
version = "2.11.4"
dependencies = [
"arbitrary",
"borsh",
"equivalent",
"fastrand",
"fnv",
"hashbrown",
"itertools",
"quickcheck",
"rayon",
"serde",
"serde_core",
"sval",
]
[[package]]
name = "itertools"
version = "0.14.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2b192c782037fadd9cfa75548310488aabdbf3d2da73885b31bd0abd03351285"
dependencies = [
"either",
]
[[package]]
name = "libc"
version = "0.2.175"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a82ae493e598baaea5209805c49bbf2ea7de956d50d7da0da1164f9c6d28543"
[[package]]
name = "proc-macro2"
version = "1.0.101"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "89ae43fd86e4158d6db51ad8e2b80f313af9cc74f5c0e03ccb87de09998732de"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quickcheck"
version = "1.0.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "588f6378e4dd99458b60ec275b4477add41ce4fa9f64dcba6f15adccb19b50d6"
dependencies = [
"rand",
]
[[package]]
name = "quote"
version = "1.0.40"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1885c039570dc00dcb4ff087a89e185fd56bae234ddc7f056a945bf36467248d"
dependencies = [
"proc-macro2",
]
[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
"rand_core",
]
[[package]]
name = "rand_core"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c"
dependencies = [
"getrandom",
]
[[package]]
name = "rayon"
version = "1.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "368f01d005bf8fd9b1206fb6fa653e6c4a81ceb1466406b81792d87c5677a58f"
dependencies = [
"either",
"rayon-core",
]
[[package]]
name = "rayon-core"
version = "1.13.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22e18b0f0062d30d4230b2e85ff77fdfe4326feb054b9783a3460d8435c8ab91"
dependencies = [
"crossbeam-deque",
"crossbeam-utils",
]
[[package]]
name = "serde"
version = "1.0.225"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fd6c24dee235d0da097043389623fb913daddf92c76e9f5a1db88607a0bcbd1d"
dependencies = [
"serde_core",
"serde_derive",
]
[[package]]
name = "serde_core"
version = "1.0.225"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "659356f9a0cb1e529b24c01e43ad2bdf520ec4ceaf83047b83ddcc2251f96383"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.225"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ea936adf78b1f766949a4977b91d2f5595825bd6ec079aa9543ad2685fc4516"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "sval"
version = "2.14.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7cc9739f56c5d0c44a5ed45473ec868af02eb896af8c05f616673a31e1d1bb09"
[[package]]
name = "syn"
version = "2.0.106"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ede7c438028d4436d71104916910f5bb611972c5cfd7f89b8300a8186e6fada6"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "unicode-ident"
version = "1.0.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f63a545481291138910575129486daeaf8ac54aee4387fe7906919f7830c7d9d"
[[package]]
name = "wasi"
version = "0.11.1+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ccf3ec651a847eb01de73ccad15eb7d99f80485de043efb2f370cd654f4ea44b"

159
vendor/indexmap/Cargo.toml vendored Normal file
View File

@@ -0,0 +1,159 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies.
#
# If you are reading this file be aware that the original Cargo.toml
# will likely look very different (and much more reasonable).
# See Cargo.toml.orig for the original contents.
[package]
edition = "2021"
rust-version = "1.63"
name = "indexmap"
version = "2.11.4"
build = false
autolib = false
autobins = false
autoexamples = false
autotests = false
autobenches = false
description = "A hash table with consistent order and fast iteration."
documentation = "https://docs.rs/indexmap/"
readme = "README.md"
keywords = [
"hashmap",
"no_std",
]
categories = [
"data-structures",
"no-std",
]
license = "Apache-2.0 OR MIT"
repository = "https://github.com/indexmap-rs/indexmap"
[package.metadata.release]
allow-branch = ["main"]
sign-tag = true
tag-name = "{{version}}"
[package.metadata.docs.rs]
features = [
"arbitrary",
"quickcheck",
"serde",
"borsh",
"rayon",
"sval",
]
rustdoc-args = [
"--cfg",
"docsrs",
]
[features]
default = ["std"]
serde = [
"dep:serde_core",
"dep:serde",
]
std = []
test_debug = []
[lib]
name = "indexmap"
path = "src/lib.rs"
bench = false
[[test]]
name = "equivalent_trait"
path = "tests/equivalent_trait.rs"
[[test]]
name = "macros_full_path"
path = "tests/macros_full_path.rs"
[[test]]
name = "quick"
path = "tests/quick.rs"
[[test]]
name = "tests"
path = "tests/tests.rs"
[[bench]]
name = "bench"
path = "benches/bench.rs"
[[bench]]
name = "faststring"
path = "benches/faststring.rs"
[dependencies.arbitrary]
version = "1.0"
optional = true
default-features = false
[dependencies.borsh]
version = "1.2"
optional = true
default-features = false
[dependencies.equivalent]
version = "1.0"
default-features = false
[dependencies.hashbrown]
version = ">= 0.15.0, < 0.17.0"
default-features = false
[dependencies.quickcheck]
version = "1.0"
optional = true
default-features = false
[dependencies.rayon]
version = "1.9"
optional = true
[dependencies.serde_core]
version = "1.0.220"
optional = true
default-features = false
[dependencies.sval]
version = "2"
optional = true
default-features = false
[dev-dependencies.fastrand]
version = "2"
default-features = false
[dev-dependencies.fnv]
version = "1.0"
[dev-dependencies.itertools]
version = "0.14"
[dev-dependencies.quickcheck]
version = "1.0"
default-features = false
[dev-dependencies.serde]
version = "1.0"
features = ["derive"]
default-features = false
[target."cfg(any())".dependencies.serde]
version = "1.0.220"
optional = true
default-features = false
[lints.clippy]
style = "allow"
[profile.bench]
debug = 2

201
vendor/indexmap/LICENSE-APACHE vendored Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
vendor/indexmap/LICENSE-MIT vendored Normal file
View File

@@ -0,0 +1,25 @@
Copyright (c) 2016--2017
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

59
vendor/indexmap/README.md vendored Normal file
View File

@@ -0,0 +1,59 @@
# indexmap
[![build status](https://github.com/indexmap-rs/indexmap/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/indexmap-rs/indexmap/actions)
[![crates.io](https://img.shields.io/crates/v/indexmap.svg)](https://crates.io/crates/indexmap)
[![docs](https://docs.rs/indexmap/badge.svg)](https://docs.rs/indexmap)
[![rustc](https://img.shields.io/badge/rust-1.63%2B-orange.svg)](https://img.shields.io/badge/rust-1.63%2B-orange.svg)
A pure-Rust hash table which preserves (in a limited sense) insertion order.
This crate implements compact map and set data-structures,
where the iteration order of the keys is independent from their hash or
value. It preserves insertion order (except after removals), and it
allows lookup of entries by either hash table key or numerical index.
Note: this crate was originally released under the name `ordermap`,
but it was renamed to `indexmap` to better reflect its features.
The [`ordermap`](https://crates.io/crates/ordermap) crate now exists
as a wrapper over `indexmap` with stronger ordering properties.
# Background
This was inspired by Python 3.6's new dict implementation (which remembers
the insertion order and is fast to iterate, and is compact in memory).
Some of those features were translated to Rust, and some were not. The result
was indexmap, a hash table that has following properties:
- Order is **independent of hash function** and hash values of keys.
- Fast to iterate.
- Indexed in compact space.
- Preserves insertion order **as long** as you don't call `.remove()`,
`.swap_remove()`, or other methods that explicitly change order.
The alternate `.shift_remove()` does preserve relative order.
- Uses hashbrown for the inner table, just like Rust's libstd `HashMap` does.
## Performance
`IndexMap` derives a couple of performance facts directly from how it is constructed,
which is roughly:
> A raw hash table of key-value indices, and a vector of key-value pairs.
- Iteration is very fast since it is on the dense key-values.
- Removal is fast since it moves memory areas only in the table,
and uses a single swap in the vector.
- Lookup is fast-ish because the initial 7-bit hash lookup uses SIMD, and indices are
densely stored. Lookup also is slow-ish since the actual key-value pairs are stored
separately. (Visible when cpu caches size is limiting.)
- In practice, `IndexMap` has been tested out as the hashmap in rustc in [PR45282] and
the performance was roughly on par across the whole workload.
- If you want the properties of `IndexMap`, or its strongest performance points
fits your workload, it might be the best hash table implementation.
[PR45282]: https://github.com/rust-lang/rust/pull/45282
# Recent Changes
See [RELEASES.md](https://github.com/indexmap-rs/indexmap/blob/main/RELEASES.md).

593
vendor/indexmap/RELEASES.md vendored Normal file
View File

@@ -0,0 +1,593 @@
# Releases
## 2.11.4 (2025-09-18)
- Updated the `hashbrown` dependency to a range allowing 0.15 or 0.16.
## 2.11.3 (2025-09-15)
- Make the minimum `serde` version only apply when "serde" is enabled.
## 2.11.2 (2025-09-15)
- Switched the "serde" feature to depend on `serde_core`, improving build
parallelism in cases where other dependents have enabled "serde/derive".
## 2.11.1 (2025-09-08)
- Added a `get_key_value_mut` method to `IndexMap`.
- Removed the unnecessary `Ord` bound on `insert_sorted_by` methods.
## 2.11.0 (2025-08-22)
- Added `insert_sorted_by` and `insert_sorted_by_key` methods to `IndexMap`,
`IndexSet`, and `VacantEntry`, like customizable versions of `insert_sorted`.
- Added `is_sorted`, `is_sorted_by`, and `is_sorted_by_key` methods to
`IndexMap` and `IndexSet`, as well as their `Slice` counterparts.
- Added `sort_by_key` and `sort_unstable_by_key` methods to `IndexMap` and
`IndexSet`, as well as parallel counterparts.
- Added `replace_index` methods to `IndexMap`, `IndexSet`, and `VacantEntry`
to replace the key (or set value) at a given index.
- Added optional `sval` serialization support.
## 2.10.0 (2025-06-26)
- Added `extract_if` methods to `IndexMap` and `IndexSet`, similar to the
methods for `HashMap` and `HashSet` with ranges like `Vec::extract_if`.
- Added more `#[track_caller]` annotations to functions that may panic.
## 2.9.0 (2025-04-04)
- Added a `get_disjoint_mut` method to `IndexMap`, matching Rust 1.86's
`HashMap` method.
- Added a `get_disjoint_indices_mut` method to `IndexMap` and `map::Slice`,
matching Rust 1.86's `get_disjoint_mut` method on slices.
- Deprecated the `borsh` feature in favor of their own `indexmap` feature,
solving a cyclic dependency that occurred via `borsh-derive`.
## 2.8.0 (2025-03-10)
- Added `indexmap_with_default!` and `indexset_with_default!` to be used with
alternative hashers, especially when using the crate without `std`.
- Implemented `PartialEq` between each `Slice` and `[]`/arrays.
- Removed the internal `rustc-rayon` feature and dependency.
## 2.7.1 (2025-01-19)
- Added `#[track_caller]` to functions that may panic.
- Improved memory reservation for `insert_entry`.
## 2.7.0 (2024-11-30)
- Added methods `Entry::insert_entry` and `VacantEntry::insert_entry`, returning
an `OccupiedEntry` after insertion.
## 2.6.0 (2024-10-01)
- Implemented `Clone` for `map::IntoIter` and `set::IntoIter`.
- Updated the `hashbrown` dependency to version 0.15.
## 2.5.0 (2024-08-30)
- Added an `insert_before` method to `IndexMap` and `IndexSet`, as an
alternative to `shift_insert` with different behavior on existing entries.
- Added `first_entry` and `last_entry` methods to `IndexMap`.
- Added `From` implementations between `IndexedEntry` and `OccupiedEntry`.
## 2.4.0 (2024-08-13)
- Added methods `IndexMap::append` and `IndexSet::append`, moving all items from
one map or set into another, and leaving the original capacity for reuse.
## 2.3.0 (2024-07-31)
- Added trait `MutableEntryKey` for opt-in mutable access to map entry keys.
- Added method `MutableKeys::iter_mut2` for opt-in mutable iteration of map
keys and values.
## 2.2.6 (2024-03-22)
- Added trait `MutableValues` for opt-in mutable access to set values.
## 2.2.5 (2024-02-29)
- Added optional `borsh` serialization support.
## 2.2.4 (2024-02-28)
- Added an `insert_sorted` method on `IndexMap`, `IndexSet`, and `VacantEntry`.
- Avoid hashing for lookups in single-entry maps.
- Limit preallocated memory in `serde` deserializers.
## 2.2.3 (2024-02-11)
- Added `move_index` and `swap_indices` methods to `IndexedEntry`,
`OccupiedEntry`, and `RawOccupiedEntryMut`, functioning like the existing
methods on `IndexMap`.
- Added `shift_insert` methods on `VacantEntry` and `RawVacantEntryMut`, as
well as `shift_insert_hashed_nocheck` on the latter, to insert the new entry
at a particular index.
- Added `shift_insert` methods on `IndexMap` and `IndexSet` to insert a new
entry at a particular index, or else move an existing entry there.
## 2.2.2 (2024-01-31)
- Added indexing methods to raw entries: `RawEntryBuilder::from_hash_full`,
`RawEntryBuilder::index_from_hash`, and `RawEntryMut::index`.
## 2.2.1 (2024-01-28)
- Corrected the signature of `RawOccupiedEntryMut::into_key(self) -> &'a mut K`,
This a breaking change from 2.2.0, but that version was published for less
than a day and has now been yanked.
## 2.2.0 (2024-01-28)
- The new `IndexMap::get_index_entry` method finds an entry by its index for
in-place manipulation.
- The `Keys` iterator now implements `Index<usize>` for quick access to the
entry's key, compared to indexing the map to get the value.
- The new `IndexMap::splice` and `IndexSet::splice` methods will drain the
given range as an iterator, and then replace that range with entries from
an input iterator.
- The new trait `RawEntryApiV1` offers opt-in access to a raw entry API for
`IndexMap`, corresponding to the unstable API on `HashSet` as of Rust 1.75.
- Many `IndexMap` and `IndexSet` methods have relaxed their type constraints,
e.g. removing `K: Hash` on methods that don't actually need to hash.
- Removal methods `remove`, `remove_entry`, and `take` are now deprecated
in favor of their `shift_` or `swap_` prefixed variants, which are more
explicit about their effect on the index and order of remaining items.
The deprecated methods will remain to guide drop-in replacements from
`HashMap` and `HashSet` toward the prefixed methods.
## 2.1.0 (2023-10-31)
- Empty slices can now be created with `map::Slice::{new, new_mut}` and
`set::Slice::new`. In addition, `Slice::new`, `len`, and `is_empty` are
now `const` functions on both types.
- `IndexMap`, `IndexSet`, and their respective `Slice`s all have binary
search methods for sorted data: map `binary_search_keys` and set
`binary_search` for plain comparison, `binary_search_by` for custom
comparators, `binary_search_by_key` for key extraction, and
`partition_point` for boolean conditions.
## 2.0.2 (2023-09-29)
- The `hashbrown` dependency has been updated to version 0.14.1 to
complete the support for Rust 1.63.
## 2.0.1 (2023-09-27)
- **MSRV**: Rust 1.63.0 is now supported as well, pending publication of
`hashbrown`'s relaxed MSRV (or use cargo `--ignore-rust-version`).
## 2.0.0 (2023-06-23)
- **MSRV**: Rust 1.64.0 or later is now required.
- The `"std"` feature is no longer auto-detected. It is included in the
default feature set, or else can be enabled like any other Cargo feature.
- The `"serde-1"` feature has been removed, leaving just the optional
`"serde"` dependency to be enabled like a feature itself.
- `IndexMap::get_index_mut` now returns `Option<(&K, &mut V)>`, changing
the key part from `&mut K` to `&K`. There is also a new alternative
`MutableKeys::get_index_mut2` to access the former behavior.
- The new `map::Slice<K, V>` and `set::Slice<T>` offer a linear view of maps
and sets, behaving a lot like normal `[(K, V)]` and `[T]` slices. Notably,
comparison traits like `Eq` only consider items in order, rather than hash
lookups, and slices even implement `Hash`.
- `IndexMap` and `IndexSet` now have `sort_by_cached_key` and
`par_sort_by_cached_key` methods which perform stable sorts in place
using a key extraction function.
- `IndexMap` and `IndexSet` now have `reserve_exact`, `try_reserve`, and
`try_reserve_exact` methods that correspond to the same methods on `Vec`.
However, exactness only applies to the direct capacity for items, while the
raw hash table still follows its own rules for capacity and load factor.
- The `Equivalent` trait is now re-exported from the `equivalent` crate,
intended as a common base to allow types to work with multiple map types.
- The `hashbrown` dependency has been updated to version 0.14.
- The `serde_seq` module has been moved from the crate root to below the
`map` module.
## 1.9.3 (2023-03-24)
- Bump the `rustc-rayon` dependency, for compiler use only.
## 1.9.2 (2022-11-17)
- `IndexMap` and `IndexSet` both implement `arbitrary::Arbitrary<'_>` and
`quickcheck::Arbitrary` if those optional dependency features are enabled.
## 1.9.1 (2022-06-21)
- The MSRV now allows Rust 1.56.0 as well. However, currently `hashbrown`
0.12.1 requires 1.56.1, so users on 1.56.0 should downgrade that to 0.12.0
until there is a later published version relaxing its requirement.
## 1.9.0 (2022-06-16)
- **MSRV**: Rust 1.56.1 or later is now required.
- The `hashbrown` dependency has been updated to version 0.12.
- `IterMut` and `ValuesMut` now implement `Debug`.
- The new `IndexMap::shrink_to` and `IndexSet::shrink_to` methods shrink
the capacity with a lower bound.
- The new `IndexMap::move_index` and `IndexSet::move_index` methods change
the position of an item from one index to another, shifting the items
between to accommodate the move.
## 1.8.2 (2022-05-27)
- Bump the `rustc-rayon` dependency, for compiler use only.
## 1.8.1 (2022-03-29)
- The new `IndexSet::replace_full` will return the index of the item along
with the replaced value, if any, by @zakcutner in PR [222].
[222]: https://github.com/indexmap-rs/indexmap/pull/222
## 1.8.0 (2022-01-07)
- The new `IndexMap::into_keys` and `IndexMap::into_values` will consume
the map into keys or values, respectively, matching Rust 1.54's `HashMap`
methods, by @taiki-e in PR [195].
- More of the iterator types implement `Debug`, `ExactSizeIterator`, and
`FusedIterator`, by @cuviper in PR [196].
- `IndexMap` and `IndexSet` now implement rayon's `ParallelDrainRange`,
by @cuviper in PR [197].
- `IndexMap::with_hasher` and `IndexSet::with_hasher` are now `const`
functions, allowing static maps and sets, by @mwillsey in PR [203].
- `IndexMap` and `IndexSet` now implement `From` for arrays, matching
Rust 1.56's implementation for `HashMap`, by @rouge8 in PR [205].
- `IndexMap` and `IndexSet` now have methods `sort_unstable_keys`,
`sort_unstable_by`, `sorted_unstable_by`, and `par_*` equivalents,
which sort in-place without preserving the order of equal items, by
@bhgomes in PR [211].
[195]: https://github.com/indexmap-rs/indexmap/pull/195
[196]: https://github.com/indexmap-rs/indexmap/pull/196
[197]: https://github.com/indexmap-rs/indexmap/pull/197
[203]: https://github.com/indexmap-rs/indexmap/pull/203
[205]: https://github.com/indexmap-rs/indexmap/pull/205
[211]: https://github.com/indexmap-rs/indexmap/pull/211
## 1.7.0 (2021-06-29)
- **MSRV**: Rust 1.49 or later is now required.
- The `hashbrown` dependency has been updated to version 0.11.
## 1.6.2 (2021-03-05)
- Fixed to match `std` behavior, `OccupiedEntry::key` now references the
existing key in the map instead of the lookup key, by @cuviper in PR [170].
- The new `Entry::or_insert_with_key` matches Rust 1.50's `Entry` method,
passing `&K` to the callback to create a value, by @cuviper in PR [175].
[170]: https://github.com/indexmap-rs/indexmap/pull/170
[175]: https://github.com/indexmap-rs/indexmap/pull/175
## 1.6.1 (2020-12-14)
- The new `serde_seq` module implements `IndexMap` serialization as a
sequence to ensure order is preserved, by @cuviper in PR [158].
- New methods on maps and sets work like the `Vec`/slice methods by the same name:
`truncate`, `split_off`, `first`, `first_mut`, `last`, `last_mut`, and
`swap_indices`, by @cuviper in PR [160].
[158]: https://github.com/indexmap-rs/indexmap/pull/158
[160]: https://github.com/indexmap-rs/indexmap/pull/160
## 1.6.0 (2020-09-05)
- **MSRV**: Rust 1.36 or later is now required.
- The `hashbrown` dependency has been updated to version 0.9.
## 1.5.2 (2020-09-01)
- The new "std" feature will force the use of `std` for users that explicitly
want the default `S = RandomState`, bypassing the autodetection added in 1.3.0,
by @cuviper in PR [145].
[145]: https://github.com/indexmap-rs/indexmap/pull/145
## 1.5.1 (2020-08-07)
- Values can now be indexed by their `usize` position by @cuviper in PR [132].
- Some of the generic bounds have been relaxed to match `std` by @cuviper in PR [141].
- `drain` now accepts any `R: RangeBounds<usize>` by @cuviper in PR [142].
[132]: https://github.com/indexmap-rs/indexmap/pull/132
[141]: https://github.com/indexmap-rs/indexmap/pull/141
[142]: https://github.com/indexmap-rs/indexmap/pull/142
## 1.5.0 (2020-07-17)
- **MSRV**: Rust 1.32 or later is now required.
- The inner hash table is now based on `hashbrown` by @cuviper in PR [131].
This also completes the method `reserve` and adds `shrink_to_fit`.
- Add new methods `get_key_value`, `remove_entry`, `swap_remove_entry`,
and `shift_remove_entry`, by @cuviper in PR [136]
- `Clone::clone_from` reuses allocations by @cuviper in PR [125]
- Add new method `reverse` by @linclelinkpart5 in PR [128]
[125]: https://github.com/indexmap-rs/indexmap/pull/125
[128]: https://github.com/indexmap-rs/indexmap/pull/128
[131]: https://github.com/indexmap-rs/indexmap/pull/131
[136]: https://github.com/indexmap-rs/indexmap/pull/136
## 1.4.0 (2020-06-01)
- Add new method `get_index_of` by @Thermatrix in PR [115] and [120]
- Fix build script rebuild-if-changed configuration to use "build.rs";
fixes issue [123]. Fix by @cuviper.
- Dev-dependencies (rand and quickcheck) have been updated. The crate's tests
now run using Rust 1.32 or later (MSRV for building the crate has not changed).
by @kjeremy and @bluss
[123]: https://github.com/indexmap-rs/indexmap/issues/123
[115]: https://github.com/indexmap-rs/indexmap/pull/115
[120]: https://github.com/indexmap-rs/indexmap/pull/120
## 1.3.2 (2020-02-05)
- Maintenance update to regenerate the published `Cargo.toml`.
## 1.3.1 (2020-01-15)
- Maintenance update for formatting and `autocfg` 1.0.
## 1.3.0 (2019-10-18)
- The deprecation messages in the previous version have been removed.
(The methods have not otherwise changed.) Docs for removal methods have been
improved.
- From Rust 1.36, this crate supports being built **without std**, requiring
`alloc` instead. This is enabled automatically when it is detected that
`std` is not available. There is no crate feature to enable/disable to
trigger this. The new build-dep `autocfg` enables this.
## 1.2.0 (2019-09-08)
- Plain `.remove()` now has a deprecation message, it informs the user
about picking one of the removal functions `swap_remove` and `shift_remove`
which have different performance and order semantics.
Plain `.remove()` will not be removed, the warning message and method
will remain until further.
- Add new method `shift_remove` for order preserving removal on the map,
and `shift_take` for the corresponding operation on the set.
- Add methods `swap_remove`, `swap_remove_entry` to `Entry`.
- Fix indexset/indexmap to support full paths, like `indexmap::indexmap!()`
- Internal improvements: fix warnings, deprecations and style lints
## 1.1.0 (2019-08-20)
- Added optional feature `"rayon"` that adds parallel iterator support
to `IndexMap` and `IndexSet` using Rayon. This includes all the regular
iterators in parallel versions, and parallel sort.
- Implemented `Clone` for `map::{Iter, Keys, Values}` and
`set::{Difference, Intersection, Iter, SymmetricDifference, Union}`
- Implemented `Debug` for `map::{Entry, IntoIter, Iter, Keys, Values}` and
`set::{Difference, Intersection, IntoIter, Iter, SymmetricDifference, Union}`
- Serde trait `IntoDeserializer` are implemented for `IndexMap` and `IndexSet`.
- Minimum Rust version requirement increased to Rust 1.30 for development builds.
## 1.0.2 (2018-10-22)
- The new methods `IndexMap::insert_full` and `IndexSet::insert_full` are
both like `insert` with the index included in the return value.
- The new method `Entry::and_modify` can be used to modify occupied
entries, matching the new methods of `std` maps in Rust 1.26.
- The new method `Entry::or_default` inserts a default value in unoccupied
entries, matching the new methods of `std` maps in Rust 1.28.
## 1.0.1 (2018-03-24)
- Document Rust version policy for the crate (see rustdoc)
## 1.0.0 (2018-03-11)
- This is the 1.0 release for `indexmap`! (the crate and datastructure
formerly known as “ordermap”)
- `OccupiedEntry::insert` changed its signature, to use `&mut self` for
the method receiver, matching the equivalent method for a standard
`HashMap`. Thanks to @dtolnay for finding this bug.
- The deprecated old names from ordermap were removed: `OrderMap`,
`OrderSet`, `ordermap!{}`, `orderset!{}`. Use the new `IndexMap`
etc names instead.
## 0.4.1 (2018-02-14)
- Renamed crate to `indexmap`; the `ordermap` crate is now deprecated
and the types `OrderMap/Set` now have a deprecation notice.
## 0.4.0 (2018-02-02)
- This is the last release series for this `ordermap` under that name,
because the crate is **going to be renamed** to `indexmap` (with types
`IndexMap`, `IndexSet`) and no change in functionality!
- The map and its associated structs moved into the `map` submodule of the
crate, so that the map and set are symmetric
+ The iterators, `Entry` and other structs are now under `ordermap::map::`
- Internally refactored `OrderMap<K, V, S>` so that all the main algorithms
(insertion, lookup, removal etc) that don't use the `S` parameter (the
hasher) are compiled without depending on `S`, which reduces generics bloat.
- `Entry<K, V>` no longer has a type parameter `S`, which is just like
the standard `HashMap`'s entry.
- Minimum Rust version requirement increased to Rust 1.18
## 0.3.5 (2018-01-14)
- Documentation improvements
## 0.3.4 (2018-01-04)
- The `.retain()` methods for `OrderMap` and `OrderSet` now
traverse the elements in order, and the retained elements **keep their order**
- Added new methods `.sort_by()`, `.sort_keys()` to `OrderMap` and
`.sort_by()`, `.sort()` to `OrderSet`. These methods allow you to
sort the maps in place efficiently.
## 0.3.3 (2017-12-28)
- Document insertion behaviour better by @lucab
- Updated dependences (no feature changes) by @ignatenkobrain
## 0.3.2 (2017-11-25)
- Add `OrderSet` by @cuviper!
- `OrderMap::drain` is now (too) a double ended iterator.
## 0.3.1 (2017-11-19)
- In all ordermap iterators, forward the `collect` method to the underlying
iterator as well.
- Add crates.io categories.
## 0.3.0 (2017-10-07)
- The methods `get_pair`, `get_pair_index` were both replaced by
`get_full` (and the same for the mutable case).
- Method `swap_remove_pair` replaced by `swap_remove_full`.
- Add trait `MutableKeys` for opt-in mutable key access. Mutable key access
is only possible through the methods of this extension trait.
- Add new trait `Equivalent` for key equivalence. This extends the
`Borrow` trait mechanism for `OrderMap::get` in a backwards compatible
way, just some minor type inference related issues may become apparent.
See [#10] for more information.
- Implement `Extend<(&K, &V)>` by @xfix.
[#10]: https://github.com/indexmap-rs/indexmap/pull/10
## 0.2.13 (2017-09-30)
- Fix deserialization to support custom hashers by @Techcable.
- Add methods `.index()` on the entry types by @garro95.
## 0.2.12 (2017-09-11)
- Add methods `.with_hasher()`, `.hasher()`.
## 0.2.11 (2017-08-29)
- Support `ExactSizeIterator` for the iterators. By @Binero.
- Use `Box<[Pos]>` internally, saving a word in the `OrderMap` struct.
- Serde support, with crate feature `"serde-1"`. By @xfix.
## 0.2.10 (2017-04-29)
- Add iterator `.drain(..)` by @stevej.
## 0.2.9 (2017-03-26)
- Add method `.is_empty()` by @overvenus.
- Implement `PartialEq, Eq` by @overvenus.
- Add method `.sorted_by()`.
## 0.2.8 (2017-03-01)
- Add iterators `.values()` and `.values_mut()`.
- Fix compatibility with 32-bit platforms.
## 0.2.7 (2016-11-02)
- Add `.retain()`.
## 0.2.6 (2016-11-02)
- Add `OccupiedEntry::remove_entry` and other minor entry methods,
so that it now has all the features of `HashMap`'s entries.
## 0.2.5 (2016-10-31)
- Improved `.pop()` slightly.
## 0.2.4 (2016-10-22)
- Improved performance of `.insert()` ([#3]) by @pczarn.
[#3]: https://github.com/indexmap-rs/indexmap/pull/3
## 0.2.3 (2016-10-11)
- Generalize `Entry` for now, so that it works on hashmaps with non-default
hasher. However, there's a lingering compat issue since libstd `HashMap`
does not parameterize its entries by the hasher (`S` typarm).
- Special case some iterator methods like `.nth()`.
## 0.2.2 (2016-10-02)
- Disable the verbose `Debug` impl by default.
## 0.2.1 (2016-10-02)
- Fix doc links and clarify docs.
## 0.2.0 (2016-10-01)
- Add more `HashMap` methods & compat with its API.
- Experimental support for `.entry()` (the simplest parts of the API).
- Add `.reserve()` (placeholder impl).
- Add `.remove()` as synonym for `.swap_remove()`.
- Changed `.insert()` to swap value if the entry already exists, and
return `Option`.
- Experimental support as an *indexed* hash map! Added methods
`.get_index()`, `.get_index_mut()`, `.swap_remove_index()`,
`.get_pair_index()`, `.get_pair_index_mut()`.
## 0.1.2 (2016-09-19)
- Implement the 32/32 split idea for `Pos` which improves cache utilization
and lookup performance.
## 0.1.1 (2016-09-16)
- Initial release.

750
vendor/indexmap/benches/bench.rs vendored Normal file
View File

@@ -0,0 +1,750 @@
#![feature(test)]
extern crate test;
use fnv::FnvHasher;
use std::hash::BuildHasherDefault;
use std::hash::Hash;
use std::sync::LazyLock;
type FnvBuilder = BuildHasherDefault<FnvHasher>;
use test::black_box;
use test::Bencher;
use indexmap::IndexMap;
use std::collections::HashMap;
/// Use a consistently seeded Rng for benchmark stability
fn small_rng() -> fastrand::Rng {
let seed = u64::from_le_bytes(*b"indexmap");
fastrand::Rng::with_seed(seed)
}
#[bench]
fn new_hashmap(b: &mut Bencher) {
b.iter(|| HashMap::<String, String>::new());
}
#[bench]
fn new_indexmap(b: &mut Bencher) {
b.iter(|| IndexMap::<String, String>::new());
}
#[bench]
fn with_capacity_10e5_hashmap(b: &mut Bencher) {
b.iter(|| HashMap::<String, String>::with_capacity(10_000));
}
#[bench]
fn with_capacity_10e5_indexmap(b: &mut Bencher) {
b.iter(|| IndexMap::<String, String>::with_capacity(10_000));
}
#[bench]
fn insert_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_indexmap_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_hashmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn insert_indexmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn insert_hashmap_str_10_000(b: &mut Bencher) {
let c = 10_000;
let ss = Vec::from_iter((0..c).map(|x| x.to_string()));
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for key in &ss {
map.insert(&key[..], ());
}
map
});
}
#[bench]
fn insert_indexmap_str_10_000(b: &mut Bencher) {
let c = 10_000;
let ss = Vec::from_iter((0..c).map(|x| x.to_string()));
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for key in &ss {
map.insert(&key[..], ());
}
map
});
}
#[bench]
fn insert_hashmap_int_bigvalue_10_000(b: &mut Bencher) {
let c = 10_000;
let value = [0u64; 10];
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for i in 0..c {
map.insert(i, value);
}
map
});
}
#[bench]
fn insert_indexmap_int_bigvalue_10_000(b: &mut Bencher) {
let c = 10_000;
let value = [0u64; 10];
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for i in 0..c {
map.insert(i, value);
}
map
});
}
#[bench]
fn insert_hashmap_100_000(b: &mut Bencher) {
let c = 100_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_indexmap_100_000(b: &mut Bencher) {
let c = 100_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_hashmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn insert_indexmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x, ());
}
map
});
}
#[bench]
fn entry_hashmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.entry(x).or_insert(());
}
map
});
}
#[bench]
fn entry_indexmap_150(b: &mut Bencher) {
let c = 150;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.entry(x).or_insert(());
}
map
});
}
#[bench]
fn iter_sum_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| map.keys().sum::<usize>());
}
#[bench]
fn iter_sum_indexmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| map.keys().sum::<usize>());
}
#[bench]
fn iter_black_box_hashmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| {
for &key in map.keys() {
black_box(key);
}
});
}
#[bench]
fn iter_black_box_indexmap_10_000(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let len = c - c / 10;
for x in 0..len {
map.insert(x, ());
}
assert_eq!(map.len(), len);
b.iter(|| {
for &key in map.keys() {
black_box(key);
}
});
}
fn shuffled_keys<I>(iter: I) -> Vec<I::Item>
where
I: IntoIterator,
{
let mut v = Vec::from_iter(iter);
let mut rng = small_rng();
rng.shuffle(&mut v);
v
}
#[bench]
fn lookup_hashmap_10_000_exist(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in 5000..c {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_hashmap_10_000_noexist(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in c..15000 {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_indexmap_10_000_exist(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in 5000..c {
found += map.get(&key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_indexmap_10_000_noexist(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key, 1);
}
b.iter(|| {
let mut found = 0;
for key in c..15000 {
found += map.get(&key).is_some() as i32;
}
found
});
}
// number of items to look up
const LOOKUP_MAP_SIZE: u32 = 100_000_u32;
const LOOKUP_SAMPLE_SIZE: u32 = 5000;
const SORT_MAP_SIZE: usize = 10_000;
// use (lazy) statics so that comparison benchmarks use the exact same inputs
static KEYS: LazyLock<Vec<u32>> = LazyLock::new(|| shuffled_keys(0..LOOKUP_MAP_SIZE));
static HMAP_100K: LazyLock<HashMap<u32, u32>> = LazyLock::new(|| {
let c = LOOKUP_MAP_SIZE;
let mut map = HashMap::with_capacity(c as usize);
let keys = &*KEYS;
for &key in keys {
map.insert(key, key);
}
map
});
static IMAP_100K: LazyLock<IndexMap<u32, u32>> = LazyLock::new(|| {
let c = LOOKUP_MAP_SIZE;
let mut map = IndexMap::with_capacity(c as usize);
let keys = &*KEYS;
for &key in keys {
map.insert(key, key);
}
map
});
static IMAP_SORT_U32: LazyLock<IndexMap<u32, u32>> = LazyLock::new(|| {
let mut map = IndexMap::with_capacity(SORT_MAP_SIZE);
for &key in &KEYS[..SORT_MAP_SIZE] {
map.insert(key, key);
}
map
});
static IMAP_SORT_S: LazyLock<IndexMap<String, String>> = LazyLock::new(|| {
let mut map = IndexMap::with_capacity(SORT_MAP_SIZE);
for &key in &KEYS[..SORT_MAP_SIZE] {
map.insert(format!("{:^16x}", &key), String::new());
}
map
});
#[bench]
fn lookup_hashmap_100_000_multi(b: &mut Bencher) {
let map = &*HMAP_100K;
b.iter(|| {
let mut found = 0;
for key in 0..LOOKUP_SAMPLE_SIZE {
found += map.get(&key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_indexmap_100_000_multi(b: &mut Bencher) {
let map = &*IMAP_100K;
b.iter(|| {
let mut found = 0;
for key in 0..LOOKUP_SAMPLE_SIZE {
found += map.get(&key).is_some() as u32;
}
found
});
}
// inorder: Test looking up keys in the same order as they were inserted
#[bench]
fn lookup_hashmap_100_000_inorder_multi(b: &mut Bencher) {
let map = &*HMAP_100K;
let keys = &*KEYS;
b.iter(|| {
let mut found = 0;
for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] {
found += map.get(key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_indexmap_100_000_inorder_multi(b: &mut Bencher) {
let map = &*IMAP_100K;
let keys = &*KEYS;
b.iter(|| {
let mut found = 0;
for key in &keys[0..LOOKUP_SAMPLE_SIZE as usize] {
found += map.get(key).is_some() as u32;
}
found
});
}
#[bench]
fn lookup_hashmap_100_000_single(b: &mut Bencher) {
let map = &*HMAP_100K;
let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle();
b.iter(|| {
let key = iter.next().unwrap();
map.get(&key).is_some()
});
}
#[bench]
fn lookup_indexmap_100_000_single(b: &mut Bencher) {
let map = &*IMAP_100K;
let mut iter = (0..LOOKUP_MAP_SIZE + LOOKUP_SAMPLE_SIZE).cycle();
b.iter(|| {
let key = iter.next().unwrap();
map.get(&key).is_some()
});
}
const GROW_SIZE: usize = 100_000;
type GrowKey = u32;
// Test grow/resize without preallocation
#[bench]
fn grow_fnv_hashmap_100_000(b: &mut Bencher) {
b.iter(|| {
let mut map: HashMap<_, _, FnvBuilder> = HashMap::default();
for x in 0..GROW_SIZE {
map.insert(x as GrowKey, x as GrowKey);
}
map
});
}
#[bench]
fn grow_fnv_indexmap_100_000(b: &mut Bencher) {
b.iter(|| {
let mut map: IndexMap<_, _, FnvBuilder> = IndexMap::default();
for x in 0..GROW_SIZE {
map.insert(x as GrowKey, x as GrowKey);
}
map
});
}
const MERGE: u64 = 10_000;
#[bench]
fn hashmap_merge_simple(b: &mut Bencher) {
let first_map: HashMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: HashMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
b.iter(|| {
let mut merged = first_map.clone();
merged.extend(second_map.iter().map(|(&k, &v)| (k, v)));
merged
});
}
#[bench]
fn hashmap_merge_shuffle(b: &mut Bencher) {
let first_map: HashMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: HashMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
let mut v = Vec::new();
let mut rng = small_rng();
b.iter(|| {
let mut merged = first_map.clone();
v.extend(second_map.iter().map(|(&k, &v)| (k, v)));
rng.shuffle(&mut v);
merged.extend(v.drain(..));
merged
});
}
#[bench]
fn indexmap_merge_simple(b: &mut Bencher) {
let first_map: IndexMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: IndexMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
b.iter(|| {
let mut merged = first_map.clone();
merged.extend(second_map.iter().map(|(&k, &v)| (k, v)));
merged
});
}
#[bench]
fn indexmap_merge_shuffle(b: &mut Bencher) {
let first_map: IndexMap<u64, _> = (0..MERGE).map(|i| (i, ())).collect();
let second_map: IndexMap<u64, _> = (MERGE..MERGE * 2).map(|i| (i, ())).collect();
let mut v = Vec::new();
let mut rng = small_rng();
b.iter(|| {
let mut merged = first_map.clone();
v.extend(second_map.iter().map(|(&k, &v)| (k, v)));
rng.shuffle(&mut v);
merged.extend(v.drain(..));
merged
});
}
#[bench]
fn swap_remove_indexmap_100_000(b: &mut Bencher) {
let map = IMAP_100K.clone();
let mut keys = Vec::from_iter(map.keys().copied());
let mut rng = small_rng();
rng.shuffle(&mut keys);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.swap_remove(key);
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn shift_remove_indexmap_100_000_few(b: &mut Bencher) {
let map = IMAP_100K.clone();
let mut keys = Vec::from_iter(map.keys().copied());
let mut rng = small_rng();
rng.shuffle(&mut keys);
keys.truncate(50);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.shift_remove(key);
}
assert_eq!(map.len(), IMAP_100K.len() - keys.len());
map
});
}
#[bench]
fn shift_remove_indexmap_2_000_full(b: &mut Bencher) {
let mut keys = KEYS[..2_000].to_vec();
let mut map = IndexMap::with_capacity(keys.len());
for &key in &keys {
map.insert(key, key);
}
let mut rng = small_rng();
rng.shuffle(&mut keys);
b.iter(|| {
let mut map = map.clone();
for key in &keys {
map.shift_remove(key);
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn pop_indexmap_100_000(b: &mut Bencher) {
let map = IMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
while !map.is_empty() {
map.pop();
}
assert_eq!(map.len(), 0);
map
});
}
#[bench]
fn few_retain_indexmap_100_000(b: &mut Bencher) {
let map = IMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 7 == 0);
map
});
}
#[bench]
fn few_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 7 == 0);
map
});
}
#[bench]
fn half_retain_indexmap_100_000(b: &mut Bencher) {
let map = IMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 2 == 0);
map
});
}
#[bench]
fn half_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 2 == 0);
map
});
}
#[bench]
fn many_retain_indexmap_100_000(b: &mut Bencher) {
let map = IMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 100 != 0);
map
});
}
#[bench]
fn many_retain_hashmap_100_000(b: &mut Bencher) {
let map = HMAP_100K.clone();
b.iter(|| {
let mut map = map.clone();
map.retain(|k, _| *k % 100 != 0);
map
});
}
// simple sort impl for comparison
pub fn simple_sort<K: Ord + Hash, V>(m: &mut IndexMap<K, V>) {
let mut ordered: Vec<_> = m.drain(..).collect();
ordered.sort_by(|left, right| left.0.cmp(&right.0));
m.extend(ordered);
}
#[bench]
fn indexmap_sort_s(b: &mut Bencher) {
let map = IMAP_SORT_S.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
map.sort_keys();
map
});
}
#[bench]
fn indexmap_simple_sort_s(b: &mut Bencher) {
let map = IMAP_SORT_S.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
simple_sort(&mut map);
map
});
}
#[bench]
fn indexmap_sort_u32(b: &mut Bencher) {
let map = IMAP_SORT_U32.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
map.sort_keys();
map
});
}
#[bench]
fn indexmap_simple_sort_u32(b: &mut Bencher) {
let map = IMAP_SORT_U32.clone();
// there's a map clone there, but it's still useful to profile this
b.iter(|| {
let mut map = map.clone();
simple_sort(&mut map);
map
});
}
// measure the fixed overhead of cloning in sort benchmarks
#[bench]
fn indexmap_clone_for_sort_s(b: &mut Bencher) {
let map = IMAP_SORT_S.clone();
b.iter(|| map.clone());
}
#[bench]
fn indexmap_clone_for_sort_u32(b: &mut Bencher) {
let map = IMAP_SORT_U32.clone();
b.iter(|| map.clone());
}

181
vendor/indexmap/benches/faststring.rs vendored Normal file
View File

@@ -0,0 +1,181 @@
#![feature(test)]
extern crate test;
use test::Bencher;
use indexmap::IndexMap;
use std::collections::HashMap;
use std::hash::{Hash, Hasher};
use std::borrow::Borrow;
use std::ops::Deref;
/// Use a consistently seeded Rng for benchmark stability
fn small_rng() -> fastrand::Rng {
let seed = u64::from_le_bytes(*b"indexmap");
fastrand::Rng::with_seed(seed)
}
#[derive(PartialEq, Eq, Copy, Clone)]
#[repr(transparent)]
pub struct OneShot<T: ?Sized>(pub T);
impl Hash for OneShot<str> {
fn hash<H: Hasher>(&self, h: &mut H) {
h.write(self.0.as_bytes())
}
}
impl<'a, S> From<&'a S> for &'a OneShot<str>
where
S: AsRef<str>,
{
fn from(s: &'a S) -> Self {
let s: &str = s.as_ref();
unsafe { &*(s as *const str as *const OneShot<str>) }
}
}
impl Hash for OneShot<String> {
fn hash<H: Hasher>(&self, h: &mut H) {
h.write(self.0.as_bytes())
}
}
impl Borrow<OneShot<str>> for OneShot<String> {
fn borrow(&self) -> &OneShot<str> {
<&OneShot<str>>::from(&self.0)
}
}
impl<T> Deref for OneShot<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
fn shuffled_keys<I>(iter: I) -> Vec<I::Item>
where
I: IntoIterator,
{
let mut v = Vec::from_iter(iter);
let mut rng = small_rng();
rng.shuffle(&mut v);
v
}
#[bench]
fn insert_hashmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn insert_hashmap_string_oneshot_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = HashMap::with_capacity(c);
for x in 0..c {
map.insert(OneShot(x.to_string()), ());
}
map
});
}
#[bench]
fn insert_indexmap_string_10_000(b: &mut Bencher) {
let c = 10_000;
b.iter(|| {
let mut map = IndexMap::with_capacity(c);
for x in 0..c {
map.insert(x.to_string(), ());
}
map
});
}
#[bench]
fn lookup_hashmap_10_000_exist_string(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key.to_string(), 1);
}
let lookups = (5000..c).map(|x| x.to_string()).collect::<Vec<_>>();
b.iter(|| {
let mut found = 0;
for key in &lookups {
found += map.get(key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_hashmap_10_000_exist_string_oneshot(b: &mut Bencher) {
let c = 10_000;
let mut map = HashMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(OneShot(key.to_string()), 1);
}
let lookups = (5000..c)
.map(|x| OneShot(x.to_string()))
.collect::<Vec<_>>();
b.iter(|| {
let mut found = 0;
for key in &lookups {
found += map.get(key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_indexmap_10_000_exist_string(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(key.to_string(), 1);
}
let lookups = (5000..c).map(|x| x.to_string()).collect::<Vec<_>>();
b.iter(|| {
let mut found = 0;
for key in &lookups {
found += map.get(key).is_some() as i32;
}
found
});
}
#[bench]
fn lookup_indexmap_10_000_exist_string_oneshot(b: &mut Bencher) {
let c = 10_000;
let mut map = IndexMap::with_capacity(c);
let keys = shuffled_keys(0..c);
for &key in &keys {
map.insert(OneShot(key.to_string()), 1);
}
let lookups = (5000..c)
.map(|x| OneShot(x.to_string()))
.collect::<Vec<_>>();
b.iter(|| {
let mut found = 0;
for key in &lookups {
found += map.get(key).is_some() as i32;
}
found
});
}

77
vendor/indexmap/src/arbitrary.rs vendored Normal file
View File

@@ -0,0 +1,77 @@
#[cfg(feature = "arbitrary")]
#[cfg_attr(docsrs, doc(cfg(feature = "arbitrary")))]
mod impl_arbitrary {
use crate::{IndexMap, IndexSet};
use arbitrary::{Arbitrary, Result, Unstructured};
use core::hash::{BuildHasher, Hash};
impl<'a, K, V, S> Arbitrary<'a> for IndexMap<K, V, S>
where
K: Arbitrary<'a> + Hash + Eq,
V: Arbitrary<'a>,
S: BuildHasher + Default,
{
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
u.arbitrary_iter()?.collect()
}
fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
u.arbitrary_take_rest_iter()?.collect()
}
}
impl<'a, T, S> Arbitrary<'a> for IndexSet<T, S>
where
T: Arbitrary<'a> + Hash + Eq,
S: BuildHasher + Default,
{
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
u.arbitrary_iter()?.collect()
}
fn arbitrary_take_rest(u: Unstructured<'a>) -> Result<Self> {
u.arbitrary_take_rest_iter()?.collect()
}
}
}
#[cfg(feature = "quickcheck")]
#[cfg_attr(docsrs, doc(cfg(feature = "quickcheck")))]
mod impl_quickcheck {
use crate::{IndexMap, IndexSet};
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::hash::{BuildHasher, Hash};
use quickcheck::{Arbitrary, Gen};
impl<K, V, S> Arbitrary for IndexMap<K, V, S>
where
K: Arbitrary + Hash + Eq,
V: Arbitrary,
S: BuildHasher + Default + Clone + 'static,
{
fn arbitrary(g: &mut Gen) -> Self {
Self::from_iter(Vec::arbitrary(g))
}
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
let vec = Vec::from_iter(self.clone());
Box::new(vec.shrink().map(Self::from_iter))
}
}
impl<T, S> Arbitrary for IndexSet<T, S>
where
T: Arbitrary + Hash + Eq,
S: BuildHasher + Default + Clone + 'static,
{
fn arbitrary(g: &mut Gen) -> Self {
Self::from_iter(Vec::arbitrary(g))
}
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
let vec = Vec::from_iter(self.clone());
Box::new(vec.shrink().map(Self::from_iter))
}
}
}

128
vendor/indexmap/src/borsh.rs vendored Normal file
View File

@@ -0,0 +1,128 @@
#![cfg_attr(docsrs, doc(cfg(feature = "borsh")))]
use alloc::vec::Vec;
use core::hash::BuildHasher;
use core::hash::Hash;
use core::mem::size_of;
use borsh::error::ERROR_ZST_FORBIDDEN;
use borsh::io::{Error, ErrorKind, Read, Result, Write};
use borsh::{BorshDeserialize, BorshSerialize};
use crate::map::IndexMap;
use crate::set::IndexSet;
// NOTE: the real `#[deprecated]` attribute doesn't work for trait implementations,
// but we can get close by mimicking the message style for documentation.
/// <div class="stab deprecated"><span class="emoji">👎</span><span>Deprecated: use borsh's <code>indexmap</code> feature instead.</span></div>
impl<K, V, S> BorshSerialize for IndexMap<K, V, S>
where
K: BorshSerialize,
V: BorshSerialize,
{
#[inline]
fn serialize<W: Write>(&self, writer: &mut W) -> Result<()> {
check_zst::<K>()?;
let iterator = self.iter();
u32::try_from(iterator.len())
.map_err(|_| ErrorKind::InvalidData)?
.serialize(writer)?;
for (key, value) in iterator {
key.serialize(writer)?;
value.serialize(writer)?;
}
Ok(())
}
}
/// <div class="stab deprecated"><span class="emoji">👎</span><span>Deprecated: use borsh's <code>indexmap</code> feature instead.</span></div>
impl<K, V, S> BorshDeserialize for IndexMap<K, V, S>
where
K: BorshDeserialize + Eq + Hash,
V: BorshDeserialize,
S: BuildHasher + Default,
{
#[inline]
fn deserialize_reader<R: Read>(reader: &mut R) -> Result<Self> {
check_zst::<K>()?;
let vec = <Vec<(K, V)>>::deserialize_reader(reader)?;
Ok(vec.into_iter().collect::<IndexMap<K, V, S>>())
}
}
/// <div class="stab deprecated"><span class="emoji">👎</span><span>Deprecated: use borsh's <code>indexmap</code> feature instead.</span></div>
impl<T, S> BorshSerialize for IndexSet<T, S>
where
T: BorshSerialize,
{
#[inline]
fn serialize<W: Write>(&self, writer: &mut W) -> Result<()> {
check_zst::<T>()?;
let iterator = self.iter();
u32::try_from(iterator.len())
.map_err(|_| ErrorKind::InvalidData)?
.serialize(writer)?;
for item in iterator {
item.serialize(writer)?;
}
Ok(())
}
}
/// <div class="stab deprecated"><span class="emoji">👎</span><span>Deprecated: use borsh's <code>indexmap</code> feature instead.</span></div>
impl<T, S> BorshDeserialize for IndexSet<T, S>
where
T: BorshDeserialize + Eq + Hash,
S: BuildHasher + Default,
{
#[inline]
fn deserialize_reader<R: Read>(reader: &mut R) -> Result<Self> {
check_zst::<T>()?;
let vec = <Vec<T>>::deserialize_reader(reader)?;
Ok(vec.into_iter().collect::<IndexSet<T, S>>())
}
}
fn check_zst<T>() -> Result<()> {
if size_of::<T>() == 0 {
return Err(Error::new(ErrorKind::InvalidData, ERROR_ZST_FORBIDDEN));
}
Ok(())
}
#[cfg(test)]
mod borsh_tests {
use super::*;
#[test]
fn map_borsh_roundtrip() {
let original_map: IndexMap<i32, i32> = {
let mut map = IndexMap::new();
map.insert(1, 2);
map.insert(3, 4);
map.insert(5, 6);
map
};
let serialized_map = borsh::to_vec(&original_map).unwrap();
let deserialized_map: IndexMap<i32, i32> =
BorshDeserialize::try_from_slice(&serialized_map).unwrap();
assert_eq!(original_map, deserialized_map);
}
#[test]
fn set_borsh_roundtrip() {
let original_map: IndexSet<i32> = [1, 2, 3, 4, 5, 6].into_iter().collect();
let serialized_map = borsh::to_vec(&original_map).unwrap();
let deserialized_map: IndexSet<i32> =
BorshDeserialize::try_from_slice(&serialized_map).unwrap();
assert_eq!(original_map, deserialized_map);
}
}

290
vendor/indexmap/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,290 @@
// We *mostly* avoid unsafe code, but `Slice` allows it for DST casting.
#![deny(unsafe_code)]
#![warn(rust_2018_idioms)]
#![no_std]
//! [`IndexMap`] is a hash table where the iteration order of the key-value
//! pairs is independent of the hash values of the keys.
//!
//! [`IndexSet`] is a corresponding hash set using the same implementation and
//! with similar properties.
//!
//! ### Highlights
//!
//! [`IndexMap`] and [`IndexSet`] are drop-in compatible with the std `HashMap`
//! and `HashSet`, but they also have some features of note:
//!
//! - The ordering semantics (see their documentation for details)
//! - Sorting methods and the [`.pop()`][IndexMap::pop] methods.
//! - The [`Equivalent`] trait, which offers more flexible equality definitions
//! between borrowed and owned versions of keys.
//! - The [`MutableKeys`][map::MutableKeys] trait, which gives opt-in mutable
//! access to map keys, and [`MutableValues`][set::MutableValues] for sets.
//!
//! ### Feature Flags
//!
//! To reduce the amount of compiled code in the crate by default, certain
//! features are gated behind [feature flags]. These allow you to opt in to (or
//! out of) functionality. Below is a list of the features available in this
//! crate.
//!
//! * `std`: Enables features which require the Rust standard library. For more
//! information see the section on [`no_std`].
//! * `rayon`: Enables parallel iteration and other parallel methods.
//! * `serde`: Adds implementations for [`Serialize`] and [`Deserialize`]
//! to [`IndexMap`] and [`IndexSet`]. Alternative implementations for
//! (de)serializing [`IndexMap`] as an ordered sequence are available in the
//! [`map::serde_seq`] module.
//! * `arbitrary`: Adds implementations for the [`arbitrary::Arbitrary`] trait
//! to [`IndexMap`] and [`IndexSet`].
//! * `quickcheck`: Adds implementations for the [`quickcheck::Arbitrary`] trait
//! to [`IndexMap`] and [`IndexSet`].
//! * `borsh` (**deprecated**): Adds implementations for [`BorshSerialize`] and
//! [`BorshDeserialize`] to [`IndexMap`] and [`IndexSet`]. Due to a cyclic
//! dependency that arose between [`borsh`] and `indexmap`, `borsh v1.5.6`
//! added an `indexmap` feature that should be used instead of enabling the
//! feature here.
//!
//! _Note: only the `std` feature is enabled by default._
//!
//! [feature flags]: https://doc.rust-lang.org/cargo/reference/manifest.html#the-features-section
//! [`no_std`]: #no-standard-library-targets
//! [`Serialize`]: `::serde_core::Serialize`
//! [`Deserialize`]: `::serde_core::Deserialize`
//! [`BorshSerialize`]: `::borsh::BorshSerialize`
//! [`BorshDeserialize`]: `::borsh::BorshDeserialize`
//! [`borsh`]: `::borsh`
//! [`arbitrary::Arbitrary`]: `::arbitrary::Arbitrary`
//! [`quickcheck::Arbitrary`]: `::quickcheck::Arbitrary`
//!
//! ### Alternate Hashers
//!
//! [`IndexMap`] and [`IndexSet`] have a default hasher type
//! [`S = RandomState`][std::collections::hash_map::RandomState],
//! just like the standard `HashMap` and `HashSet`, which is resistant to
//! HashDoS attacks but not the most performant. Type aliases can make it easier
//! to use alternate hashers:
//!
//! ```
//! use fnv::FnvBuildHasher;
//! use indexmap::{IndexMap, IndexSet};
//!
//! type FnvIndexMap<K, V> = IndexMap<K, V, FnvBuildHasher>;
//! type FnvIndexSet<T> = IndexSet<T, FnvBuildHasher>;
//!
//! let std: IndexSet<i32> = (0..100).collect();
//! let fnv: FnvIndexSet<i32> = (0..100).collect();
//! assert_eq!(std, fnv);
//! ```
//!
//! ### Rust Version
//!
//! This version of indexmap requires Rust 1.63 or later.
//!
//! The indexmap 2.x release series will use a carefully considered version
//! upgrade policy, where in a later 2.x version, we will raise the minimum
//! required Rust version.
//!
//! ## No Standard Library Targets
//!
//! This crate supports being built without `std`, requiring `alloc` instead.
//! This is chosen by disabling the default "std" cargo feature, by adding
//! `default-features = false` to your dependency specification.
//!
//! - Creating maps and sets using [`new`][IndexMap::new] and
//! [`with_capacity`][IndexMap::with_capacity] is unavailable without `std`.
//! Use methods [`IndexMap::default`], [`with_hasher`][IndexMap::with_hasher],
//! [`with_capacity_and_hasher`][IndexMap::with_capacity_and_hasher] instead.
//! A no-std compatible hasher will be needed as well, for example
//! from the crate `twox-hash`.
//! - Macros [`indexmap!`] and [`indexset!`] are unavailable without `std`. Use
//! the macros [`indexmap_with_default!`] and [`indexset_with_default!`] instead.
#![cfg_attr(docsrs, feature(doc_cfg))]
extern crate alloc;
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
mod arbitrary;
#[macro_use]
mod macros;
#[cfg(feature = "borsh")]
mod borsh;
#[cfg(feature = "serde")]
mod serde;
#[cfg(feature = "sval")]
mod sval;
mod util;
pub mod map;
pub mod set;
// Placed after `map` and `set` so new `rayon` methods on the types
// are documented after the "normal" methods.
#[cfg(feature = "rayon")]
mod rayon;
pub use crate::map::IndexMap;
pub use crate::set::IndexSet;
pub use equivalent::Equivalent;
// shared private items
/// Hash value newtype. Not larger than usize, since anything larger
/// isn't used for selecting position anyway.
#[derive(Clone, Copy, Debug, PartialEq)]
struct HashValue(usize);
impl HashValue {
#[inline(always)]
fn get(self) -> u64 {
self.0 as u64
}
}
#[derive(Copy, Debug)]
struct Bucket<K, V> {
hash: HashValue,
key: K,
value: V,
}
impl<K, V> Clone for Bucket<K, V>
where
K: Clone,
V: Clone,
{
fn clone(&self) -> Self {
Bucket {
hash: self.hash,
key: self.key.clone(),
value: self.value.clone(),
}
}
fn clone_from(&mut self, other: &Self) {
self.hash = other.hash;
self.key.clone_from(&other.key);
self.value.clone_from(&other.value);
}
}
impl<K, V> Bucket<K, V> {
// field accessors -- used for `f` instead of closures in `.map(f)`
fn key_ref(&self) -> &K {
&self.key
}
fn value_ref(&self) -> &V {
&self.value
}
fn value_mut(&mut self) -> &mut V {
&mut self.value
}
fn key(self) -> K {
self.key
}
fn value(self) -> V {
self.value
}
fn key_value(self) -> (K, V) {
(self.key, self.value)
}
fn refs(&self) -> (&K, &V) {
(&self.key, &self.value)
}
fn ref_mut(&mut self) -> (&K, &mut V) {
(&self.key, &mut self.value)
}
fn muts(&mut self) -> (&mut K, &mut V) {
(&mut self.key, &mut self.value)
}
}
/// The error type for [`try_reserve`][IndexMap::try_reserve] methods.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct TryReserveError {
kind: TryReserveErrorKind,
}
#[derive(Clone, PartialEq, Eq, Debug)]
enum TryReserveErrorKind {
// The standard library's kind is currently opaque to us, otherwise we could unify this.
Std(alloc::collections::TryReserveError),
CapacityOverflow,
AllocError { layout: alloc::alloc::Layout },
}
// These are not `From` so we don't expose them in our public API.
impl TryReserveError {
fn from_alloc(error: alloc::collections::TryReserveError) -> Self {
Self {
kind: TryReserveErrorKind::Std(error),
}
}
fn from_hashbrown(error: hashbrown::TryReserveError) -> Self {
Self {
kind: match error {
hashbrown::TryReserveError::CapacityOverflow => {
TryReserveErrorKind::CapacityOverflow
}
hashbrown::TryReserveError::AllocError { layout } => {
TryReserveErrorKind::AllocError { layout }
}
},
}
}
}
impl core::fmt::Display for TryReserveError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let reason = match &self.kind {
TryReserveErrorKind::Std(e) => return core::fmt::Display::fmt(e, f),
TryReserveErrorKind::CapacityOverflow => {
" because the computed capacity exceeded the collection's maximum"
}
TryReserveErrorKind::AllocError { .. } => {
" because the memory allocator returned an error"
}
};
f.write_str("memory allocation failed")?;
f.write_str(reason)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for TryReserveError {}
// NOTE: This is copied from the slice module in the std lib.
/// The error type returned by [`get_disjoint_indices_mut`][`IndexMap::get_disjoint_indices_mut`].
///
/// It indicates one of two possible errors:
/// - An index is out-of-bounds.
/// - The same index appeared multiple times in the array.
// (or different but overlapping indices when ranges are provided)
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum GetDisjointMutError {
/// An index provided was out-of-bounds for the slice.
IndexOutOfBounds,
/// Two indices provided were overlapping.
OverlappingIndices,
}
impl core::fmt::Display for GetDisjointMutError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let msg = match self {
GetDisjointMutError::IndexOutOfBounds => "an index is out of bounds",
GetDisjointMutError::OverlappingIndices => "there were overlapping indices",
};
core::fmt::Display::fmt(msg, f)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for GetDisjointMutError {}

252
vendor/indexmap/src/macros.rs vendored Normal file
View File

@@ -0,0 +1,252 @@
/// Create an [`IndexMap`][crate::IndexMap] from a list of key-value pairs
/// and a [`BuildHasherDefault`][core::hash::BuildHasherDefault]-wrapped custom hasher.
///
/// ## Example
///
/// ```
/// use indexmap::indexmap_with_default;
/// use fnv::FnvHasher;
///
/// let map = indexmap_with_default!{
/// FnvHasher;
/// "a" => 1,
/// "b" => 2,
/// };
/// assert_eq!(map["a"], 1);
/// assert_eq!(map["b"], 2);
/// assert_eq!(map.get("c"), None);
///
/// // "a" is the first key
/// assert_eq!(map.keys().next(), Some(&"a"));
/// ```
#[macro_export]
macro_rules! indexmap_with_default {
($H:ty; $($key:expr => $value:expr,)+) => { $crate::indexmap_with_default!($H; $($key => $value),+) };
($H:ty; $($key:expr => $value:expr),*) => {{
let builder = ::core::hash::BuildHasherDefault::<$H>::default();
const CAP: usize = <[()]>::len(&[$({ stringify!($key); }),*]);
#[allow(unused_mut)]
// Specify your custom `H` (must implement Default + Hasher) as the hasher:
let mut map = $crate::IndexMap::with_capacity_and_hasher(CAP, builder);
$(
map.insert($key, $value);
)*
map
}};
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
#[macro_export]
/// Create an [`IndexMap`][crate::IndexMap] from a list of key-value pairs
///
/// ## Example
///
/// ```
/// use indexmap::indexmap;
///
/// let map = indexmap!{
/// "a" => 1,
/// "b" => 2,
/// };
/// assert_eq!(map["a"], 1);
/// assert_eq!(map["b"], 2);
/// assert_eq!(map.get("c"), None);
///
/// // "a" is the first key
/// assert_eq!(map.keys().next(), Some(&"a"));
/// ```
macro_rules! indexmap {
($($key:expr => $value:expr,)+) => { $crate::indexmap!($($key => $value),+) };
($($key:expr => $value:expr),*) => {
{
// Note: `stringify!($key)` is just here to consume the repetition,
// but we throw away that string literal during constant evaluation.
const CAP: usize = <[()]>::len(&[$({ stringify!($key); }),*]);
let mut map = $crate::IndexMap::with_capacity(CAP);
$(
map.insert($key, $value);
)*
map
}
};
}
/// Create an [`IndexSet`][crate::IndexSet] from a list of values
/// and a [`BuildHasherDefault`][core::hash::BuildHasherDefault]-wrapped custom hasher.
///
/// ## Example
///
/// ```
/// use indexmap::indexset_with_default;
/// use fnv::FnvHasher;
///
/// let set = indexset_with_default!{
/// FnvHasher;
/// "a",
/// "b",
/// };
/// assert!(set.contains("a"));
/// assert!(set.contains("b"));
/// assert!(!set.contains("c"));
///
/// // "a" is the first value
/// assert_eq!(set.iter().next(), Some(&"a"));
/// ```
#[macro_export]
macro_rules! indexset_with_default {
($H:ty; $($value:expr,)+) => { $crate::indexset_with_default!($H; $($value),+) };
($H:ty; $($value:expr),*) => {{
let builder = ::core::hash::BuildHasherDefault::<$H>::default();
const CAP: usize = <[()]>::len(&[$({ stringify!($value); }),*]);
#[allow(unused_mut)]
// Specify your custom `H` (must implement Default + Hash) as the hasher:
let mut set = $crate::IndexSet::with_capacity_and_hasher(CAP, builder);
$(
set.insert($value);
)*
set
}};
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
#[macro_export]
/// Create an [`IndexSet`][crate::IndexSet] from a list of values
///
/// ## Example
///
/// ```
/// use indexmap::indexset;
///
/// let set = indexset!{
/// "a",
/// "b",
/// };
/// assert!(set.contains("a"));
/// assert!(set.contains("b"));
/// assert!(!set.contains("c"));
///
/// // "a" is the first value
/// assert_eq!(set.iter().next(), Some(&"a"));
/// ```
macro_rules! indexset {
($($value:expr,)+) => { $crate::indexset!($($value),+) };
($($value:expr),*) => {
{
// Note: `stringify!($value)` is just here to consume the repetition,
// but we throw away that string literal during constant evaluation.
const CAP: usize = <[()]>::len(&[$({ stringify!($value); }),*]);
let mut set = $crate::IndexSet::with_capacity(CAP);
$(
set.insert($value);
)*
set
}
};
}
// generate all the Iterator methods by just forwarding to the underlying
// self.iter and mapping its element.
macro_rules! iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
// same mapping function for both options and iterators
($map_elt:expr) => {
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map($map_elt)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn count(self) -> usize {
self.iter.len()
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth(n).map($map_elt)
}
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
fn collect<C>(self) -> C
where
C: FromIterator<Self::Item>,
{
// NB: forwarding this directly to standard iterators will
// allow it to leverage unstable traits like `TrustedLen`.
self.iter.map($map_elt).collect()
}
};
}
macro_rules! double_ended_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
// same mapping function for both options and iterators
($map_elt:expr) => {
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map($map_elt)
}
fn nth_back(&mut self, n: usize) -> Option<Self::Item> {
self.iter.nth_back(n).map($map_elt)
}
};
}
// generate `ParallelIterator` methods by just forwarding to the underlying
// self.entries and mapping its elements.
#[cfg(feature = "rayon")]
macro_rules! parallel_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
($map_elt:expr) => {
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
self.entries
.into_par_iter()
.map($map_elt)
.drive_unindexed(consumer)
}
// NB: This allows indexed collection, e.g. directly into a `Vec`, but the
// underlying iterator must really be indexed. We should remove this if we
// start having tombstones that must be filtered out.
fn opt_len(&self) -> Option<usize> {
Some(self.entries.len())
}
};
}
// generate `IndexedParallelIterator` methods by just forwarding to the underlying
// self.entries and mapping its elements.
#[cfg(feature = "rayon")]
macro_rules! indexed_parallel_iterator_methods {
// $map_elt is the mapping function from the underlying iterator's element
($map_elt:expr) => {
fn drive<C>(self, consumer: C) -> C::Result
where
C: Consumer<Self::Item>,
{
self.entries.into_par_iter().map($map_elt).drive(consumer)
}
fn len(&self) -> usize {
self.entries.len()
}
fn with_producer<CB>(self, callback: CB) -> CB::Output
where
CB: ProducerCallback<Self::Item>,
{
self.entries
.into_par_iter()
.map($map_elt)
.with_producer(callback)
}
};
}

1858
vendor/indexmap/src/map.rs vendored Normal file

File diff suppressed because it is too large Load Diff

764
vendor/indexmap/src/map/core.rs vendored Normal file
View File

@@ -0,0 +1,764 @@
//! This is the core implementation that doesn't depend on the hasher at all.
//!
//! The methods of `IndexMapCore` don't use any Hash properties of K.
//!
//! It's cleaner to separate them out, then the compiler checks that we are not
//! using Hash at all in these methods.
//!
//! However, we should probably not let this show in the public API or docs.
mod entry;
mod extract;
pub mod raw_entry_v1;
use alloc::vec::{self, Vec};
use core::mem;
use core::ops::RangeBounds;
use hashbrown::hash_table;
use crate::util::simplify_range;
use crate::{Bucket, Equivalent, HashValue, TryReserveError};
type Indices = hash_table::HashTable<usize>;
type Entries<K, V> = Vec<Bucket<K, V>>;
pub use entry::{Entry, IndexedEntry, OccupiedEntry, VacantEntry};
pub(crate) use extract::ExtractCore;
/// Core of the map that does not depend on S
#[derive(Debug)]
pub(crate) struct IndexMapCore<K, V> {
/// indices mapping from the entry hash to its index.
indices: Indices,
/// entries is a dense vec maintaining entry order.
entries: Entries<K, V>,
}
/// Mutable references to the parts of an `IndexMapCore`.
///
/// When using `HashTable::find_entry`, that takes hold of `&mut indices`, so we have to borrow our
/// `&mut entries` separately, and there's no way to go back to a `&mut IndexMapCore`. So this type
/// is used to implement methods on the split references, and `IndexMapCore` can also call those to
/// avoid duplication.
struct RefMut<'a, K, V> {
indices: &'a mut Indices,
entries: &'a mut Entries<K, V>,
}
#[inline(always)]
fn get_hash<K, V>(entries: &[Bucket<K, V>]) -> impl Fn(&usize) -> u64 + '_ {
move |&i| entries[i].hash.get()
}
#[inline]
fn equivalent<'a, K, V, Q: ?Sized + Equivalent<K>>(
key: &'a Q,
entries: &'a [Bucket<K, V>],
) -> impl Fn(&usize) -> bool + 'a {
move |&i| Q::equivalent(key, &entries[i].key)
}
#[inline]
fn erase_index(table: &mut Indices, hash: HashValue, index: usize) {
if let Ok(entry) = table.find_entry(hash.get(), move |&i| i == index) {
entry.remove();
} else if cfg!(debug_assertions) {
panic!("index not found");
}
}
#[inline]
fn update_index(table: &mut Indices, hash: HashValue, old: usize, new: usize) {
let index = table
.find_mut(hash.get(), move |&i| i == old)
.expect("index not found");
*index = new;
}
/// Inserts many entries into the indices table without reallocating,
/// and without regard for duplication.
///
/// ***Panics*** if there is not sufficient capacity already.
fn insert_bulk_no_grow<K, V>(indices: &mut Indices, entries: &[Bucket<K, V>]) {
assert!(indices.capacity() - indices.len() >= entries.len());
for entry in entries {
indices.insert_unique(entry.hash.get(), indices.len(), |_| unreachable!());
}
}
impl<K, V> Clone for IndexMapCore<K, V>
where
K: Clone,
V: Clone,
{
fn clone(&self) -> Self {
let mut new = Self::new();
new.clone_from(self);
new
}
fn clone_from(&mut self, other: &Self) {
self.indices.clone_from(&other.indices);
if self.entries.capacity() < other.entries.len() {
// If we must resize, match the indices capacity.
let additional = other.entries.len() - self.entries.len();
self.borrow_mut().reserve_entries(additional);
}
self.entries.clone_from(&other.entries);
}
}
impl<K, V> IndexMapCore<K, V> {
/// The maximum capacity before the `entries` allocation would exceed `isize::MAX`.
const MAX_ENTRIES_CAPACITY: usize = (isize::MAX as usize) / mem::size_of::<Bucket<K, V>>();
#[inline]
pub(crate) const fn new() -> Self {
IndexMapCore {
indices: Indices::new(),
entries: Vec::new(),
}
}
#[inline]
fn borrow_mut(&mut self) -> RefMut<'_, K, V> {
RefMut::new(&mut self.indices, &mut self.entries)
}
#[inline]
pub(crate) fn with_capacity(n: usize) -> Self {
IndexMapCore {
indices: Indices::with_capacity(n),
entries: Vec::with_capacity(n),
}
}
#[inline]
pub(crate) fn into_entries(self) -> Entries<K, V> {
self.entries
}
#[inline]
pub(crate) fn as_entries(&self) -> &[Bucket<K, V>] {
&self.entries
}
#[inline]
pub(crate) fn as_entries_mut(&mut self) -> &mut [Bucket<K, V>] {
&mut self.entries
}
pub(crate) fn with_entries<F>(&mut self, f: F)
where
F: FnOnce(&mut [Bucket<K, V>]),
{
f(&mut self.entries);
self.rebuild_hash_table();
}
#[inline]
pub(crate) fn len(&self) -> usize {
debug_assert_eq!(self.entries.len(), self.indices.len());
self.indices.len()
}
#[inline]
pub(crate) fn capacity(&self) -> usize {
Ord::min(self.indices.capacity(), self.entries.capacity())
}
pub(crate) fn clear(&mut self) {
self.indices.clear();
self.entries.clear();
}
pub(crate) fn truncate(&mut self, len: usize) {
if len < self.len() {
self.erase_indices(len, self.entries.len());
self.entries.truncate(len);
}
}
#[track_caller]
pub(crate) fn drain<R>(&mut self, range: R) -> vec::Drain<'_, Bucket<K, V>>
where
R: RangeBounds<usize>,
{
let range = simplify_range(range, self.entries.len());
self.erase_indices(range.start, range.end);
self.entries.drain(range)
}
#[cfg(feature = "rayon")]
pub(crate) fn par_drain<R>(&mut self, range: R) -> rayon::vec::Drain<'_, Bucket<K, V>>
where
K: Send,
V: Send,
R: RangeBounds<usize>,
{
use rayon::iter::ParallelDrainRange;
let range = simplify_range(range, self.entries.len());
self.erase_indices(range.start, range.end);
self.entries.par_drain(range)
}
#[track_caller]
pub(crate) fn split_off(&mut self, at: usize) -> Self {
let len = self.entries.len();
assert!(
at <= len,
"index out of bounds: the len is {len} but the index is {at}. Expected index <= len"
);
self.erase_indices(at, self.entries.len());
let entries = self.entries.split_off(at);
let mut indices = Indices::with_capacity(entries.len());
insert_bulk_no_grow(&mut indices, &entries);
Self { indices, entries }
}
#[track_caller]
pub(crate) fn split_splice<R>(&mut self, range: R) -> (Self, vec::IntoIter<Bucket<K, V>>)
where
R: RangeBounds<usize>,
{
let range = simplify_range(range, self.len());
self.erase_indices(range.start, self.entries.len());
let entries = self.entries.split_off(range.end);
let drained = self.entries.split_off(range.start);
let mut indices = Indices::with_capacity(entries.len());
insert_bulk_no_grow(&mut indices, &entries);
(Self { indices, entries }, drained.into_iter())
}
/// Append from another map without checking whether items already exist.
pub(crate) fn append_unchecked(&mut self, other: &mut Self) {
self.reserve(other.len());
insert_bulk_no_grow(&mut self.indices, &other.entries);
self.entries.append(&mut other.entries);
other.indices.clear();
}
/// Reserve capacity for `additional` more key-value pairs.
pub(crate) fn reserve(&mut self, additional: usize) {
self.indices.reserve(additional, get_hash(&self.entries));
// Only grow entries if necessary, since we also round up capacity.
if additional > self.entries.capacity() - self.entries.len() {
self.borrow_mut().reserve_entries(additional);
}
}
/// Reserve capacity for `additional` more key-value pairs, without over-allocating.
pub(crate) fn reserve_exact(&mut self, additional: usize) {
self.indices.reserve(additional, get_hash(&self.entries));
self.entries.reserve_exact(additional);
}
/// Try to reserve capacity for `additional` more key-value pairs.
pub(crate) fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.indices
.try_reserve(additional, get_hash(&self.entries))
.map_err(TryReserveError::from_hashbrown)?;
// Only grow entries if necessary, since we also round up capacity.
if additional > self.entries.capacity() - self.entries.len() {
self.try_reserve_entries(additional)
} else {
Ok(())
}
}
/// Try to reserve entries capacity, rounded up to match the indices
fn try_reserve_entries(&mut self, additional: usize) -> Result<(), TryReserveError> {
// Use a soft-limit on the maximum capacity, but if the caller explicitly
// requested more, do it and let them have the resulting error.
let new_capacity = Ord::min(self.indices.capacity(), Self::MAX_ENTRIES_CAPACITY);
let try_add = new_capacity - self.entries.len();
if try_add > additional && self.entries.try_reserve_exact(try_add).is_ok() {
return Ok(());
}
self.entries
.try_reserve_exact(additional)
.map_err(TryReserveError::from_alloc)
}
/// Try to reserve capacity for `additional` more key-value pairs, without over-allocating.
pub(crate) fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
self.indices
.try_reserve(additional, get_hash(&self.entries))
.map_err(TryReserveError::from_hashbrown)?;
self.entries
.try_reserve_exact(additional)
.map_err(TryReserveError::from_alloc)
}
/// Shrink the capacity of the map with a lower bound
pub(crate) fn shrink_to(&mut self, min_capacity: usize) {
self.indices
.shrink_to(min_capacity, get_hash(&self.entries));
self.entries.shrink_to(min_capacity);
}
/// Remove the last key-value pair
pub(crate) fn pop(&mut self) -> Option<(K, V)> {
if let Some(entry) = self.entries.pop() {
let last = self.entries.len();
erase_index(&mut self.indices, entry.hash, last);
Some((entry.key, entry.value))
} else {
None
}
}
/// Return the index in `entries` where an equivalent key can be found
pub(crate) fn get_index_of<Q>(&self, hash: HashValue, key: &Q) -> Option<usize>
where
Q: ?Sized + Equivalent<K>,
{
let eq = equivalent(key, &self.entries);
self.indices.find(hash.get(), eq).copied()
}
/// Append a key-value pair to `entries`,
/// *without* checking whether it already exists.
fn push_entry(&mut self, hash: HashValue, key: K, value: V) {
if self.entries.len() == self.entries.capacity() {
// Reserve our own capacity synced to the indices,
// rather than letting `Vec::push` just double it.
self.borrow_mut().reserve_entries(1);
}
self.entries.push(Bucket { hash, key, value });
}
pub(crate) fn insert_full(&mut self, hash: HashValue, key: K, value: V) -> (usize, Option<V>)
where
K: Eq,
{
let eq = equivalent(&key, &self.entries);
let hasher = get_hash(&self.entries);
match self.indices.entry(hash.get(), eq, hasher) {
hash_table::Entry::Occupied(entry) => {
let i = *entry.get();
(i, Some(mem::replace(&mut self.entries[i].value, value)))
}
hash_table::Entry::Vacant(entry) => {
let i = self.entries.len();
entry.insert(i);
self.push_entry(hash, key, value);
debug_assert_eq!(self.indices.len(), self.entries.len());
(i, None)
}
}
}
/// Same as `insert_full`, except it also replaces the key
pub(crate) fn replace_full(
&mut self,
hash: HashValue,
key: K,
value: V,
) -> (usize, Option<(K, V)>)
where
K: Eq,
{
let eq = equivalent(&key, &self.entries);
let hasher = get_hash(&self.entries);
match self.indices.entry(hash.get(), eq, hasher) {
hash_table::Entry::Occupied(entry) => {
let i = *entry.get();
let entry = &mut self.entries[i];
let kv = (
mem::replace(&mut entry.key, key),
mem::replace(&mut entry.value, value),
);
(i, Some(kv))
}
hash_table::Entry::Vacant(entry) => {
let i = self.entries.len();
entry.insert(i);
self.push_entry(hash, key, value);
debug_assert_eq!(self.indices.len(), self.entries.len());
(i, None)
}
}
}
/// Replaces the key at the given index,
/// *without* checking whether it already exists.
#[track_caller]
pub(crate) fn replace_index_unique(&mut self, index: usize, hash: HashValue, key: K) -> K {
self.borrow_mut().replace_index_unique(index, hash, key).0
}
/// Remove an entry by shifting all entries that follow it
pub(crate) fn shift_remove_full<Q>(&mut self, hash: HashValue, key: &Q) -> Option<(usize, K, V)>
where
Q: ?Sized + Equivalent<K>,
{
let eq = equivalent(key, &self.entries);
match self.indices.find_entry(hash.get(), eq) {
Ok(entry) => {
let (index, _) = entry.remove();
let (key, value) = self.borrow_mut().shift_remove_finish(index);
Some((index, key, value))
}
Err(_) => None,
}
}
/// Remove an entry by shifting all entries that follow it
#[inline]
pub(crate) fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.borrow_mut().shift_remove_index(index)
}
#[inline]
#[track_caller]
pub(super) fn move_index(&mut self, from: usize, to: usize) {
self.borrow_mut().move_index(from, to);
}
#[inline]
#[track_caller]
pub(crate) fn swap_indices(&mut self, a: usize, b: usize) {
self.borrow_mut().swap_indices(a, b);
}
/// Remove an entry by swapping it with the last
pub(crate) fn swap_remove_full<Q>(&mut self, hash: HashValue, key: &Q) -> Option<(usize, K, V)>
where
Q: ?Sized + Equivalent<K>,
{
let eq = equivalent(key, &self.entries);
match self.indices.find_entry(hash.get(), eq) {
Ok(entry) => {
let (index, _) = entry.remove();
let (key, value) = self.borrow_mut().swap_remove_finish(index);
Some((index, key, value))
}
Err(_) => None,
}
}
/// Remove an entry by swapping it with the last
#[inline]
pub(crate) fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
self.borrow_mut().swap_remove_index(index)
}
/// Erase `start..end` from `indices`, and shift `end..` indices down to `start..`
///
/// All of these items should still be at their original location in `entries`.
/// This is used by `drain`, which will let `Vec::drain` do the work on `entries`.
fn erase_indices(&mut self, start: usize, end: usize) {
let (init, shifted_entries) = self.entries.split_at(end);
let (start_entries, erased_entries) = init.split_at(start);
let erased = erased_entries.len();
let shifted = shifted_entries.len();
let half_capacity = self.indices.capacity() / 2;
// Use a heuristic between different strategies
if erased == 0 {
// Degenerate case, nothing to do
} else if start + shifted < half_capacity && start < erased {
// Reinsert everything, as there are few kept indices
self.indices.clear();
// Reinsert stable indices, then shifted indices
insert_bulk_no_grow(&mut self.indices, start_entries);
insert_bulk_no_grow(&mut self.indices, shifted_entries);
} else if erased + shifted < half_capacity {
// Find each affected index, as there are few to adjust
// Find erased indices
for (i, entry) in (start..).zip(erased_entries) {
erase_index(&mut self.indices, entry.hash, i);
}
// Find shifted indices
for ((new, old), entry) in (start..).zip(end..).zip(shifted_entries) {
update_index(&mut self.indices, entry.hash, old, new);
}
} else {
// Sweep the whole table for adjustments
let offset = end - start;
self.indices.retain(move |i| {
if *i >= end {
*i -= offset;
true
} else {
*i < start
}
});
}
debug_assert_eq!(self.indices.len(), start + shifted);
}
pub(crate) fn retain_in_order<F>(&mut self, mut keep: F)
where
F: FnMut(&mut K, &mut V) -> bool,
{
self.entries
.retain_mut(|entry| keep(&mut entry.key, &mut entry.value));
if self.entries.len() < self.indices.len() {
self.rebuild_hash_table();
}
}
fn rebuild_hash_table(&mut self) {
self.indices.clear();
insert_bulk_no_grow(&mut self.indices, &self.entries);
}
pub(crate) fn reverse(&mut self) {
self.entries.reverse();
// No need to save hash indices, can easily calculate what they should
// be, given that this is an in-place reversal.
let len = self.entries.len();
for i in &mut self.indices {
*i = len - *i - 1;
}
}
}
/// Reserve entries capacity, rounded up to match the indices (via `try_capacity`).
fn reserve_entries<K, V>(entries: &mut Entries<K, V>, additional: usize, try_capacity: usize) {
// Use a soft-limit on the maximum capacity, but if the caller explicitly
// requested more, do it and let them have the resulting panic.
let try_capacity = try_capacity.min(IndexMapCore::<K, V>::MAX_ENTRIES_CAPACITY);
let try_add = try_capacity - entries.len();
if try_add > additional && entries.try_reserve_exact(try_add).is_ok() {
return;
}
entries.reserve_exact(additional);
}
impl<'a, K, V> RefMut<'a, K, V> {
#[inline]
fn new(indices: &'a mut Indices, entries: &'a mut Entries<K, V>) -> Self {
Self { indices, entries }
}
/// Reserve entries capacity, rounded up to match the indices
#[inline]
fn reserve_entries(&mut self, additional: usize) {
reserve_entries(self.entries, additional, self.indices.capacity());
}
/// Insert a key-value pair in `entries`,
/// *without* checking whether it already exists.
fn insert_unique(self, hash: HashValue, key: K, value: V) -> OccupiedEntry<'a, K, V> {
let i = self.indices.len();
debug_assert_eq!(i, self.entries.len());
let entry = self
.indices
.insert_unique(hash.get(), i, get_hash(self.entries));
if self.entries.len() == self.entries.capacity() {
// We can't call `indices.capacity()` while this `entry` has borrowed it, so we'll have
// to amortize growth on our own. It's still an improvement over the basic `Vec::push`
// doubling though, since we also consider `MAX_ENTRIES_CAPACITY`.
reserve_entries(self.entries, 1, 2 * self.entries.capacity());
}
self.entries.push(Bucket { hash, key, value });
OccupiedEntry::new(self.entries, entry)
}
/// Replaces the key at the given index,
/// *without* checking whether it already exists.
#[track_caller]
fn replace_index_unique(
self,
index: usize,
hash: HashValue,
key: K,
) -> (K, OccupiedEntry<'a, K, V>) {
// NB: This removal and insertion isn't "no grow" (with unreachable hasher)
// because hashbrown's tombstones might force a resize anyway.
erase_index(self.indices, self.entries[index].hash, index);
let table_entry = self
.indices
.insert_unique(hash.get(), index, get_hash(&self.entries));
let entry = &mut self.entries[index];
entry.hash = hash;
let old_key = mem::replace(&mut entry.key, key);
(old_key, OccupiedEntry::new(self.entries, table_entry))
}
/// Insert a key-value pair in `entries` at a particular index,
/// *without* checking whether it already exists.
fn shift_insert_unique(&mut self, index: usize, hash: HashValue, key: K, value: V) {
let end = self.indices.len();
assert!(index <= end);
// Increment others first so we don't have duplicate indices.
self.increment_indices(index, end);
let entries = &*self.entries;
self.indices.insert_unique(hash.get(), index, move |&i| {
// Adjust for the incremented indices to find hashes.
debug_assert_ne!(i, index);
let i = if i < index { i } else { i - 1 };
entries[i].hash.get()
});
if self.entries.len() == self.entries.capacity() {
// Reserve our own capacity synced to the indices,
// rather than letting `Vec::insert` just double it.
self.reserve_entries(1);
}
self.entries.insert(index, Bucket { hash, key, value });
}
/// Remove an entry by shifting all entries that follow it
fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> {
match self.entries.get(index) {
Some(entry) => {
erase_index(self.indices, entry.hash, index);
Some(self.shift_remove_finish(index))
}
None => None,
}
}
/// Remove an entry by shifting all entries that follow it
///
/// The index should already be removed from `self.indices`.
fn shift_remove_finish(&mut self, index: usize) -> (K, V) {
// Correct indices that point to the entries that followed the removed entry.
self.decrement_indices(index + 1, self.entries.len());
// Use Vec::remove to actually remove the entry.
let entry = self.entries.remove(index);
(entry.key, entry.value)
}
/// Remove an entry by swapping it with the last
fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> {
match self.entries.get(index) {
Some(entry) => {
erase_index(self.indices, entry.hash, index);
Some(self.swap_remove_finish(index))
}
None => None,
}
}
/// Finish removing an entry by swapping it with the last
///
/// The index should already be removed from `self.indices`.
fn swap_remove_finish(&mut self, index: usize) -> (K, V) {
// use swap_remove, but then we need to update the index that points
// to the other entry that has to move
let entry = self.entries.swap_remove(index);
// correct index that points to the entry that had to swap places
if let Some(entry) = self.entries.get(index) {
// was not last element
// examine new element in `index` and find it in indices
let last = self.entries.len();
update_index(self.indices, entry.hash, last, index);
}
(entry.key, entry.value)
}
/// Decrement all indices in the range `start..end`.
///
/// The index `start - 1` should not exist in `self.indices`.
/// All entries should still be in their original positions.
fn decrement_indices(&mut self, start: usize, end: usize) {
// Use a heuristic between a full sweep vs. a `find()` for every shifted item.
let shifted_entries = &self.entries[start..end];
if shifted_entries.len() > self.indices.capacity() / 2 {
// Shift all indices in range.
for i in &mut *self.indices {
if start <= *i && *i < end {
*i -= 1;
}
}
} else {
// Find each entry in range to shift its index.
for (i, entry) in (start..end).zip(shifted_entries) {
update_index(self.indices, entry.hash, i, i - 1);
}
}
}
/// Increment all indices in the range `start..end`.
///
/// The index `end` should not exist in `self.indices`.
/// All entries should still be in their original positions.
fn increment_indices(&mut self, start: usize, end: usize) {
// Use a heuristic between a full sweep vs. a `find()` for every shifted item.
let shifted_entries = &self.entries[start..end];
if shifted_entries.len() > self.indices.capacity() / 2 {
// Shift all indices in range.
for i in &mut *self.indices {
if start <= *i && *i < end {
*i += 1;
}
}
} else {
// Find each entry in range to shift its index, updated in reverse so
// we never have duplicated indices that might have a hash collision.
for (i, entry) in (start..end).zip(shifted_entries).rev() {
update_index(self.indices, entry.hash, i, i + 1);
}
}
}
#[track_caller]
fn move_index(&mut self, from: usize, to: usize) {
let from_hash = self.entries[from].hash;
let _ = self.entries[to]; // explicit bounds check
if from != to {
// Use a sentinel index so other indices don't collide.
update_index(self.indices, from_hash, from, usize::MAX);
// Update all other indices and rotate the entry positions.
if from < to {
self.decrement_indices(from + 1, to + 1);
self.entries[from..=to].rotate_left(1);
} else if to < from {
self.increment_indices(to, from);
self.entries[to..=from].rotate_right(1);
}
// Change the sentinel index to its final position.
update_index(self.indices, from_hash, usize::MAX, to);
}
}
#[track_caller]
fn swap_indices(&mut self, a: usize, b: usize) {
// If they're equal and in-bounds, there's nothing to do.
if a == b && a < self.entries.len() {
return;
}
// We'll get a "nice" bounds-check from indexing `entries`,
// and then we expect to find it in the table as well.
match self.indices.get_many_mut(
[self.entries[a].hash.get(), self.entries[b].hash.get()],
move |i, &x| if i == 0 { x == a } else { x == b },
) {
[Some(ref_a), Some(ref_b)] => {
mem::swap(ref_a, ref_b);
self.entries.swap(a, b);
}
_ => panic!("indices not found"),
}
}
}
#[test]
fn assert_send_sync() {
fn assert_send_sync<T: Send + Sync>() {}
assert_send_sync::<IndexMapCore<i32, i32>>();
assert_send_sync::<Entry<'_, i32, i32>>();
assert_send_sync::<IndexedEntry<'_, i32, i32>>();
assert_send_sync::<raw_entry_v1::RawEntryMut<'_, i32, i32, ()>>();
}

624
vendor/indexmap/src/map/core/entry.rs vendored Normal file
View File

@@ -0,0 +1,624 @@
use super::{equivalent, Entries, IndexMapCore, RefMut};
use crate::HashValue;
use core::cmp::Ordering;
use core::{fmt, mem};
use hashbrown::hash_table;
impl<K, V> IndexMapCore<K, V> {
pub(crate) fn entry(&mut self, hash: HashValue, key: K) -> Entry<'_, K, V>
where
K: Eq,
{
let entries = &mut self.entries;
let eq = equivalent(&key, entries);
match self.indices.find_entry(hash.get(), eq) {
Ok(index) => Entry::Occupied(OccupiedEntry { entries, index }),
Err(absent) => Entry::Vacant(VacantEntry {
map: RefMut::new(absent.into_table(), entries),
hash,
key,
}),
}
}
}
/// Entry for an existing key-value pair in an [`IndexMap`][crate::IndexMap]
/// or a vacant location to insert one.
pub enum Entry<'a, K, V> {
/// Existing slot with equivalent key.
Occupied(OccupiedEntry<'a, K, V>),
/// Vacant slot (no equivalent key in the map).
Vacant(VacantEntry<'a, K, V>),
}
impl<'a, K, V> Entry<'a, K, V> {
/// Return the index where the key-value pair exists or will be inserted.
pub fn index(&self) -> usize {
match *self {
Entry::Occupied(ref entry) => entry.index(),
Entry::Vacant(ref entry) => entry.index(),
}
}
/// Sets the value of the entry (after inserting if vacant), and returns an `OccupiedEntry`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> {
match self {
Entry::Occupied(mut entry) => {
entry.insert(value);
entry
}
Entry::Vacant(entry) => entry.insert_entry(value),
}
}
/// Inserts the given default value in the entry if it is vacant and returns a mutable
/// reference to it. Otherwise a mutable reference to an already existent value is returned.
///
/// Computes in **O(1)** time (amortized average).
pub fn or_insert(self, default: V) -> &'a mut V {
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(default),
}
}
/// Inserts the result of the `call` function in the entry if it is vacant and returns a mutable
/// reference to it. Otherwise a mutable reference to an already existent value is returned.
///
/// Computes in **O(1)** time (amortized average).
pub fn or_insert_with<F>(self, call: F) -> &'a mut V
where
F: FnOnce() -> V,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(call()),
}
}
/// Inserts the result of the `call` function with a reference to the entry's key if it is
/// vacant, and returns a mutable reference to the new value. Otherwise a mutable reference to
/// an already existent value is returned.
///
/// Computes in **O(1)** time (amortized average).
pub fn or_insert_with_key<F>(self, call: F) -> &'a mut V
where
F: FnOnce(&K) -> V,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => {
let value = call(&entry.key);
entry.insert(value)
}
}
}
/// Gets a reference to the entry's key, either within the map if occupied,
/// or else the new key that was used to find the entry.
pub fn key(&self) -> &K {
match *self {
Entry::Occupied(ref entry) => entry.key(),
Entry::Vacant(ref entry) => entry.key(),
}
}
/// Modifies the entry if it is occupied.
pub fn and_modify<F>(mut self, f: F) -> Self
where
F: FnOnce(&mut V),
{
if let Entry::Occupied(entry) = &mut self {
f(entry.get_mut());
}
self
}
/// Inserts a default-constructed value in the entry if it is vacant and returns a mutable
/// reference to it. Otherwise a mutable reference to an already existent value is returned.
///
/// Computes in **O(1)** time (amortized average).
pub fn or_default(self) -> &'a mut V
where
V: Default,
{
match self {
Entry::Occupied(entry) => entry.into_mut(),
Entry::Vacant(entry) => entry.insert(V::default()),
}
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Entry<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut tuple = f.debug_tuple("Entry");
match self {
Entry::Vacant(v) => tuple.field(v),
Entry::Occupied(o) => tuple.field(o),
};
tuple.finish()
}
}
/// A view into an occupied entry in an [`IndexMap`][crate::IndexMap].
/// It is part of the [`Entry`] enum.
pub struct OccupiedEntry<'a, K, V> {
entries: &'a mut Entries<K, V>,
index: hash_table::OccupiedEntry<'a, usize>,
}
impl<'a, K, V> OccupiedEntry<'a, K, V> {
pub(crate) fn new(
entries: &'a mut Entries<K, V>,
index: hash_table::OccupiedEntry<'a, usize>,
) -> Self {
Self { entries, index }
}
/// Return the index of the key-value pair
#[inline]
pub fn index(&self) -> usize {
*self.index.get()
}
#[inline]
fn into_ref_mut(self) -> RefMut<'a, K, V> {
RefMut::new(self.index.into_table(), self.entries)
}
/// Gets a reference to the entry's key in the map.
///
/// Note that this is not the key that was used to find the entry. There may be an observable
/// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like
/// extra fields or the memory address of an allocation.
pub fn key(&self) -> &K {
&self.entries[self.index()].key
}
pub(crate) fn key_mut(&mut self) -> &mut K {
let index = self.index();
&mut self.entries[index].key
}
/// Gets a reference to the entry's value in the map.
pub fn get(&self) -> &V {
&self.entries[self.index()].value
}
/// Gets a mutable reference to the entry's value in the map.
///
/// If you need a reference which may outlive the destruction of the
/// [`Entry`] value, see [`into_mut`][Self::into_mut].
pub fn get_mut(&mut self) -> &mut V {
let index = self.index();
&mut self.entries[index].value
}
/// Converts into a mutable reference to the entry's value in the map,
/// with a lifetime bound to the map itself.
pub fn into_mut(self) -> &'a mut V {
let index = self.index();
&mut self.entries[index].value
}
pub(super) fn into_muts(self) -> (&'a mut K, &'a mut V) {
let index = self.index();
self.entries[index].muts()
}
/// Sets the value of the entry to `value`, and returns the entry's old value.
pub fn insert(&mut self, value: V) -> V {
mem::replace(self.get_mut(), value)
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// **NOTE:** This is equivalent to [`.swap_remove()`][Self::swap_remove], replacing this
/// entry's position with the last element, and it is deprecated in favor of calling that
/// explicitly. If you need to preserve the relative order of the keys in the map, use
/// [`.shift_remove()`][Self::shift_remove] instead.
#[deprecated(note = "`remove` disrupts the map order -- \
use `swap_remove` or `shift_remove` for explicit behavior.")]
pub fn remove(self) -> V {
self.swap_remove()
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove(self) -> V {
self.swap_remove_entry().1
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove(self) -> V {
self.shift_remove_entry().1
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// **NOTE:** This is equivalent to [`.swap_remove_entry()`][Self::swap_remove_entry],
/// replacing this entry's position with the last element, and it is deprecated in favor of
/// calling that explicitly. If you need to preserve the relative order of the keys in the map,
/// use [`.shift_remove_entry()`][Self::shift_remove_entry] instead.
#[deprecated(note = "`remove_entry` disrupts the map order -- \
use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
pub fn remove_entry(self) -> (K, V) {
self.swap_remove_entry()
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_entry(self) -> (K, V) {
let (index, entry) = self.index.remove();
RefMut::new(entry.into_table(), self.entries).swap_remove_finish(index)
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_entry(self) -> (K, V) {
let (index, entry) = self.index.remove();
RefMut::new(entry.into_table(), self.entries).shift_remove_finish(index)
}
/// Moves the position of the entry to a new index
/// by shifting all other entries in-between.
///
/// This is equivalent to [`IndexMap::move_index`][`crate::IndexMap::move_index`]
/// coming `from` the current [`.index()`][Self::index].
///
/// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up.
/// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down.
///
/// ***Panics*** if `to` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn move_index(self, to: usize) {
let index = self.index();
self.into_ref_mut().move_index(index, to);
}
/// Swaps the position of entry with another.
///
/// This is equivalent to [`IndexMap::swap_indices`][`crate::IndexMap::swap_indices`]
/// with the current [`.index()`][Self::index] as one of the two being swapped.
///
/// ***Panics*** if the `other` index is out of bounds.
///
/// Computes in **O(1)** time (average).
#[track_caller]
pub fn swap_indices(self, other: usize) {
let index = self.index();
self.into_ref_mut().swap_indices(index, other);
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for OccupiedEntry<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("OccupiedEntry")
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
impl<'a, K, V> From<IndexedEntry<'a, K, V>> for OccupiedEntry<'a, K, V> {
fn from(other: IndexedEntry<'a, K, V>) -> Self {
let IndexedEntry {
map: RefMut { indices, entries },
index,
} = other;
let hash = entries[index].hash;
Self {
entries,
index: indices
.find_entry(hash.get(), move |&i| i == index)
.expect("index not found"),
}
}
}
/// A view into a vacant entry in an [`IndexMap`][crate::IndexMap].
/// It is part of the [`Entry`] enum.
pub struct VacantEntry<'a, K, V> {
map: RefMut<'a, K, V>,
hash: HashValue,
key: K,
}
impl<'a, K, V> VacantEntry<'a, K, V> {
/// Return the index where a key-value pair may be inserted.
pub fn index(&self) -> usize {
self.map.indices.len()
}
/// Gets a reference to the key that was used to find the entry.
pub fn key(&self) -> &K {
&self.key
}
pub(crate) fn key_mut(&mut self) -> &mut K {
&mut self.key
}
/// Takes ownership of the key, leaving the entry vacant.
pub fn into_key(self) -> K {
self.key
}
/// Inserts the entry's key and the given value into the map, and returns a mutable reference
/// to the value.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert(self, value: V) -> &'a mut V {
self.insert_entry(value).into_mut()
}
/// Inserts the entry's key and the given value into the map, and returns an `OccupiedEntry`.
///
/// Computes in **O(1)** time (amortized average).
pub fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V> {
let Self { map, hash, key } = self;
map.insert_unique(hash, key, value)
}
/// Inserts the entry's key and the given value into the map at its ordered
/// position among sorted keys, and returns the new index and a mutable
/// reference to the value.
///
/// If the existing keys are **not** already sorted, then the insertion
/// index is unspecified (like [`slice::binary_search`]), but the key-value
/// pair is inserted at that position regardless.
///
/// Computes in **O(n)** time (average).
pub fn insert_sorted(self, value: V) -> (usize, &'a mut V)
where
K: Ord,
{
let slice = crate::map::Slice::from_slice(self.map.entries);
let i = slice.binary_search_keys(&self.key).unwrap_err();
(i, self.shift_insert(i, value))
}
/// Inserts the entry's key and the given value into the map at its ordered
/// position among keys sorted by `cmp`, and returns the new index and a
/// mutable reference to the value.
///
/// If the existing keys are **not** already sorted, then the insertion
/// index is unspecified (like [`slice::binary_search`]), but the key-value
/// pair is inserted at that position regardless.
///
/// Computes in **O(n)** time (average).
pub fn insert_sorted_by<F>(self, value: V, mut cmp: F) -> (usize, &'a mut V)
where
F: FnMut(&K, &V, &K, &V) -> Ordering,
{
let slice = crate::map::Slice::from_slice(self.map.entries);
let (Ok(i) | Err(i)) = slice.binary_search_by(|k, v| cmp(k, v, &self.key, &value));
(i, self.shift_insert(i, value))
}
/// Inserts the entry's key and the given value into the map at its ordered
/// position using a sort-key extraction function, and returns the new index
/// and a mutable reference to the value.
///
/// If the existing keys are **not** already sorted, then the insertion
/// index is unspecified (like [`slice::binary_search`]), but the key-value
/// pair is inserted at that position regardless.
///
/// Computes in **O(n)** time (average).
pub fn insert_sorted_by_key<B, F>(self, value: V, mut sort_key: F) -> (usize, &'a mut V)
where
B: Ord,
F: FnMut(&K, &V) -> B,
{
let search_key = sort_key(&self.key, &value);
let slice = crate::map::Slice::from_slice(self.map.entries);
let (Ok(i) | Err(i)) = slice.binary_search_by_key(&search_key, sort_key);
(i, self.shift_insert(i, value))
}
/// Inserts the entry's key and the given value into the map at the given index,
/// shifting others to the right, and returns a mutable reference to the value.
///
/// ***Panics*** if `index` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn shift_insert(mut self, index: usize, value: V) -> &'a mut V {
self.map
.shift_insert_unique(index, self.hash, self.key, value);
&mut self.map.entries[index].value
}
/// Replaces the key at the given index with this entry's key, returning the
/// old key and an `OccupiedEntry` for that index.
///
/// ***Panics*** if `index` is out of bounds.
///
/// Computes in **O(1)** time (average).
#[track_caller]
pub fn replace_index(self, index: usize) -> (K, OccupiedEntry<'a, K, V>) {
self.map.replace_index_unique(index, self.hash, self.key)
}
}
impl<K: fmt::Debug, V> fmt::Debug for VacantEntry<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VacantEntry").field(self.key()).finish()
}
}
/// A view into an occupied entry in an [`IndexMap`][crate::IndexMap] obtained by index.
///
/// This `struct` is created from the [`get_index_entry`][crate::IndexMap::get_index_entry] method.
pub struct IndexedEntry<'a, K, V> {
map: RefMut<'a, K, V>,
// We have a mutable reference to the map, which keeps the index
// valid and pointing to the correct entry.
index: usize,
}
impl<'a, K, V> IndexedEntry<'a, K, V> {
pub(crate) fn new(map: &'a mut IndexMapCore<K, V>, index: usize) -> Self {
Self {
map: map.borrow_mut(),
index,
}
}
/// Return the index of the key-value pair
#[inline]
pub fn index(&self) -> usize {
self.index
}
/// Gets a reference to the entry's key in the map.
pub fn key(&self) -> &K {
&self.map.entries[self.index].key
}
pub(crate) fn key_mut(&mut self) -> &mut K {
&mut self.map.entries[self.index].key
}
/// Gets a reference to the entry's value in the map.
pub fn get(&self) -> &V {
&self.map.entries[self.index].value
}
/// Gets a mutable reference to the entry's value in the map.
///
/// If you need a reference which may outlive the destruction of the
/// `IndexedEntry` value, see [`into_mut`][Self::into_mut].
pub fn get_mut(&mut self) -> &mut V {
&mut self.map.entries[self.index].value
}
/// Sets the value of the entry to `value`, and returns the entry's old value.
pub fn insert(&mut self, value: V) -> V {
mem::replace(self.get_mut(), value)
}
/// Converts into a mutable reference to the entry's value in the map,
/// with a lifetime bound to the map itself.
pub fn into_mut(self) -> &'a mut V {
&mut self.map.entries[self.index].value
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_entry(mut self) -> (K, V) {
self.map.swap_remove_index(self.index).unwrap()
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_entry(mut self) -> (K, V) {
self.map.shift_remove_index(self.index).unwrap()
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove(self) -> V {
self.swap_remove_entry().1
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove(self) -> V {
self.shift_remove_entry().1
}
/// Moves the position of the entry to a new index
/// by shifting all other entries in-between.
///
/// This is equivalent to [`IndexMap::move_index`][`crate::IndexMap::move_index`]
/// coming `from` the current [`.index()`][Self::index].
///
/// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up.
/// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down.
///
/// ***Panics*** if `to` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn move_index(mut self, to: usize) {
self.map.move_index(self.index, to);
}
/// Swaps the position of entry with another.
///
/// This is equivalent to [`IndexMap::swap_indices`][`crate::IndexMap::swap_indices`]
/// with the current [`.index()`][Self::index] as one of the two being swapped.
///
/// ***Panics*** if the `other` index is out of bounds.
///
/// Computes in **O(1)** time (average).
#[track_caller]
pub fn swap_indices(mut self, other: usize) {
self.map.swap_indices(self.index, other);
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IndexedEntry<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("IndexedEntry")
.field("index", &self.index)
.field("key", self.key())
.field("value", self.get())
.finish()
}
}
impl<'a, K, V> From<OccupiedEntry<'a, K, V>> for IndexedEntry<'a, K, V> {
fn from(other: OccupiedEntry<'a, K, V>) -> Self {
Self {
index: other.index(),
map: other.into_ref_mut(),
}
}
}

108
vendor/indexmap/src/map/core/extract.rs vendored Normal file
View File

@@ -0,0 +1,108 @@
#![allow(unsafe_code)]
use super::{Bucket, IndexMapCore};
use crate::util::simplify_range;
use core::ops::RangeBounds;
impl<K, V> IndexMapCore<K, V> {
#[track_caller]
pub(crate) fn extract<R>(&mut self, range: R) -> ExtractCore<'_, K, V>
where
R: RangeBounds<usize>,
{
let range = simplify_range(range, self.entries.len());
// SAFETY: We must have consistent lengths to start, so that's a hard assertion.
// Then the worst `set_len` can do is leak items if `ExtractCore` doesn't drop.
assert_eq!(self.entries.len(), self.indices.len());
unsafe {
self.entries.set_len(range.start);
}
ExtractCore {
map: self,
new_len: range.start,
current: range.start,
end: range.end,
}
}
}
pub(crate) struct ExtractCore<'a, K, V> {
map: &'a mut IndexMapCore<K, V>,
new_len: usize,
current: usize,
end: usize,
}
impl<K, V> Drop for ExtractCore<'_, K, V> {
fn drop(&mut self) {
let old_len = self.map.indices.len();
let mut new_len = self.new_len;
debug_assert!(new_len <= self.current);
debug_assert!(self.current <= self.end);
debug_assert!(self.current <= old_len);
debug_assert!(old_len <= self.map.entries.capacity());
// SAFETY: We assume `new_len` and `current` were correctly maintained by the iterator.
// So `entries[new_len..current]` were extracted, but the rest before and after are valid.
unsafe {
if new_len == self.current {
// Nothing was extracted, so any remaining items can be left in place.
new_len = old_len;
} else if self.current < old_len {
// Need to shift the remaining items down.
let tail_len = old_len - self.current;
let base = self.map.entries.as_mut_ptr();
let src = base.add(self.current);
let dest = base.add(new_len);
src.copy_to(dest, tail_len);
new_len += tail_len;
}
self.map.entries.set_len(new_len);
}
if new_len != old_len {
// We don't keep track of *which* items were extracted, so reindex everything.
self.map.rebuild_hash_table();
}
}
}
impl<K, V> ExtractCore<'_, K, V> {
pub(crate) fn extract_if<F>(&mut self, mut pred: F) -> Option<Bucket<K, V>>
where
F: FnMut(&mut Bucket<K, V>) -> bool,
{
debug_assert!(self.end <= self.map.entries.capacity());
let base = self.map.entries.as_mut_ptr();
while self.current < self.end {
// SAFETY: We're maintaining both indices within bounds of the original entries, so
// 0..new_len and current..indices.len() are always valid items for our Drop to keep.
unsafe {
let item = base.add(self.current);
if pred(&mut *item) {
// Extract it!
self.current += 1;
return Some(item.read());
} else {
// Keep it, shifting it down if needed.
if self.new_len != self.current {
debug_assert!(self.new_len < self.current);
let dest = base.add(self.new_len);
item.copy_to_nonoverlapping(dest, 1);
}
self.current += 1;
self.new_len += 1;
}
}
}
None
}
pub(crate) fn remaining(&self) -> usize {
self.end - self.current
}
}

View File

@@ -0,0 +1,669 @@
//! Opt-in access to the experimental raw entry API.
//!
//! This module is designed to mimic the raw entry API of [`HashMap`][std::collections::hash_map],
//! matching its unstable state as of Rust 1.75. See the tracking issue
//! [rust#56167](https://github.com/rust-lang/rust/issues/56167) for more details.
//!
//! The trait [`RawEntryApiV1`] and the `_v1` suffix on its methods are meant to insulate this for
//! the future, in case later breaking changes are needed. If the standard library stabilizes its
//! `hash_raw_entry` feature (or some replacement), matching *inherent* methods will be added to
//! `IndexMap` without such an opt-in trait.
use super::{Entries, RefMut};
use crate::{Equivalent, HashValue, IndexMap};
use core::fmt;
use core::hash::{BuildHasher, Hash, Hasher};
use core::marker::PhantomData;
use core::mem;
use hashbrown::hash_table;
/// Opt-in access to the experimental raw entry API.
///
/// See the [`raw_entry_v1`][self] module documentation for more information.
pub trait RawEntryApiV1<K, V, S>: private::Sealed {
/// Creates a raw immutable entry builder for the [`IndexMap`].
///
/// Raw entries provide the lowest level of control for searching and
/// manipulating a map. They must be manually initialized with a hash and
/// then manually searched.
///
/// This is useful for
/// * Hash memoization
/// * Using a search key that doesn't work with the [`Equivalent`] trait
/// * Using custom comparison logic without newtype wrappers
///
/// Unless you are in such a situation, higher-level and more foolproof APIs like
/// [`get`][IndexMap::get] should be preferred.
///
/// Immutable raw entries have very limited use; you might instead want
/// [`raw_entry_mut_v1`][Self::raw_entry_mut_v1].
///
/// # Examples
///
/// ```
/// use core::hash::{BuildHasher, Hash};
/// use indexmap::map::{IndexMap, RawEntryApiV1};
///
/// let mut map = IndexMap::new();
/// map.extend([("a", 100), ("b", 200), ("c", 300)]);
///
/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
/// use core::hash::Hasher;
/// let mut state = hash_builder.build_hasher();
/// key.hash(&mut state);
/// state.finish()
/// }
///
/// for k in ["a", "b", "c", "d", "e", "f"] {
/// let hash = compute_hash(map.hasher(), k);
/// let i = map.get_index_of(k);
/// let v = map.get(k);
/// let kv = map.get_key_value(k);
/// let ikv = map.get_full(k);
///
/// println!("Key: {} and value: {:?}", k, v);
///
/// assert_eq!(map.raw_entry_v1().from_key(k), kv);
/// assert_eq!(map.raw_entry_v1().from_hash(hash, |q| *q == k), kv);
/// assert_eq!(map.raw_entry_v1().from_key_hashed_nocheck(hash, k), kv);
/// assert_eq!(map.raw_entry_v1().from_hash_full(hash, |q| *q == k), ikv);
/// assert_eq!(map.raw_entry_v1().index_from_hash(hash, |q| *q == k), i);
/// }
/// ```
fn raw_entry_v1(&self) -> RawEntryBuilder<'_, K, V, S>;
/// Creates a raw entry builder for the [`IndexMap`].
///
/// Raw entries provide the lowest level of control for searching and
/// manipulating a map. They must be manually initialized with a hash and
/// then manually searched. After this, insertions into a vacant entry
/// still require an owned key to be provided.
///
/// Raw entries are useful for such exotic situations as:
///
/// * Hash memoization
/// * Deferring the creation of an owned key until it is known to be required
/// * Using a search key that doesn't work with the [`Equivalent`] trait
/// * Using custom comparison logic without newtype wrappers
///
/// Because raw entries provide much more low-level control, it's much easier
/// to put the `IndexMap` into an inconsistent state which, while memory-safe,
/// will cause the map to produce seemingly random results. Higher-level and more
/// foolproof APIs like [`entry`][IndexMap::entry] should be preferred when possible.
///
/// Raw entries give mutable access to the keys. This must not be used
/// to modify how the key would compare or hash, as the map will not re-evaluate
/// where the key should go, meaning the keys may become "lost" if their
/// location does not reflect their state. For instance, if you change a key
/// so that the map now contains keys which compare equal, search may start
/// acting erratically, with two keys randomly masking each other. Implementations
/// are free to assume this doesn't happen (within the limits of memory-safety).
///
/// # Examples
///
/// ```
/// use core::hash::{BuildHasher, Hash};
/// use indexmap::map::{IndexMap, RawEntryApiV1};
/// use indexmap::map::raw_entry_v1::RawEntryMut;
///
/// let mut map = IndexMap::new();
/// map.extend([("a", 100), ("b", 200), ("c", 300)]);
///
/// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
/// use core::hash::Hasher;
/// let mut state = hash_builder.build_hasher();
/// key.hash(&mut state);
/// state.finish()
/// }
///
/// // Existing key (insert and update)
/// match map.raw_entry_mut_v1().from_key("a") {
/// RawEntryMut::Vacant(_) => unreachable!(),
/// RawEntryMut::Occupied(mut view) => {
/// assert_eq!(view.index(), 0);
/// assert_eq!(view.get(), &100);
/// let v = view.get_mut();
/// let new_v = (*v) * 10;
/// *v = new_v;
/// assert_eq!(view.insert(1111), 1000);
/// }
/// }
///
/// assert_eq!(map["a"], 1111);
/// assert_eq!(map.len(), 3);
///
/// // Existing key (take)
/// let hash = compute_hash(map.hasher(), "c");
/// match map.raw_entry_mut_v1().from_key_hashed_nocheck(hash, "c") {
/// RawEntryMut::Vacant(_) => unreachable!(),
/// RawEntryMut::Occupied(view) => {
/// assert_eq!(view.index(), 2);
/// assert_eq!(view.shift_remove_entry(), ("c", 300));
/// }
/// }
/// assert_eq!(map.raw_entry_v1().from_key("c"), None);
/// assert_eq!(map.len(), 2);
///
/// // Nonexistent key (insert and update)
/// let key = "d";
/// let hash = compute_hash(map.hasher(), key);
/// match map.raw_entry_mut_v1().from_hash(hash, |q| *q == key) {
/// RawEntryMut::Occupied(_) => unreachable!(),
/// RawEntryMut::Vacant(view) => {
/// assert_eq!(view.index(), 2);
/// let (k, value) = view.insert("d", 4000);
/// assert_eq!((*k, *value), ("d", 4000));
/// *value = 40000;
/// }
/// }
/// assert_eq!(map["d"], 40000);
/// assert_eq!(map.len(), 3);
///
/// match map.raw_entry_mut_v1().from_hash(hash, |q| *q == key) {
/// RawEntryMut::Vacant(_) => unreachable!(),
/// RawEntryMut::Occupied(view) => {
/// assert_eq!(view.index(), 2);
/// assert_eq!(view.swap_remove_entry(), ("d", 40000));
/// }
/// }
/// assert_eq!(map.get("d"), None);
/// assert_eq!(map.len(), 2);
/// ```
fn raw_entry_mut_v1(&mut self) -> RawEntryBuilderMut<'_, K, V, S>;
}
impl<K, V, S> RawEntryApiV1<K, V, S> for IndexMap<K, V, S> {
fn raw_entry_v1(&self) -> RawEntryBuilder<'_, K, V, S> {
RawEntryBuilder { map: self }
}
fn raw_entry_mut_v1(&mut self) -> RawEntryBuilderMut<'_, K, V, S> {
RawEntryBuilderMut { map: self }
}
}
/// A builder for computing where in an [`IndexMap`] a key-value pair would be stored.
///
/// This `struct` is created by the [`IndexMap::raw_entry_v1`] method, provided by the
/// [`RawEntryApiV1`] trait. See its documentation for more.
pub struct RawEntryBuilder<'a, K, V, S> {
map: &'a IndexMap<K, V, S>,
}
impl<K, V, S> fmt::Debug for RawEntryBuilder<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilder").finish_non_exhaustive()
}
}
impl<'a, K, V, S> RawEntryBuilder<'a, K, V, S> {
/// Access an entry by key.
pub fn from_key<Q>(self, key: &Q) -> Option<(&'a K, &'a V)>
where
S: BuildHasher,
Q: ?Sized + Hash + Equivalent<K>,
{
self.map.get_key_value(key)
}
/// Access an entry by a key and its hash.
pub fn from_key_hashed_nocheck<Q>(self, hash: u64, key: &Q) -> Option<(&'a K, &'a V)>
where
Q: ?Sized + Equivalent<K>,
{
let hash = HashValue(hash as usize);
let i = self.map.core.get_index_of(hash, key)?;
self.map.get_index(i)
}
/// Access an entry by hash.
pub fn from_hash<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)>
where
F: FnMut(&K) -> bool,
{
let map = self.map;
let i = self.index_from_hash(hash, is_match)?;
map.get_index(i)
}
/// Access an entry by hash, including its index.
pub fn from_hash_full<F>(self, hash: u64, is_match: F) -> Option<(usize, &'a K, &'a V)>
where
F: FnMut(&K) -> bool,
{
let map = self.map;
let i = self.index_from_hash(hash, is_match)?;
let (key, value) = map.get_index(i)?;
Some((i, key, value))
}
/// Access the index of an entry by hash.
pub fn index_from_hash<F>(self, hash: u64, mut is_match: F) -> Option<usize>
where
F: FnMut(&K) -> bool,
{
let hash = HashValue(hash as usize);
let entries = &*self.map.core.entries;
let eq = move |&i: &usize| is_match(&entries[i].key);
self.map.core.indices.find(hash.get(), eq).copied()
}
}
/// A builder for computing where in an [`IndexMap`] a key-value pair would be stored.
///
/// This `struct` is created by the [`IndexMap::raw_entry_mut_v1`] method, provided by the
/// [`RawEntryApiV1`] trait. See its documentation for more.
pub struct RawEntryBuilderMut<'a, K, V, S> {
map: &'a mut IndexMap<K, V, S>,
}
impl<K, V, S> fmt::Debug for RawEntryBuilderMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawEntryBuilderMut").finish_non_exhaustive()
}
}
impl<'a, K, V, S> RawEntryBuilderMut<'a, K, V, S> {
/// Access an entry by key.
pub fn from_key<Q>(self, key: &Q) -> RawEntryMut<'a, K, V, S>
where
S: BuildHasher,
Q: ?Sized + Hash + Equivalent<K>,
{
let hash = self.map.hash(key);
self.from_key_hashed_nocheck(hash.get(), key)
}
/// Access an entry by a key and its hash.
pub fn from_key_hashed_nocheck<Q>(self, hash: u64, key: &Q) -> RawEntryMut<'a, K, V, S>
where
Q: ?Sized + Equivalent<K>,
{
self.from_hash(hash, |k| Q::equivalent(key, k))
}
/// Access an entry by hash.
pub fn from_hash<F>(self, hash: u64, mut is_match: F) -> RawEntryMut<'a, K, V, S>
where
F: FnMut(&K) -> bool,
{
let ref_entries = &*self.map.core.entries;
let eq = move |&i: &usize| is_match(&ref_entries[i].key);
match self.map.core.indices.find_entry(hash, eq) {
Ok(index) => RawEntryMut::Occupied(RawOccupiedEntryMut {
entries: &mut self.map.core.entries,
index,
hash_builder: PhantomData,
}),
Err(absent) => RawEntryMut::Vacant(RawVacantEntryMut {
map: RefMut::new(absent.into_table(), &mut self.map.core.entries),
hash_builder: &self.map.hash_builder,
}),
}
}
}
/// Raw entry for an existing key-value pair or a vacant location to
/// insert one.
pub enum RawEntryMut<'a, K, V, S> {
/// Existing slot with equivalent key.
Occupied(RawOccupiedEntryMut<'a, K, V, S>),
/// Vacant slot (no equivalent key in the map).
Vacant(RawVacantEntryMut<'a, K, V, S>),
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for RawEntryMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut tuple = f.debug_tuple("RawEntryMut");
match self {
Self::Vacant(v) => tuple.field(v),
Self::Occupied(o) => tuple.field(o),
};
tuple.finish()
}
}
impl<'a, K, V, S> RawEntryMut<'a, K, V, S> {
/// Return the index where the key-value pair exists or may be inserted.
#[inline]
pub fn index(&self) -> usize {
match self {
Self::Occupied(entry) => entry.index(),
Self::Vacant(entry) => entry.index(),
}
}
/// Inserts the given default key and value in the entry if it is vacant and returns mutable
/// references to them. Otherwise mutable references to an already existent pair are returned.
pub fn or_insert(self, default_key: K, default_value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
match self {
Self::Occupied(entry) => entry.into_key_value_mut(),
Self::Vacant(entry) => entry.insert(default_key, default_value),
}
}
/// Inserts the result of the `call` function in the entry if it is vacant and returns mutable
/// references to them. Otherwise mutable references to an already existent pair are returned.
pub fn or_insert_with<F>(self, call: F) -> (&'a mut K, &'a mut V)
where
F: FnOnce() -> (K, V),
K: Hash,
S: BuildHasher,
{
match self {
Self::Occupied(entry) => entry.into_key_value_mut(),
Self::Vacant(entry) => {
let (key, value) = call();
entry.insert(key, value)
}
}
}
/// Modifies the entry if it is occupied.
pub fn and_modify<F>(mut self, f: F) -> Self
where
F: FnOnce(&mut K, &mut V),
{
if let Self::Occupied(entry) = &mut self {
let (k, v) = entry.get_key_value_mut();
f(k, v);
}
self
}
}
/// A raw view into an occupied entry in an [`IndexMap`].
/// It is part of the [`RawEntryMut`] enum.
pub struct RawOccupiedEntryMut<'a, K, V, S> {
entries: &'a mut Entries<K, V>,
index: hash_table::OccupiedEntry<'a, usize>,
hash_builder: PhantomData<&'a S>,
}
impl<K: fmt::Debug, V: fmt::Debug, S> fmt::Debug for RawOccupiedEntryMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawOccupiedEntryMut")
.field("key", self.key())
.field("value", self.get())
.finish_non_exhaustive()
}
}
impl<'a, K, V, S> RawOccupiedEntryMut<'a, K, V, S> {
/// Return the index of the key-value pair
#[inline]
pub fn index(&self) -> usize {
*self.index.get()
}
#[inline]
fn into_ref_mut(self) -> RefMut<'a, K, V> {
RefMut::new(self.index.into_table(), self.entries)
}
/// Gets a reference to the entry's key in the map.
///
/// Note that this is not the key that was used to find the entry. There may be an observable
/// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like
/// extra fields or the memory address of an allocation.
pub fn key(&self) -> &K {
&self.entries[self.index()].key
}
/// Gets a mutable reference to the entry's key in the map.
///
/// Note that this is not the key that was used to find the entry. There may be an observable
/// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like
/// extra fields or the memory address of an allocation.
pub fn key_mut(&mut self) -> &mut K {
let index = self.index();
&mut self.entries[index].key
}
/// Converts into a mutable reference to the entry's key in the map,
/// with a lifetime bound to the map itself.
///
/// Note that this is not the key that was used to find the entry. There may be an observable
/// difference if the key type has any distinguishing features outside of `Hash` and `Eq`, like
/// extra fields or the memory address of an allocation.
pub fn into_key(self) -> &'a mut K {
let index = self.index();
&mut self.entries[index].key
}
/// Gets a reference to the entry's value in the map.
pub fn get(&self) -> &V {
&self.entries[self.index()].value
}
/// Gets a mutable reference to the entry's value in the map.
///
/// If you need a reference which may outlive the destruction of the
/// [`RawEntryMut`] value, see [`into_mut`][Self::into_mut].
pub fn get_mut(&mut self) -> &mut V {
let index = self.index();
&mut self.entries[index].value
}
/// Converts into a mutable reference to the entry's value in the map,
/// with a lifetime bound to the map itself.
pub fn into_mut(self) -> &'a mut V {
let index = self.index();
&mut self.entries[index].value
}
/// Gets a reference to the entry's key and value in the map.
pub fn get_key_value(&self) -> (&K, &V) {
self.entries[self.index()].refs()
}
/// Gets a reference to the entry's key and value in the map.
pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) {
let index = self.index();
self.entries[index].muts()
}
/// Converts into a mutable reference to the entry's key and value in the map,
/// with a lifetime bound to the map itself.
pub fn into_key_value_mut(self) -> (&'a mut K, &'a mut V) {
let index = self.index();
self.entries[index].muts()
}
/// Sets the value of the entry, and returns the entry's old value.
pub fn insert(&mut self, value: V) -> V {
mem::replace(self.get_mut(), value)
}
/// Sets the key of the entry, and returns the entry's old key.
pub fn insert_key(&mut self, key: K) -> K {
mem::replace(self.key_mut(), key)
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// **NOTE:** This is equivalent to [`.swap_remove()`][Self::swap_remove], replacing this
/// entry's position with the last element, and it is deprecated in favor of calling that
/// explicitly. If you need to preserve the relative order of the keys in the map, use
/// [`.shift_remove()`][Self::shift_remove] instead.
#[deprecated(note = "`remove` disrupts the map order -- \
use `swap_remove` or `shift_remove` for explicit behavior.")]
pub fn remove(self) -> V {
self.swap_remove()
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove(self) -> V {
self.swap_remove_entry().1
}
/// Remove the key, value pair stored in the map for this entry, and return the value.
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove(self) -> V {
self.shift_remove_entry().1
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// **NOTE:** This is equivalent to [`.swap_remove_entry()`][Self::swap_remove_entry],
/// replacing this entry's position with the last element, and it is deprecated in favor of
/// calling that explicitly. If you need to preserve the relative order of the keys in the map,
/// use [`.shift_remove_entry()`][Self::shift_remove_entry] instead.
#[deprecated(note = "`remove_entry` disrupts the map order -- \
use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")]
pub fn remove_entry(self) -> (K, V) {
self.swap_remove_entry()
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::swap_remove`][alloc::vec::Vec::swap_remove], the pair is removed by swapping it
/// with the last element of the map and popping it off.
/// **This perturbs the position of what used to be the last element!**
///
/// Computes in **O(1)** time (average).
pub fn swap_remove_entry(self) -> (K, V) {
let (index, entry) = self.index.remove();
RefMut::new(entry.into_table(), self.entries).swap_remove_finish(index)
}
/// Remove and return the key, value pair stored in the map for this entry
///
/// Like [`Vec::remove`][alloc::vec::Vec::remove], the pair is removed by shifting all of the
/// elements that follow it, preserving their relative order.
/// **This perturbs the index of all of those elements!**
///
/// Computes in **O(n)** time (average).
pub fn shift_remove_entry(self) -> (K, V) {
let (index, entry) = self.index.remove();
RefMut::new(entry.into_table(), self.entries).shift_remove_finish(index)
}
/// Moves the position of the entry to a new index
/// by shifting all other entries in-between.
///
/// This is equivalent to [`IndexMap::move_index`]
/// coming `from` the current [`.index()`][Self::index].
///
/// * If `self.index() < to`, the other pairs will shift down while the targeted pair moves up.
/// * If `self.index() > to`, the other pairs will shift up while the targeted pair moves down.
///
/// ***Panics*** if `to` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn move_index(self, to: usize) {
let index = self.index();
self.into_ref_mut().move_index(index, to);
}
/// Swaps the position of entry with another.
///
/// This is equivalent to [`IndexMap::swap_indices`]
/// with the current [`.index()`][Self::index] as one of the two being swapped.
///
/// ***Panics*** if the `other` index is out of bounds.
///
/// Computes in **O(1)** time (average).
#[track_caller]
pub fn swap_indices(self, other: usize) {
let index = self.index();
self.into_ref_mut().swap_indices(index, other);
}
}
/// A view into a vacant raw entry in an [`IndexMap`].
/// It is part of the [`RawEntryMut`] enum.
pub struct RawVacantEntryMut<'a, K, V, S> {
map: RefMut<'a, K, V>,
hash_builder: &'a S,
}
impl<K, V, S> fmt::Debug for RawVacantEntryMut<'_, K, V, S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("RawVacantEntryMut").finish_non_exhaustive()
}
}
impl<'a, K, V, S> RawVacantEntryMut<'a, K, V, S> {
/// Return the index where a key-value pair may be inserted.
pub fn index(&self) -> usize {
self.map.indices.len()
}
/// Inserts the given key and value into the map,
/// and returns mutable references to them.
pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let mut h = self.hash_builder.build_hasher();
key.hash(&mut h);
self.insert_hashed_nocheck(h.finish(), key, value)
}
/// Inserts the given key and value into the map with the provided hash,
/// and returns mutable references to them.
pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) {
let hash = HashValue(hash as usize);
self.map.insert_unique(hash, key, value).into_muts()
}
/// Inserts the given key and value into the map at the given index,
/// shifting others to the right, and returns mutable references to them.
///
/// ***Panics*** if `index` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn shift_insert(self, index: usize, key: K, value: V) -> (&'a mut K, &'a mut V)
where
K: Hash,
S: BuildHasher,
{
let mut h = self.hash_builder.build_hasher();
key.hash(&mut h);
self.shift_insert_hashed_nocheck(index, h.finish(), key, value)
}
/// Inserts the given key and value into the map with the provided hash
/// at the given index, and returns mutable references to them.
///
/// ***Panics*** if `index` is out of bounds.
///
/// Computes in **O(n)** time (average).
#[track_caller]
pub fn shift_insert_hashed_nocheck(
mut self,
index: usize,
hash: u64,
key: K,
value: V,
) -> (&'a mut K, &'a mut V) {
let hash = HashValue(hash as usize);
self.map.shift_insert_unique(index, hash, key, value);
self.map.entries[index].muts()
}
}
mod private {
pub trait Sealed {}
impl<K, V, S> Sealed for super::IndexMap<K, V, S> {}
}

830
vendor/indexmap/src/map/iter.rs vendored Normal file
View File

@@ -0,0 +1,830 @@
use super::{Bucket, ExtractCore, IndexMap, IndexMapCore, Slice};
use alloc::vec::{self, Vec};
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::iter::FusedIterator;
use core::ops::{Index, RangeBounds};
use core::slice;
impl<'a, K, V, S> IntoIterator for &'a IndexMap<K, V, S> {
type Item = (&'a K, &'a V);
type IntoIter = Iter<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, K, V, S> IntoIterator for &'a mut IndexMap<K, V, S> {
type Item = (&'a K, &'a mut V);
type IntoIter = IterMut<'a, K, V>;
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<K, V, S> IntoIterator for IndexMap<K, V, S> {
type Item = (K, V);
type IntoIter = IntoIter<K, V>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.into_entries())
}
}
/// An iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::iter`] method.
/// See its documentation for more.
pub struct Iter<'a, K, V> {
iter: slice::Iter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Iter<'a, K, V> {
pub(super) fn new(entries: &'a [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &'a Slice<K, V> {
Slice::from_slice(self.iter.as_slice())
}
}
impl<'a, K, V> Iterator for Iter<'a, K, V> {
type Item = (&'a K, &'a V);
iterator_methods!(Bucket::refs);
}
impl<K, V> DoubleEndedIterator for Iter<'_, K, V> {
double_ended_iterator_methods!(Bucket::refs);
}
impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Iter<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Iter<'_, K, V> {
fn clone(&self) -> Self {
Iter {
iter: self.iter.clone(),
}
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<K, V> Default for Iter<'_, K, V> {
fn default() -> Self {
Self { iter: [].iter() }
}
}
/// A mutable iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::iter_mut`] method.
/// See its documentation for more.
pub struct IterMut<'a, K, V> {
iter: slice::IterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> IterMut<'a, K, V> {
pub(super) fn new(entries: &'a mut [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter_mut(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<K, V> {
Slice::from_slice(self.iter.as_slice())
}
/// Returns a mutable slice of the remaining entries in the iterator.
///
/// To avoid creating `&mut` references that alias, this is forced to consume the iterator.
pub fn into_slice(self) -> &'a mut Slice<K, V> {
Slice::from_mut_slice(self.iter.into_slice())
}
}
impl<'a, K, V> Iterator for IterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
iterator_methods!(Bucket::ref_mut);
}
impl<K, V> DoubleEndedIterator for IterMut<'_, K, V> {
double_ended_iterator_methods!(Bucket::ref_mut);
}
impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IterMut<'_, K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for IterMut<'_, K, V> {
fn default() -> Self {
Self {
iter: [].iter_mut(),
}
}
}
/// A mutable iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`MutableKeys::iter_mut2`][super::MutableKeys::iter_mut2] method.
/// See its documentation for more.
pub struct IterMut2<'a, K, V> {
iter: slice::IterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> IterMut2<'a, K, V> {
pub(super) fn new(entries: &'a mut [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter_mut(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<K, V> {
Slice::from_slice(self.iter.as_slice())
}
/// Returns a mutable slice of the remaining entries in the iterator.
///
/// To avoid creating `&mut` references that alias, this is forced to consume the iterator.
pub fn into_slice(self) -> &'a mut Slice<K, V> {
Slice::from_mut_slice(self.iter.into_slice())
}
}
impl<'a, K, V> Iterator for IterMut2<'a, K, V> {
type Item = (&'a mut K, &'a mut V);
iterator_methods!(Bucket::muts);
}
impl<K, V> DoubleEndedIterator for IterMut2<'_, K, V> {
double_ended_iterator_methods!(Bucket::muts);
}
impl<K, V> ExactSizeIterator for IterMut2<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IterMut2<'_, K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut2<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for IterMut2<'_, K, V> {
fn default() -> Self {
Self {
iter: [].iter_mut(),
}
}
}
/// An owning iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::into_iter`] method
/// (provided by the [`IntoIterator`] trait). See its documentation for more.
#[derive(Clone)]
pub struct IntoIter<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> IntoIter<K, V> {
pub(super) fn new(entries: Vec<Bucket<K, V>>) -> Self {
Self {
iter: entries.into_iter(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<K, V> {
Slice::from_slice(self.iter.as_slice())
}
/// Returns a mutable slice of the remaining entries in the iterator.
pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> {
Slice::from_mut_slice(self.iter.as_mut_slice())
}
}
impl<K, V> Iterator for IntoIter<K, V> {
type Item = (K, V);
iterator_methods!(Bucket::key_value);
}
impl<K, V> DoubleEndedIterator for IntoIter<K, V> {
double_ended_iterator_methods!(Bucket::key_value);
}
impl<K, V> ExactSizeIterator for IntoIter<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoIter<K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for IntoIter<K, V> {
fn default() -> Self {
Self {
iter: Vec::new().into_iter(),
}
}
}
/// A draining iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::drain`] method.
/// See its documentation for more.
pub struct Drain<'a, K, V> {
iter: vec::Drain<'a, Bucket<K, V>>,
}
impl<'a, K, V> Drain<'a, K, V> {
pub(super) fn new(iter: vec::Drain<'a, Bucket<K, V>>) -> Self {
Self { iter }
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<K, V> {
Slice::from_slice(self.iter.as_slice())
}
}
impl<K, V> Iterator for Drain<'_, K, V> {
type Item = (K, V);
iterator_methods!(Bucket::key_value);
}
impl<K, V> DoubleEndedIterator for Drain<'_, K, V> {
double_ended_iterator_methods!(Bucket::key_value);
}
impl<K, V> ExactSizeIterator for Drain<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Drain<'_, K, V> {}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Drain<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
/// An iterator over the keys of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::keys`] method.
/// See its documentation for more.
pub struct Keys<'a, K, V> {
iter: slice::Iter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Keys<'a, K, V> {
pub(super) fn new(entries: &'a [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter(),
}
}
}
impl<'a, K, V> Iterator for Keys<'a, K, V> {
type Item = &'a K;
iterator_methods!(Bucket::key_ref);
}
impl<K, V> DoubleEndedIterator for Keys<'_, K, V> {
double_ended_iterator_methods!(Bucket::key_ref);
}
impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Keys<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Keys<'_, K, V> {
fn clone(&self) -> Self {
Keys {
iter: self.iter.clone(),
}
}
}
impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<K, V> Default for Keys<'_, K, V> {
fn default() -> Self {
Self { iter: [].iter() }
}
}
/// Access [`IndexMap`] keys at indexed positions.
///
/// While [`Index<usize> for IndexMap`][values] accesses a map's values,
/// indexing through [`IndexMap::keys`] offers an alternative to access a map's
/// keys instead.
///
/// [values]: IndexMap#impl-Index<usize>-for-IndexMap<K,+V,+S>
///
/// Since `Keys` is also an iterator, consuming items from the iterator will
/// offset the effective indices. Similarly, if `Keys` is obtained from
/// [`Slice::keys`], indices will be interpreted relative to the position of
/// that slice.
///
/// # Examples
///
/// ```
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
/// map.insert(word.to_lowercase(), word.to_uppercase());
/// }
///
/// assert_eq!(map[0], "LOREM");
/// assert_eq!(map.keys()[0], "lorem");
/// assert_eq!(map[1], "IPSUM");
/// assert_eq!(map.keys()[1], "ipsum");
///
/// map.reverse();
/// assert_eq!(map.keys()[0], "amet");
/// assert_eq!(map.keys()[1], "sit");
///
/// map.sort_keys();
/// assert_eq!(map.keys()[0], "amet");
/// assert_eq!(map.keys()[1], "dolor");
///
/// // Advancing the iterator will offset the indexing
/// let mut keys = map.keys();
/// assert_eq!(keys[0], "amet");
/// assert_eq!(keys.next().map(|s| &**s), Some("amet"));
/// assert_eq!(keys[0], "dolor");
/// assert_eq!(keys[1], "ipsum");
///
/// // Slices may have an offset as well
/// let slice = &map[2..];
/// assert_eq!(slice[0], "IPSUM");
/// assert_eq!(slice.keys()[0], "ipsum");
/// ```
///
/// ```should_panic
/// use indexmap::IndexMap;
///
/// let mut map = IndexMap::new();
/// map.insert("foo", 1);
/// println!("{:?}", map.keys()[10]); // panics!
/// ```
impl<K, V> Index<usize> for Keys<'_, K, V> {
type Output = K;
/// Returns a reference to the key at the supplied `index`.
///
/// ***Panics*** if `index` is out of bounds.
fn index(&self, index: usize) -> &K {
&self.iter.as_slice()[index].key
}
}
/// An owning iterator over the keys of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::into_keys`] method.
/// See its documentation for more.
pub struct IntoKeys<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> IntoKeys<K, V> {
pub(super) fn new(entries: Vec<Bucket<K, V>>) -> Self {
Self {
iter: entries.into_iter(),
}
}
}
impl<K, V> Iterator for IntoKeys<K, V> {
type Item = K;
iterator_methods!(Bucket::key);
}
impl<K, V> DoubleEndedIterator for IntoKeys<K, V> {
double_ended_iterator_methods!(Bucket::key);
}
impl<K, V> ExactSizeIterator for IntoKeys<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoKeys<K, V> {}
impl<K: fmt::Debug, V> fmt::Debug for IntoKeys<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for IntoKeys<K, V> {
fn default() -> Self {
Self {
iter: Vec::new().into_iter(),
}
}
}
/// An iterator over the values of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::values`] method.
/// See its documentation for more.
pub struct Values<'a, K, V> {
iter: slice::Iter<'a, Bucket<K, V>>,
}
impl<'a, K, V> Values<'a, K, V> {
pub(super) fn new(entries: &'a [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter(),
}
}
}
impl<'a, K, V> Iterator for Values<'a, K, V> {
type Item = &'a V;
iterator_methods!(Bucket::value_ref);
}
impl<K, V> DoubleEndedIterator for Values<'_, K, V> {
double_ended_iterator_methods!(Bucket::value_ref);
}
impl<K, V> ExactSizeIterator for Values<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for Values<'_, K, V> {}
// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
impl<K, V> Clone for Values<'_, K, V> {
fn clone(&self) -> Self {
Values {
iter: self.iter.clone(),
}
}
}
impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<K, V> Default for Values<'_, K, V> {
fn default() -> Self {
Self { iter: [].iter() }
}
}
/// A mutable iterator over the values of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::values_mut`] method.
/// See its documentation for more.
pub struct ValuesMut<'a, K, V> {
iter: slice::IterMut<'a, Bucket<K, V>>,
}
impl<'a, K, V> ValuesMut<'a, K, V> {
pub(super) fn new(entries: &'a mut [Bucket<K, V>]) -> Self {
Self {
iter: entries.iter_mut(),
}
}
}
impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
type Item = &'a mut V;
iterator_methods!(Bucket::value_mut);
}
impl<K, V> DoubleEndedIterator for ValuesMut<'_, K, V> {
double_ended_iterator_methods!(Bucket::value_mut);
}
impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for ValuesMut<'_, K, V> {
fn default() -> Self {
Self {
iter: [].iter_mut(),
}
}
}
/// An owning iterator over the values of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::into_values`] method.
/// See its documentation for more.
pub struct IntoValues<K, V> {
iter: vec::IntoIter<Bucket<K, V>>,
}
impl<K, V> IntoValues<K, V> {
pub(super) fn new(entries: Vec<Bucket<K, V>>) -> Self {
Self {
iter: entries.into_iter(),
}
}
}
impl<K, V> Iterator for IntoValues<K, V> {
type Item = V;
iterator_methods!(Bucket::value);
}
impl<K, V> DoubleEndedIterator for IntoValues<K, V> {
double_ended_iterator_methods!(Bucket::value);
}
impl<K, V> ExactSizeIterator for IntoValues<K, V> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<K, V> FusedIterator for IntoValues<K, V> {}
impl<K, V: fmt::Debug> fmt::Debug for IntoValues<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
impl<K, V> Default for IntoValues<K, V> {
fn default() -> Self {
Self {
iter: Vec::new().into_iter(),
}
}
}
/// A splicing iterator for `IndexMap`.
///
/// This `struct` is created by [`IndexMap::splice()`].
/// See its documentation for more.
pub struct Splice<'a, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
map: &'a mut IndexMap<K, V, S>,
tail: IndexMapCore<K, V>,
drain: vec::IntoIter<Bucket<K, V>>,
replace_with: I,
}
impl<'a, I, K, V, S> Splice<'a, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
#[track_caller]
pub(super) fn new<R>(map: &'a mut IndexMap<K, V, S>, range: R, replace_with: I) -> Self
where
R: RangeBounds<usize>,
{
let (tail, drain) = map.core.split_splice(range);
Self {
map,
tail,
drain,
replace_with,
}
}
}
impl<I, K, V, S> Drop for Splice<'_, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
fn drop(&mut self) {
// Finish draining unconsumed items. We don't strictly *have* to do this
// manually, since we already split it into separate memory, but it will
// match the drop order of `vec::Splice` items this way.
let _ = self.drain.nth(usize::MAX);
// Now insert all the new items. If a key matches an existing entry, it
// keeps the original position and only replaces the value, like `insert`.
while let Some((key, value)) = self.replace_with.next() {
// Since the tail is disjoint, we can try to update it first,
// or else insert (update or append) the primary map.
let hash = self.map.hash(&key);
if let Some(i) = self.tail.get_index_of(hash, &key) {
self.tail.as_entries_mut()[i].value = value;
} else {
self.map.core.insert_full(hash, key, value);
}
}
// Finally, re-append the tail
self.map.core.append_unchecked(&mut self.tail);
}
}
impl<I, K, V, S> Iterator for Splice<'_, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
type Item = (K, V);
fn next(&mut self) -> Option<Self::Item> {
self.drain.next().map(Bucket::key_value)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.drain.size_hint()
}
}
impl<I, K, V, S> DoubleEndedIterator for Splice<'_, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.drain.next_back().map(Bucket::key_value)
}
}
impl<I, K, V, S> ExactSizeIterator for Splice<'_, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
fn len(&self) -> usize {
self.drain.len()
}
}
impl<I, K, V, S> FusedIterator for Splice<'_, I, K, V, S>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
S: BuildHasher,
{
}
impl<I, K, V, S> fmt::Debug for Splice<'_, I, K, V, S>
where
I: fmt::Debug + Iterator<Item = (K, V)>,
K: fmt::Debug + Hash + Eq,
V: fmt::Debug,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Follow `vec::Splice` in only printing the drain and replacement
f.debug_struct("Splice")
.field("drain", &self.drain)
.field("replace_with", &self.replace_with)
.finish()
}
}
/// An extracting iterator for `IndexMap`.
///
/// This `struct` is created by [`IndexMap::extract_if()`].
/// See its documentation for more.
pub struct ExtractIf<'a, K, V, F> {
inner: ExtractCore<'a, K, V>,
pred: F,
}
impl<K, V, F> ExtractIf<'_, K, V, F> {
#[track_caller]
pub(super) fn new<R>(core: &mut IndexMapCore<K, V>, range: R, pred: F) -> ExtractIf<'_, K, V, F>
where
R: RangeBounds<usize>,
F: FnMut(&K, &mut V) -> bool,
{
ExtractIf {
inner: core.extract(range),
pred,
}
}
}
impl<K, V, F> Iterator for ExtractIf<'_, K, V, F>
where
F: FnMut(&K, &mut V) -> bool,
{
type Item = (K, V);
fn next(&mut self) -> Option<Self::Item> {
self.inner
.extract_if(|bucket| {
let (key, value) = bucket.ref_mut();
(self.pred)(key, value)
})
.map(Bucket::key_value)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.inner.remaining()))
}
}
impl<K, V, F> FusedIterator for ExtractIf<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {}
impl<K, V, F> fmt::Debug for ExtractIf<'_, K, V, F>
where
K: fmt::Debug,
V: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ExtractIf").finish_non_exhaustive()
}
}

165
vendor/indexmap/src/map/mutable.rs vendored Normal file
View File

@@ -0,0 +1,165 @@
use core::hash::{BuildHasher, Hash};
use super::{
Bucket, Entry, Equivalent, IndexMap, IndexedEntry, IterMut2, OccupiedEntry, VacantEntry,
};
/// Opt-in mutable access to [`IndexMap`] keys.
///
/// These methods expose `&mut K`, mutable references to the key as it is stored
/// in the map.
/// You are allowed to modify the keys in the map **if the modification
/// does not change the key's hash and equality**.
///
/// If keys are modified erroneously, you can no longer look them up.
/// This is sound (memory safe) but a logical error hazard (just like
/// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be).
///
/// `use` this trait to enable its methods for `IndexMap`.
///
/// This trait is sealed and cannot be implemented for types outside this crate.
pub trait MutableKeys: private::Sealed {
type Key;
type Value;
/// Return item index, mutable reference to key and value
///
/// Computes in **O(1)** time (average).
fn get_full_mut2<Q>(&mut self, key: &Q) -> Option<(usize, &mut Self::Key, &mut Self::Value)>
where
Q: ?Sized + Hash + Equivalent<Self::Key>;
/// Return mutable reference to key and value at an index.
///
/// Valid indices are `0 <= index < self.len()`.
///
/// Computes in **O(1)** time.
fn get_index_mut2(&mut self, index: usize) -> Option<(&mut Self::Key, &mut Self::Value)>;
/// Return an iterator over the key-value pairs of the map, in their order
fn iter_mut2(&mut self) -> IterMut2<'_, Self::Key, Self::Value>;
/// Scan through each key-value pair in the map and keep those where the
/// closure `keep` returns `true`.
///
/// The elements are visited in order, and remaining elements keep their
/// order.
///
/// Computes in **O(n)** time (average).
fn retain2<F>(&mut self, keep: F)
where
F: FnMut(&mut Self::Key, &mut Self::Value) -> bool;
}
/// Opt-in mutable access to [`IndexMap`] keys.
///
/// See [`MutableKeys`] for more information.
impl<K, V, S> MutableKeys for IndexMap<K, V, S>
where
S: BuildHasher,
{
type Key = K;
type Value = V;
fn get_full_mut2<Q>(&mut self, key: &Q) -> Option<(usize, &mut K, &mut V)>
where
Q: ?Sized + Hash + Equivalent<K>,
{
if let Some(i) = self.get_index_of(key) {
let entry = &mut self.as_entries_mut()[i];
Some((i, &mut entry.key, &mut entry.value))
} else {
None
}
}
fn get_index_mut2(&mut self, index: usize) -> Option<(&mut K, &mut V)> {
self.as_entries_mut().get_mut(index).map(Bucket::muts)
}
fn iter_mut2(&mut self) -> IterMut2<'_, Self::Key, Self::Value> {
IterMut2::new(self.as_entries_mut())
}
fn retain2<F>(&mut self, keep: F)
where
F: FnMut(&mut K, &mut V) -> bool,
{
self.core.retain_in_order(keep);
}
}
/// Opt-in mutable access to [`Entry`] keys.
///
/// These methods expose `&mut K`, mutable references to the key as it is stored
/// in the map.
/// You are allowed to modify the keys in the map **if the modification
/// does not change the key's hash and equality**.
///
/// If keys are modified erroneously, you can no longer look them up.
/// This is sound (memory safe) but a logical error hazard (just like
/// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be).
///
/// `use` this trait to enable its methods for `Entry`.
///
/// This trait is sealed and cannot be implemented for types outside this crate.
pub trait MutableEntryKey: private::Sealed {
type Key;
/// Gets a mutable reference to the entry's key, either within the map if occupied,
/// or else the new key that was used to find the entry.
fn key_mut(&mut self) -> &mut Self::Key;
}
/// Opt-in mutable access to [`Entry`] keys.
///
/// See [`MutableEntryKey`] for more information.
impl<K, V> MutableEntryKey for Entry<'_, K, V> {
type Key = K;
fn key_mut(&mut self) -> &mut Self::Key {
match self {
Entry::Occupied(e) => e.key_mut(),
Entry::Vacant(e) => e.key_mut(),
}
}
}
/// Opt-in mutable access to [`OccupiedEntry`] keys.
///
/// See [`MutableEntryKey`] for more information.
impl<K, V> MutableEntryKey for OccupiedEntry<'_, K, V> {
type Key = K;
fn key_mut(&mut self) -> &mut Self::Key {
self.key_mut()
}
}
/// Opt-in mutable access to [`VacantEntry`] keys.
///
/// See [`MutableEntryKey`] for more information.
impl<K, V> MutableEntryKey for VacantEntry<'_, K, V> {
type Key = K;
fn key_mut(&mut self) -> &mut Self::Key {
self.key_mut()
}
}
/// Opt-in mutable access to [`IndexedEntry`] keys.
///
/// See [`MutableEntryKey`] for more information.
impl<K, V> MutableEntryKey for IndexedEntry<'_, K, V> {
type Key = K;
fn key_mut(&mut self) -> &mut Self::Key {
self.key_mut()
}
}
mod private {
pub trait Sealed {}
impl<K, V, S> Sealed for super::IndexMap<K, V, S> {}
impl<K, V> Sealed for super::Entry<'_, K, V> {}
impl<K, V> Sealed for super::OccupiedEntry<'_, K, V> {}
impl<K, V> Sealed for super::VacantEntry<'_, K, V> {}
impl<K, V> Sealed for super::IndexedEntry<'_, K, V> {}
}

138
vendor/indexmap/src/map/serde_seq.rs vendored Normal file
View File

@@ -0,0 +1,138 @@
//! Functions to serialize and deserialize an [`IndexMap`] as an ordered sequence.
//!
//! The default `serde` implementation serializes `IndexMap` as a normal map,
//! but there is no guarantee that serialization formats will preserve the order
//! of the key-value pairs. This module serializes `IndexMap` as a sequence of
//! `(key, value)` elements instead, in order.
//!
//! This module may be used in a field attribute for derived implementations:
//!
//! ```
//! # use indexmap::IndexMap;
//! # use serde::{Deserialize, Serialize};
//! #[derive(Deserialize, Serialize)]
//! struct Data {
//! #[serde(with = "indexmap::map::serde_seq")]
//! map: IndexMap<i32, u64>,
//! // ...
//! }
//! ```
use serde_core::de::{Deserialize, Deserializer, SeqAccess, Visitor};
use serde_core::ser::{Serialize, Serializer};
use core::fmt::{self, Formatter};
use core::hash::{BuildHasher, Hash};
use core::marker::PhantomData;
use crate::map::Slice as MapSlice;
use crate::serde::cautious_capacity;
use crate::set::Slice as SetSlice;
use crate::IndexMap;
/// Serializes a [`map::Slice`][MapSlice] as an ordered sequence.
///
/// This behaves like [`crate::map::serde_seq`] for `IndexMap`, serializing a sequence
/// of `(key, value)` pairs, rather than as a map that might not preserve order.
impl<K, V> Serialize for MapSlice<K, V>
where
K: Serialize,
V: Serialize,
{
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
where
T: Serializer,
{
serializer.collect_seq(self)
}
}
/// Serializes a [`set::Slice`][SetSlice] as an ordered sequence.
impl<T> Serialize for SetSlice<T>
where
T: Serialize,
{
fn serialize<Se>(&self, serializer: Se) -> Result<Se::Ok, Se::Error>
where
Se: Serializer,
{
serializer.collect_seq(self)
}
}
/// Serializes an [`IndexMap`] as an ordered sequence.
///
/// This function may be used in a field attribute for deriving [`Serialize`]:
///
/// ```
/// # use indexmap::IndexMap;
/// # use serde::Serialize;
/// #[derive(Serialize)]
/// struct Data {
/// #[serde(serialize_with = "indexmap::map::serde_seq::serialize")]
/// map: IndexMap<i32, u64>,
/// // ...
/// }
/// ```
pub fn serialize<K, V, S, T>(map: &IndexMap<K, V, S>, serializer: T) -> Result<T::Ok, T::Error>
where
K: Serialize,
V: Serialize,
T: Serializer,
{
serializer.collect_seq(map)
}
/// Visitor to deserialize a *sequenced* `IndexMap`
struct SeqVisitor<K, V, S>(PhantomData<(K, V, S)>);
impl<'de, K, V, S> Visitor<'de> for SeqVisitor<K, V, S>
where
K: Deserialize<'de> + Eq + Hash,
V: Deserialize<'de>,
S: Default + BuildHasher,
{
type Value = IndexMap<K, V, S>;
fn expecting(&self, formatter: &mut Formatter<'_>) -> fmt::Result {
write!(formatter, "a sequenced map")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: SeqAccess<'de>,
{
let capacity = cautious_capacity::<K, V>(seq.size_hint());
let mut map = IndexMap::with_capacity_and_hasher(capacity, S::default());
while let Some((key, value)) = seq.next_element()? {
map.insert(key, value);
}
Ok(map)
}
}
/// Deserializes an [`IndexMap`] from an ordered sequence.
///
/// This function may be used in a field attribute for deriving [`Deserialize`]:
///
/// ```
/// # use indexmap::IndexMap;
/// # use serde::Deserialize;
/// #[derive(Deserialize)]
/// struct Data {
/// #[serde(deserialize_with = "indexmap::map::serde_seq::deserialize")]
/// map: IndexMap<i32, u64>,
/// // ...
/// }
/// ```
pub fn deserialize<'de, D, K, V, S>(deserializer: D) -> Result<IndexMap<K, V, S>, D::Error>
where
D: Deserializer<'de>,
K: Deserialize<'de> + Eq + Hash,
V: Deserialize<'de>,
S: Default + BuildHasher,
{
deserializer.deserialize_seq(SeqVisitor(PhantomData))
}

800
vendor/indexmap/src/map/slice.rs vendored Normal file
View File

@@ -0,0 +1,800 @@
use super::{
Bucket, IndexMap, IntoIter, IntoKeys, IntoValues, Iter, IterMut, Keys, Values, ValuesMut,
};
use crate::util::{slice_eq, try_simplify_range};
use crate::GetDisjointMutError;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{self, Bound, Index, IndexMut, RangeBounds};
/// A dynamically-sized slice of key-value pairs in an [`IndexMap`].
///
/// This supports indexed operations much like a `[(K, V)]` slice,
/// but not any hashed operations on the map keys.
///
/// Unlike `IndexMap`, `Slice` does consider the order for [`PartialEq`]
/// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`].
#[repr(transparent)]
pub struct Slice<K, V> {
pub(crate) entries: [Bucket<K, V>],
}
// SAFETY: `Slice<K, V>` is a transparent wrapper around `[Bucket<K, V>]`,
// and reference lifetimes are bound together in function signatures.
#[allow(unsafe_code)]
impl<K, V> Slice<K, V> {
pub(super) const fn from_slice(entries: &[Bucket<K, V>]) -> &Self {
unsafe { &*(entries as *const [Bucket<K, V>] as *const Self) }
}
pub(super) fn from_mut_slice(entries: &mut [Bucket<K, V>]) -> &mut Self {
unsafe { &mut *(entries as *mut [Bucket<K, V>] as *mut Self) }
}
pub(super) fn from_boxed(entries: Box<[Bucket<K, V>]>) -> Box<Self> {
unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) }
}
fn into_boxed(self: Box<Self>) -> Box<[Bucket<K, V>]> {
unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket<K, V>]) }
}
}
impl<K, V> Slice<K, V> {
pub(crate) fn into_entries(self: Box<Self>) -> Vec<Bucket<K, V>> {
self.into_boxed().into_vec()
}
/// Returns an empty slice.
pub const fn new<'a>() -> &'a Self {
Self::from_slice(&[])
}
/// Returns an empty mutable slice.
pub fn new_mut<'a>() -> &'a mut Self {
Self::from_mut_slice(&mut [])
}
/// Return the number of key-value pairs in the map slice.
#[inline]
pub const fn len(&self) -> usize {
self.entries.len()
}
/// Returns true if the map slice contains no elements.
#[inline]
pub const fn is_empty(&self) -> bool {
self.entries.is_empty()
}
/// Get a key-value pair by index.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_index(&self, index: usize) -> Option<(&K, &V)> {
self.entries.get(index).map(Bucket::refs)
}
/// Get a key-value pair by index, with mutable access to the value.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> {
self.entries.get_mut(index).map(Bucket::ref_mut)
}
/// Returns a slice of key-value pairs in the given range of indices.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Self> {
let range = try_simplify_range(range, self.entries.len())?;
self.entries.get(range).map(Slice::from_slice)
}
/// Returns a mutable slice of key-value pairs in the given range of indices.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Self> {
let range = try_simplify_range(range, self.entries.len())?;
self.entries.get_mut(range).map(Slice::from_mut_slice)
}
/// Get the first key-value pair.
pub fn first(&self) -> Option<(&K, &V)> {
self.entries.first().map(Bucket::refs)
}
/// Get the first key-value pair, with mutable access to the value.
pub fn first_mut(&mut self) -> Option<(&K, &mut V)> {
self.entries.first_mut().map(Bucket::ref_mut)
}
/// Get the last key-value pair.
pub fn last(&self) -> Option<(&K, &V)> {
self.entries.last().map(Bucket::refs)
}
/// Get the last key-value pair, with mutable access to the value.
pub fn last_mut(&mut self) -> Option<(&K, &mut V)> {
self.entries.last_mut().map(Bucket::ref_mut)
}
/// Divides one slice into two at an index.
///
/// ***Panics*** if `index > len`.
#[track_caller]
pub fn split_at(&self, index: usize) -> (&Self, &Self) {
let (first, second) = self.entries.split_at(index);
(Self::from_slice(first), Self::from_slice(second))
}
/// Divides one mutable slice into two at an index.
///
/// ***Panics*** if `index > len`.
#[track_caller]
pub fn split_at_mut(&mut self, index: usize) -> (&mut Self, &mut Self) {
let (first, second) = self.entries.split_at_mut(index);
(Self::from_mut_slice(first), Self::from_mut_slice(second))
}
/// Returns the first key-value pair and the rest of the slice,
/// or `None` if it is empty.
pub fn split_first(&self) -> Option<((&K, &V), &Self)> {
if let [first, rest @ ..] = &self.entries {
Some((first.refs(), Self::from_slice(rest)))
} else {
None
}
}
/// Returns the first key-value pair and the rest of the slice,
/// with mutable access to the value, or `None` if it is empty.
pub fn split_first_mut(&mut self) -> Option<((&K, &mut V), &mut Self)> {
if let [first, rest @ ..] = &mut self.entries {
Some((first.ref_mut(), Self::from_mut_slice(rest)))
} else {
None
}
}
/// Returns the last key-value pair and the rest of the slice,
/// or `None` if it is empty.
pub fn split_last(&self) -> Option<((&K, &V), &Self)> {
if let [rest @ .., last] = &self.entries {
Some((last.refs(), Self::from_slice(rest)))
} else {
None
}
}
/// Returns the last key-value pair and the rest of the slice,
/// with mutable access to the value, or `None` if it is empty.
pub fn split_last_mut(&mut self) -> Option<((&K, &mut V), &mut Self)> {
if let [rest @ .., last] = &mut self.entries {
Some((last.ref_mut(), Self::from_mut_slice(rest)))
} else {
None
}
}
/// Return an iterator over the key-value pairs of the map slice.
pub fn iter(&self) -> Iter<'_, K, V> {
Iter::new(&self.entries)
}
/// Return an iterator over the key-value pairs of the map slice.
pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
IterMut::new(&mut self.entries)
}
/// Return an iterator over the keys of the map slice.
pub fn keys(&self) -> Keys<'_, K, V> {
Keys::new(&self.entries)
}
/// Return an owning iterator over the keys of the map slice.
pub fn into_keys(self: Box<Self>) -> IntoKeys<K, V> {
IntoKeys::new(self.into_entries())
}
/// Return an iterator over the values of the map slice.
pub fn values(&self) -> Values<'_, K, V> {
Values::new(&self.entries)
}
/// Return an iterator over mutable references to the the values of the map slice.
pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
ValuesMut::new(&mut self.entries)
}
/// Return an owning iterator over the values of the map slice.
pub fn into_values(self: Box<Self>) -> IntoValues<K, V> {
IntoValues::new(self.into_entries())
}
/// Search over a sorted map for a key.
///
/// Returns the position where that key is present, or the position where it can be inserted to
/// maintain the sort. See [`slice::binary_search`] for more details.
///
/// Computes in **O(log(n))** time, which is notably less scalable than looking the key up in
/// the map this is a slice from using [`IndexMap::get_index_of`], but this can also position
/// missing keys.
pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize>
where
K: Ord,
{
self.binary_search_by(|p, _| p.cmp(x))
}
/// Search over a sorted map with a comparator function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a K, &'a V) -> Ordering,
{
self.entries.binary_search_by(move |a| f(&a.key, &a.value))
}
/// Search over a sorted map with an extraction function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a K, &'a V) -> B,
B: Ord,
{
self.binary_search_by(|k, v| f(k, v).cmp(b))
}
/// Checks if the keys of this slice are sorted.
#[inline]
pub fn is_sorted(&self) -> bool
where
K: PartialOrd,
{
// TODO(MSRV 1.82): self.entries.is_sorted_by(|a, b| a.key <= b.key)
self.is_sorted_by_key(|k, _| k)
}
/// Checks if this slice is sorted using the given comparator function.
#[inline]
pub fn is_sorted_by<'a, F>(&'a self, mut cmp: F) -> bool
where
F: FnMut(&'a K, &'a V, &'a K, &'a V) -> bool,
{
// TODO(MSRV 1.82): self.entries
// .is_sorted_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value))
let mut iter = self.entries.iter();
match iter.next() {
Some(mut prev) => iter.all(move |next| {
let sorted = cmp(&prev.key, &prev.value, &next.key, &next.value);
prev = next;
sorted
}),
None => true,
}
}
/// Checks if this slice is sorted using the given sort-key function.
#[inline]
pub fn is_sorted_by_key<'a, F, T>(&'a self, mut sort_key: F) -> bool
where
F: FnMut(&'a K, &'a V) -> T,
T: PartialOrd,
{
// TODO(MSRV 1.82): self.entries
// .is_sorted_by_key(move |a| sort_key(&a.key, &a.value))
let mut iter = self.entries.iter().map(move |a| sort_key(&a.key, &a.value));
match iter.next() {
Some(mut prev) => iter.all(move |next| {
let sorted = prev <= next;
prev = next;
sorted
}),
None => true,
}
}
/// Returns the index of the partition point of a sorted map according to the given predicate
/// (the index of the first element of the second partition).
///
/// See [`slice::partition_point`] for more details.
///
/// Computes in **O(log(n))** time.
#[must_use]
pub fn partition_point<P>(&self, mut pred: P) -> usize
where
P: FnMut(&K, &V) -> bool,
{
self.entries
.partition_point(move |a| pred(&a.key, &a.value))
}
/// Get an array of `N` key-value pairs by `N` indices
///
/// Valid indices are *0 <= index < self.len()* and each index needs to be unique.
pub fn get_disjoint_mut<const N: usize>(
&mut self,
indices: [usize; N],
) -> Result<[(&K, &mut V); N], GetDisjointMutError> {
let indices = indices.map(Some);
let key_values = self.get_disjoint_opt_mut(indices)?;
Ok(key_values.map(Option::unwrap))
}
#[allow(unsafe_code)]
pub(crate) fn get_disjoint_opt_mut<const N: usize>(
&mut self,
indices: [Option<usize>; N],
) -> Result<[Option<(&K, &mut V)>; N], GetDisjointMutError> {
// SAFETY: Can't allow duplicate indices as we would return several mutable refs to the same data.
let len = self.len();
for i in 0..N {
if let Some(idx) = indices[i] {
if idx >= len {
return Err(GetDisjointMutError::IndexOutOfBounds);
} else if indices[..i].contains(&Some(idx)) {
return Err(GetDisjointMutError::OverlappingIndices);
}
}
}
let entries_ptr = self.entries.as_mut_ptr();
let out = indices.map(|idx_opt| {
match idx_opt {
Some(idx) => {
// SAFETY: The base pointer is valid as it comes from a slice and the reference is always
// in-bounds & unique as we've already checked the indices above.
let kv = unsafe { (*(entries_ptr.add(idx))).ref_mut() };
Some(kv)
}
None => None,
}
});
Ok(out)
}
}
impl<'a, K, V> IntoIterator for &'a Slice<K, V> {
type IntoIter = Iter<'a, K, V>;
type Item = (&'a K, &'a V);
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<'a, K, V> IntoIterator for &'a mut Slice<K, V> {
type IntoIter = IterMut<'a, K, V>;
type Item = (&'a K, &'a mut V);
fn into_iter(self) -> Self::IntoIter {
self.iter_mut()
}
}
impl<K, V> IntoIterator for Box<Slice<K, V>> {
type IntoIter = IntoIter<K, V>;
type Item = (K, V);
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.into_entries())
}
}
impl<K, V> Default for &'_ Slice<K, V> {
fn default() -> Self {
Slice::from_slice(&[])
}
}
impl<K, V> Default for &'_ mut Slice<K, V> {
fn default() -> Self {
Slice::from_mut_slice(&mut [])
}
}
impl<K, V> Default for Box<Slice<K, V>> {
fn default() -> Self {
Slice::from_boxed(Box::default())
}
}
impl<K: Clone, V: Clone> Clone for Box<Slice<K, V>> {
fn clone(&self) -> Self {
Slice::from_boxed(self.entries.to_vec().into_boxed_slice())
}
}
impl<K: Copy, V: Copy> From<&Slice<K, V>> for Box<Slice<K, V>> {
fn from(slice: &Slice<K, V>) -> Self {
Slice::from_boxed(Box::from(&slice.entries))
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Slice<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self).finish()
}
}
impl<K, V, K2, V2> PartialEq<Slice<K2, V2>> for Slice<K, V>
where
K: PartialEq<K2>,
V: PartialEq<V2>,
{
fn eq(&self, other: &Slice<K2, V2>) -> bool {
slice_eq(&self.entries, &other.entries, |b1, b2| {
b1.key == b2.key && b1.value == b2.value
})
}
}
impl<K, V, K2, V2> PartialEq<[(K2, V2)]> for Slice<K, V>
where
K: PartialEq<K2>,
V: PartialEq<V2>,
{
fn eq(&self, other: &[(K2, V2)]) -> bool {
slice_eq(&self.entries, other, |b, t| b.key == t.0 && b.value == t.1)
}
}
impl<K, V, K2, V2> PartialEq<Slice<K2, V2>> for [(K, V)]
where
K: PartialEq<K2>,
V: PartialEq<V2>,
{
fn eq(&self, other: &Slice<K2, V2>) -> bool {
slice_eq(self, &other.entries, |t, b| t.0 == b.key && t.1 == b.value)
}
}
impl<K, V, K2, V2, const N: usize> PartialEq<[(K2, V2); N]> for Slice<K, V>
where
K: PartialEq<K2>,
V: PartialEq<V2>,
{
fn eq(&self, other: &[(K2, V2); N]) -> bool {
<Self as PartialEq<[_]>>::eq(self, other)
}
}
impl<K, V, const N: usize, K2, V2> PartialEq<Slice<K2, V2>> for [(K, V); N]
where
K: PartialEq<K2>,
V: PartialEq<V2>,
{
fn eq(&self, other: &Slice<K2, V2>) -> bool {
<[_] as PartialEq<_>>::eq(self, other)
}
}
impl<K: Eq, V: Eq> Eq for Slice<K, V> {}
impl<K: PartialOrd, V: PartialOrd> PartialOrd for Slice<K, V> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
}
impl<K: Ord, V: Ord> Ord for Slice<K, V> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<K: Hash, V: Hash> Hash for Slice<K, V> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for (key, value) in self {
key.hash(state);
value.hash(state);
}
}
}
impl<K, V> Index<usize> for Slice<K, V> {
type Output = V;
fn index(&self, index: usize) -> &V {
&self.entries[index].value
}
}
impl<K, V> IndexMut<usize> for Slice<K, V> {
fn index_mut(&mut self, index: usize) -> &mut V {
&mut self.entries[index].value
}
}
// We can't have `impl<I: RangeBounds<usize>> Index<I>` because that conflicts
// both upstream with `Index<usize>` and downstream with `Index<&Q>`.
// Instead, we repeat the implementations for all the core range types.
macro_rules! impl_index {
($($range:ty),*) => {$(
impl<K, V, S> Index<$range> for IndexMap<K, V, S> {
type Output = Slice<K, V>;
fn index(&self, range: $range) -> &Self::Output {
Slice::from_slice(&self.as_entries()[range])
}
}
impl<K, V, S> IndexMut<$range> for IndexMap<K, V, S> {
fn index_mut(&mut self, range: $range) -> &mut Self::Output {
Slice::from_mut_slice(&mut self.as_entries_mut()[range])
}
}
impl<K, V> Index<$range> for Slice<K, V> {
type Output = Slice<K, V>;
fn index(&self, range: $range) -> &Self {
Self::from_slice(&self.entries[range])
}
}
impl<K, V> IndexMut<$range> for Slice<K, V> {
fn index_mut(&mut self, range: $range) -> &mut Self {
Self::from_mut_slice(&mut self.entries[range])
}
}
)*}
}
impl_index!(
ops::Range<usize>,
ops::RangeFrom<usize>,
ops::RangeFull,
ops::RangeInclusive<usize>,
ops::RangeTo<usize>,
ops::RangeToInclusive<usize>,
(Bound<usize>, Bound<usize>)
);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn slice_index() {
fn check(
vec_slice: &[(i32, i32)],
map_slice: &Slice<i32, i32>,
sub_slice: &Slice<i32, i32>,
) {
assert_eq!(map_slice as *const _, sub_slice as *const _);
itertools::assert_equal(
vec_slice.iter().copied(),
map_slice.iter().map(|(&k, &v)| (k, v)),
);
itertools::assert_equal(vec_slice.iter().map(|(k, _)| k), map_slice.keys());
itertools::assert_equal(vec_slice.iter().map(|(_, v)| v), map_slice.values());
}
let vec: Vec<(i32, i32)> = (0..10).map(|i| (i, i * i)).collect();
let map: IndexMap<i32, i32> = vec.iter().cloned().collect();
let slice = map.as_slice();
// RangeFull
check(&vec[..], &map[..], &slice[..]);
for i in 0usize..10 {
// Index
assert_eq!(vec[i].1, map[i]);
assert_eq!(vec[i].1, slice[i]);
assert_eq!(map[&(i as i32)], map[i]);
assert_eq!(map[&(i as i32)], slice[i]);
// RangeFrom
check(&vec[i..], &map[i..], &slice[i..]);
// RangeTo
check(&vec[..i], &map[..i], &slice[..i]);
// RangeToInclusive
check(&vec[..=i], &map[..=i], &slice[..=i]);
// (Bound<usize>, Bound<usize>)
let bounds = (Bound::Excluded(i), Bound::Unbounded);
check(&vec[i + 1..], &map[bounds], &slice[bounds]);
for j in i..=10 {
// Range
check(&vec[i..j], &map[i..j], &slice[i..j]);
}
for j in i..10 {
// RangeInclusive
check(&vec[i..=j], &map[i..=j], &slice[i..=j]);
}
}
}
#[test]
fn slice_index_mut() {
fn check_mut(
vec_slice: &[(i32, i32)],
map_slice: &mut Slice<i32, i32>,
sub_slice: &mut Slice<i32, i32>,
) {
assert_eq!(map_slice, sub_slice);
itertools::assert_equal(
vec_slice.iter().copied(),
map_slice.iter_mut().map(|(&k, &mut v)| (k, v)),
);
itertools::assert_equal(
vec_slice.iter().map(|&(_, v)| v),
map_slice.values_mut().map(|&mut v| v),
);
}
let vec: Vec<(i32, i32)> = (0..10).map(|i| (i, i * i)).collect();
let mut map: IndexMap<i32, i32> = vec.iter().cloned().collect();
let mut map2 = map.clone();
let slice = map2.as_mut_slice();
// RangeFull
check_mut(&vec[..], &mut map[..], &mut slice[..]);
for i in 0usize..10 {
// IndexMut
assert_eq!(&mut map[i], &mut slice[i]);
// RangeFrom
check_mut(&vec[i..], &mut map[i..], &mut slice[i..]);
// RangeTo
check_mut(&vec[..i], &mut map[..i], &mut slice[..i]);
// RangeToInclusive
check_mut(&vec[..=i], &mut map[..=i], &mut slice[..=i]);
// (Bound<usize>, Bound<usize>)
let bounds = (Bound::Excluded(i), Bound::Unbounded);
check_mut(&vec[i + 1..], &mut map[bounds], &mut slice[bounds]);
for j in i..=10 {
// Range
check_mut(&vec[i..j], &mut map[i..j], &mut slice[i..j]);
}
for j in i..10 {
// RangeInclusive
check_mut(&vec[i..=j], &mut map[i..=j], &mut slice[i..=j]);
}
}
}
#[test]
fn slice_new() {
let slice: &Slice<i32, i32> = Slice::new();
assert!(slice.is_empty());
assert_eq!(slice.len(), 0);
}
#[test]
fn slice_new_mut() {
let slice: &mut Slice<i32, i32> = Slice::new_mut();
assert!(slice.is_empty());
assert_eq!(slice.len(), 0);
}
#[test]
fn slice_get_index_mut() {
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
{
let (key, value) = slice.get_index_mut(0).unwrap();
assert_eq!(*key, 0);
assert_eq!(*value, 0);
*value = 11;
}
assert_eq!(slice[0], 11);
{
let result = slice.get_index_mut(11);
assert!(result.is_none());
}
}
#[test]
fn slice_split_first() {
let slice: &mut Slice<i32, i32> = Slice::new_mut();
let result = slice.split_first();
assert!(result.is_none());
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
{
let (first, rest) = slice.split_first().unwrap();
assert_eq!(first, (&0, &0));
assert_eq!(rest.len(), 9);
}
assert_eq!(slice.len(), 10);
}
#[test]
fn slice_split_first_mut() {
let slice: &mut Slice<i32, i32> = Slice::new_mut();
let result = slice.split_first_mut();
assert!(result.is_none());
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
{
let (first, rest) = slice.split_first_mut().unwrap();
assert_eq!(first, (&0, &mut 0));
assert_eq!(rest.len(), 9);
*first.1 = 11;
}
assert_eq!(slice.len(), 10);
assert_eq!(slice[0], 11);
}
#[test]
fn slice_split_last() {
let slice: &mut Slice<i32, i32> = Slice::new_mut();
let result = slice.split_last();
assert!(result.is_none());
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
{
let (last, rest) = slice.split_last().unwrap();
assert_eq!(last, (&9, &81));
assert_eq!(rest.len(), 9);
}
assert_eq!(slice.len(), 10);
}
#[test]
fn slice_split_last_mut() {
let slice: &mut Slice<i32, i32> = Slice::new_mut();
let result = slice.split_last_mut();
assert!(result.is_none());
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
{
let (last, rest) = slice.split_last_mut().unwrap();
assert_eq!(last, (&9, &mut 81));
assert_eq!(rest.len(), 9);
*last.1 = 100;
}
assert_eq!(slice.len(), 10);
assert_eq!(slice[slice.len() - 1], 100);
}
#[test]
fn slice_get_range() {
let mut map: IndexMap<i32, i32> = (0..10).map(|i| (i, i * i)).collect();
let slice: &mut Slice<i32, i32> = map.as_mut_slice();
let subslice = slice.get_range(3..6).unwrap();
assert_eq!(subslice.len(), 3);
assert_eq!(subslice, &[(3, 9), (4, 16), (5, 25)]);
}
}

1312
vendor/indexmap/src/map/tests.rs vendored Normal file

File diff suppressed because it is too large Load Diff

686
vendor/indexmap/src/rayon/map.rs vendored Normal file
View File

@@ -0,0 +1,686 @@
//! Parallel iterator types for [`IndexMap`] with [`rayon`][::rayon].
//!
//! You will rarely need to interact with this module directly unless you need to name one of the
//! iterator types.
use super::collect;
use rayon::iter::plumbing::{Consumer, ProducerCallback, UnindexedConsumer};
use rayon::prelude::*;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::ops::RangeBounds;
use crate::map::Slice;
use crate::Bucket;
use crate::IndexMap;
impl<K, V, S> IntoParallelIterator for IndexMap<K, V, S>
where
K: Send,
V: Send,
{
type Item = (K, V);
type Iter = IntoParIter<K, V>;
fn into_par_iter(self) -> Self::Iter {
IntoParIter {
entries: self.into_entries(),
}
}
}
impl<K, V> IntoParallelIterator for Box<Slice<K, V>>
where
K: Send,
V: Send,
{
type Item = (K, V);
type Iter = IntoParIter<K, V>;
fn into_par_iter(self) -> Self::Iter {
IntoParIter {
entries: self.into_entries(),
}
}
}
/// A parallel owning iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::into_par_iter`] method
/// (provided by rayon's [`IntoParallelIterator`] trait). See its documentation for more.
pub struct IntoParIter<K, V> {
entries: Vec<Bucket<K, V>>,
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IntoParIter<K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<K: Send, V: Send> ParallelIterator for IntoParIter<K, V> {
type Item = (K, V);
parallel_iterator_methods!(Bucket::key_value);
}
impl<K: Send, V: Send> IndexedParallelIterator for IntoParIter<K, V> {
indexed_parallel_iterator_methods!(Bucket::key_value);
}
impl<'a, K, V, S> IntoParallelIterator for &'a IndexMap<K, V, S>
where
K: Sync,
V: Sync,
{
type Item = (&'a K, &'a V);
type Iter = ParIter<'a, K, V>;
fn into_par_iter(self) -> Self::Iter {
ParIter {
entries: self.as_entries(),
}
}
}
impl<'a, K, V> IntoParallelIterator for &'a Slice<K, V>
where
K: Sync,
V: Sync,
{
type Item = (&'a K, &'a V);
type Iter = ParIter<'a, K, V>;
fn into_par_iter(self) -> Self::Iter {
ParIter {
entries: &self.entries,
}
}
}
/// A parallel iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_iter`] method
/// (provided by rayon's [`IntoParallelRefIterator`] trait). See its documentation for more.
///
/// [`IndexMap::par_iter`]: ../struct.IndexMap.html#method.par_iter
pub struct ParIter<'a, K, V> {
entries: &'a [Bucket<K, V>],
}
impl<K, V> Clone for ParIter<'_, K, V> {
fn clone(&self) -> Self {
ParIter { ..*self }
}
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for ParIter<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K: Sync, V: Sync> ParallelIterator for ParIter<'a, K, V> {
type Item = (&'a K, &'a V);
parallel_iterator_methods!(Bucket::refs);
}
impl<K: Sync, V: Sync> IndexedParallelIterator for ParIter<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::refs);
}
impl<'a, K, V, S> IntoParallelIterator for &'a mut IndexMap<K, V, S>
where
K: Sync + Send,
V: Send,
{
type Item = (&'a K, &'a mut V);
type Iter = ParIterMut<'a, K, V>;
fn into_par_iter(self) -> Self::Iter {
ParIterMut {
entries: self.as_entries_mut(),
}
}
}
impl<'a, K, V> IntoParallelIterator for &'a mut Slice<K, V>
where
K: Sync + Send,
V: Send,
{
type Item = (&'a K, &'a mut V);
type Iter = ParIterMut<'a, K, V>;
fn into_par_iter(self) -> Self::Iter {
ParIterMut {
entries: &mut self.entries,
}
}
}
/// A parallel mutable iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_iter_mut`] method
/// (provided by rayon's [`IntoParallelRefMutIterator`] trait). See its documentation for more.
///
/// [`IndexMap::par_iter_mut`]: ../struct.IndexMap.html#method.par_iter_mut
pub struct ParIterMut<'a, K, V> {
entries: &'a mut [Bucket<K, V>],
}
impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for ParIterMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::refs);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K: Sync + Send, V: Send> ParallelIterator for ParIterMut<'a, K, V> {
type Item = (&'a K, &'a mut V);
parallel_iterator_methods!(Bucket::ref_mut);
}
impl<K: Sync + Send, V: Send> IndexedParallelIterator for ParIterMut<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::ref_mut);
}
impl<'a, K, V, S> ParallelDrainRange<usize> for &'a mut IndexMap<K, V, S>
where
K: Send,
V: Send,
{
type Item = (K, V);
type Iter = ParDrain<'a, K, V>;
fn par_drain<R: RangeBounds<usize>>(self, range: R) -> Self::Iter {
ParDrain {
entries: self.core.par_drain(range),
}
}
}
/// A parallel draining iterator over the entries of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_drain`] method
/// (provided by rayon's [`ParallelDrainRange`] trait). See its documentation for more.
///
/// [`IndexMap::par_drain`]: ../struct.IndexMap.html#method.par_drain
pub struct ParDrain<'a, K: Send, V: Send> {
entries: rayon::vec::Drain<'a, Bucket<K, V>>,
}
impl<K: Send, V: Send> ParallelIterator for ParDrain<'_, K, V> {
type Item = (K, V);
parallel_iterator_methods!(Bucket::key_value);
}
impl<K: Send, V: Send> IndexedParallelIterator for ParDrain<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::key_value);
}
/// Parallel iterator methods and other parallel methods.
///
/// The following methods **require crate feature `"rayon"`**.
///
/// See also the `IntoParallelIterator` implementations.
impl<K, V, S> IndexMap<K, V, S>
where
K: Sync,
V: Sync,
{
/// Return a parallel iterator over the keys of the map.
///
/// While parallel iterators can process items in any order, their relative order
/// in the map is still preserved for operations like `reduce` and `collect`.
pub fn par_keys(&self) -> ParKeys<'_, K, V> {
ParKeys {
entries: self.as_entries(),
}
}
/// Return a parallel iterator over the values of the map.
///
/// While parallel iterators can process items in any order, their relative order
/// in the map is still preserved for operations like `reduce` and `collect`.
pub fn par_values(&self) -> ParValues<'_, K, V> {
ParValues {
entries: self.as_entries(),
}
}
}
/// Parallel iterator methods and other parallel methods.
///
/// The following methods **require crate feature `"rayon"`**.
///
/// See also the `IntoParallelIterator` implementations.
impl<K, V> Slice<K, V>
where
K: Sync,
V: Sync,
{
/// Return a parallel iterator over the keys of the map slice.
///
/// While parallel iterators can process items in any order, their relative order
/// in the slice is still preserved for operations like `reduce` and `collect`.
pub fn par_keys(&self) -> ParKeys<'_, K, V> {
ParKeys {
entries: &self.entries,
}
}
/// Return a parallel iterator over the values of the map slice.
///
/// While parallel iterators can process items in any order, their relative order
/// in the slice is still preserved for operations like `reduce` and `collect`.
pub fn par_values(&self) -> ParValues<'_, K, V> {
ParValues {
entries: &self.entries,
}
}
}
impl<K, V, S> IndexMap<K, V, S>
where
K: Hash + Eq + Sync,
V: Sync,
S: BuildHasher,
{
/// Returns `true` if `self` contains all of the same key-value pairs as `other`,
/// regardless of each map's indexed order, determined in parallel.
pub fn par_eq<V2, S2>(&self, other: &IndexMap<K, V2, S2>) -> bool
where
V: PartialEq<V2>,
V2: Sync,
S2: BuildHasher + Sync,
{
self.len() == other.len()
&& self
.par_iter()
.all(move |(key, value)| other.get(key).map_or(false, |v| *value == *v))
}
}
/// A parallel iterator over the keys of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_keys`] method.
/// See its documentation for more.
pub struct ParKeys<'a, K, V> {
entries: &'a [Bucket<K, V>],
}
impl<K, V> Clone for ParKeys<'_, K, V> {
fn clone(&self) -> Self {
ParKeys { ..*self }
}
}
impl<K: fmt::Debug, V> fmt::Debug for ParKeys<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K: Sync, V: Sync> ParallelIterator for ParKeys<'a, K, V> {
type Item = &'a K;
parallel_iterator_methods!(Bucket::key_ref);
}
impl<K: Sync, V: Sync> IndexedParallelIterator for ParKeys<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::key_ref);
}
/// A parallel iterator over the values of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_values`] method.
/// See its documentation for more.
pub struct ParValues<'a, K, V> {
entries: &'a [Bucket<K, V>],
}
impl<K, V> Clone for ParValues<'_, K, V> {
fn clone(&self) -> Self {
ParValues { ..*self }
}
}
impl<K, V: fmt::Debug> fmt::Debug for ParValues<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K: Sync, V: Sync> ParallelIterator for ParValues<'a, K, V> {
type Item = &'a V;
parallel_iterator_methods!(Bucket::value_ref);
}
impl<K: Sync, V: Sync> IndexedParallelIterator for ParValues<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::value_ref);
}
impl<K, V, S> IndexMap<K, V, S>
where
K: Send,
V: Send,
{
/// Return a parallel iterator over mutable references to the values of the map
///
/// While parallel iterators can process items in any order, their relative order
/// in the map is still preserved for operations like `reduce` and `collect`.
pub fn par_values_mut(&mut self) -> ParValuesMut<'_, K, V> {
ParValuesMut {
entries: self.as_entries_mut(),
}
}
}
impl<K, V> Slice<K, V>
where
K: Send,
V: Send,
{
/// Return a parallel iterator over mutable references to the the values of the map slice.
///
/// While parallel iterators can process items in any order, their relative order
/// in the slice is still preserved for operations like `reduce` and `collect`.
pub fn par_values_mut(&mut self) -> ParValuesMut<'_, K, V> {
ParValuesMut {
entries: &mut self.entries,
}
}
}
impl<K, V, S> IndexMap<K, V, S>
where
K: Send,
V: Send,
{
/// Sort the map's key-value pairs in parallel, by the default ordering of the keys.
pub fn par_sort_keys(&mut self)
where
K: Ord,
{
self.with_entries(|entries| {
entries.par_sort_by(|a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map's key-value pairs in place and in parallel, using the comparison
/// function `cmp`.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
pub fn par_sort_by<F>(&mut self, cmp: F)
where
F: Fn(&K, &V, &K, &V) -> Ordering + Sync,
{
self.with_entries(|entries| {
entries.par_sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map in parallel and return a by-value parallel
/// iterator of the key-value pairs with the result.
pub fn par_sorted_by<F>(self, cmp: F) -> IntoParIter<K, V>
where
F: Fn(&K, &V, &K, &V) -> Ordering + Sync,
{
let mut entries = self.into_entries();
entries.par_sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoParIter { entries }
}
/// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction
/// function.
pub fn par_sort_by_key<T, F>(&mut self, sort_key: F)
where
T: Ord,
F: Fn(&K, &V) -> T + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_by_key(move |a| sort_key(&a.key, &a.value));
});
}
/// Sort the map's key-value pairs in parallel, by the default ordering of the keys.
pub fn par_sort_unstable_keys(&mut self)
where
K: Ord,
{
self.with_entries(|entries| {
entries.par_sort_unstable_by(|a, b| K::cmp(&a.key, &b.key));
});
}
/// Sort the map's key-value pairs in place and in parallel, using the comparison
/// function `cmp`.
///
/// The comparison function receives two key and value pairs to compare (you
/// can sort by keys or values or their combination as needed).
pub fn par_sort_unstable_by<F>(&mut self, cmp: F)
where
F: Fn(&K, &V, &K, &V) -> Ordering + Sync,
{
self.with_entries(|entries| {
entries.par_sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
});
}
/// Sort the key-value pairs of the map in parallel and return a by-value parallel
/// iterator of the key-value pairs with the result.
pub fn par_sorted_unstable_by<F>(self, cmp: F) -> IntoParIter<K, V>
where
F: Fn(&K, &V, &K, &V) -> Ordering + Sync,
{
let mut entries = self.into_entries();
entries.par_sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value));
IntoParIter { entries }
}
/// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction
/// function.
pub fn par_sort_unstable_by_key<T, F>(&mut self, sort_key: F)
where
T: Ord,
F: Fn(&K, &V) -> T + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_unstable_by_key(move |a| sort_key(&a.key, &a.value));
});
}
/// Sort the map's key-value pairs in place and in parallel, using a sort-key extraction
/// function.
pub fn par_sort_by_cached_key<T, F>(&mut self, sort_key: F)
where
T: Ord + Send,
F: Fn(&K, &V) -> T + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_by_cached_key(move |a| sort_key(&a.key, &a.value));
});
}
}
/// A parallel mutable iterator over the values of an [`IndexMap`].
///
/// This `struct` is created by the [`IndexMap::par_values_mut`] method.
/// See its documentation for more.
pub struct ParValuesMut<'a, K, V> {
entries: &'a mut [Bucket<K, V>],
}
impl<K, V: fmt::Debug> fmt::Debug for ParValuesMut<'_, K, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::value_ref);
f.debug_list().entries(iter).finish()
}
}
impl<'a, K: Send, V: Send> ParallelIterator for ParValuesMut<'a, K, V> {
type Item = &'a mut V;
parallel_iterator_methods!(Bucket::value_mut);
}
impl<K: Send, V: Send> IndexedParallelIterator for ParValuesMut<'_, K, V> {
indexed_parallel_iterator_methods!(Bucket::value_mut);
}
impl<K, V, S> FromParallelIterator<(K, V)> for IndexMap<K, V, S>
where
K: Eq + Hash + Send,
V: Send,
S: BuildHasher + Default + Send,
{
fn from_par_iter<I>(iter: I) -> Self
where
I: IntoParallelIterator<Item = (K, V)>,
{
let list = collect(iter);
let len = list.iter().map(Vec::len).sum();
let mut map = Self::with_capacity_and_hasher(len, S::default());
for vec in list {
map.extend(vec);
}
map
}
}
impl<K, V, S> ParallelExtend<(K, V)> for IndexMap<K, V, S>
where
K: Eq + Hash + Send,
V: Send,
S: BuildHasher + Send,
{
fn par_extend<I>(&mut self, iter: I)
where
I: IntoParallelIterator<Item = (K, V)>,
{
for vec in collect(iter) {
self.extend(vec);
}
}
}
impl<'a, K: 'a, V: 'a, S> ParallelExtend<(&'a K, &'a V)> for IndexMap<K, V, S>
where
K: Copy + Eq + Hash + Send + Sync,
V: Copy + Send + Sync,
S: BuildHasher + Send,
{
fn par_extend<I>(&mut self, iter: I)
where
I: IntoParallelIterator<Item = (&'a K, &'a V)>,
{
for vec in collect(iter) {
self.extend(vec);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::string::String;
#[test]
fn insert_order() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut map = IndexMap::new();
for &elt in &insert {
map.insert(elt, ());
}
assert_eq!(map.par_keys().count(), map.len());
assert_eq!(map.par_keys().count(), insert.len());
insert.par_iter().zip(map.par_keys()).for_each(|(a, b)| {
assert_eq!(a, b);
});
(0..insert.len())
.into_par_iter()
.zip(map.par_keys())
.for_each(|(i, k)| {
assert_eq!(map.get_index(i).unwrap().0, k);
});
}
#[test]
fn partial_eq_and_eq() {
let mut map_a = IndexMap::new();
map_a.insert(1, "1");
map_a.insert(2, "2");
let mut map_b = map_a.clone();
assert!(map_a.par_eq(&map_b));
map_b.swap_remove(&1);
assert!(!map_a.par_eq(&map_b));
map_b.insert(3, "3");
assert!(!map_a.par_eq(&map_b));
let map_c: IndexMap<_, String> =
map_b.into_par_iter().map(|(k, v)| (k, v.into())).collect();
assert!(!map_a.par_eq(&map_c));
assert!(!map_c.par_eq(&map_a));
}
#[test]
fn extend() {
let mut map = IndexMap::new();
map.par_extend(vec![(&1, &2), (&3, &4)]);
map.par_extend(vec![(5, 6)]);
assert_eq!(
map.into_par_iter().collect::<Vec<_>>(),
vec![(1, 2), (3, 4), (5, 6)]
);
}
#[test]
fn keys() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_par_iter().collect();
let keys: Vec<_> = map.par_keys().copied().collect();
assert_eq!(keys.len(), 3);
assert!(keys.contains(&1));
assert!(keys.contains(&2));
assert!(keys.contains(&3));
}
#[test]
fn values() {
let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')];
let map: IndexMap<_, _> = vec.into_par_iter().collect();
let values: Vec<_> = map.par_values().copied().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&'a'));
assert!(values.contains(&'b'));
assert!(values.contains(&'c'));
}
#[test]
fn values_mut() {
let vec = vec![(1, 1), (2, 2), (3, 3)];
let mut map: IndexMap<_, _> = vec.into_par_iter().collect();
map.par_values_mut().for_each(|value| *value *= 2);
let values: Vec<_> = map.par_values().copied().collect();
assert_eq!(values.len(), 3);
assert!(values.contains(&2));
assert!(values.contains(&4));
assert!(values.contains(&6));
}
}

15
vendor/indexmap/src/rayon/mod.rs vendored Normal file
View File

@@ -0,0 +1,15 @@
#![cfg_attr(docsrs, doc(cfg(feature = "rayon")))]
use rayon::prelude::*;
use alloc::collections::LinkedList;
use alloc::vec::Vec;
pub mod map;
pub mod set;
// This form of intermediate collection is also how Rayon collects `HashMap`.
// Note that the order will also be preserved!
fn collect<I: IntoParallelIterator>(iter: I) -> LinkedList<Vec<I::Item>> {
iter.into_par_iter().collect_vec_list()
}

777
vendor/indexmap/src/rayon/set.rs vendored Normal file
View File

@@ -0,0 +1,777 @@
//! Parallel iterator types for [`IndexSet`] with [rayon][::rayon].
//!
//! You will rarely need to interact with this module directly unless you need to name one of the
//! iterator types.
use super::collect;
use rayon::iter::plumbing::{Consumer, ProducerCallback, UnindexedConsumer};
use rayon::prelude::*;
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::ops::RangeBounds;
use crate::set::Slice;
use crate::IndexSet;
type Bucket<T> = crate::Bucket<T, ()>;
impl<T, S> IntoParallelIterator for IndexSet<T, S>
where
T: Send,
{
type Item = T;
type Iter = IntoParIter<T>;
fn into_par_iter(self) -> Self::Iter {
IntoParIter {
entries: self.into_entries(),
}
}
}
impl<T> IntoParallelIterator for Box<Slice<T>>
where
T: Send,
{
type Item = T;
type Iter = IntoParIter<T>;
fn into_par_iter(self) -> Self::Iter {
IntoParIter {
entries: self.into_entries(),
}
}
}
/// A parallel owning iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::into_par_iter`] method
/// (provided by rayon's [`IntoParallelIterator`] trait). See its documentation for more.
pub struct IntoParIter<T> {
entries: Vec<Bucket<T>>,
}
impl<T: fmt::Debug> fmt::Debug for IntoParIter<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<T: Send> ParallelIterator for IntoParIter<T> {
type Item = T;
parallel_iterator_methods!(Bucket::key);
}
impl<T: Send> IndexedParallelIterator for IntoParIter<T> {
indexed_parallel_iterator_methods!(Bucket::key);
}
impl<'a, T, S> IntoParallelIterator for &'a IndexSet<T, S>
where
T: Sync,
{
type Item = &'a T;
type Iter = ParIter<'a, T>;
fn into_par_iter(self) -> Self::Iter {
ParIter {
entries: self.as_entries(),
}
}
}
impl<'a, T> IntoParallelIterator for &'a Slice<T>
where
T: Sync,
{
type Item = &'a T;
type Iter = ParIter<'a, T>;
fn into_par_iter(self) -> Self::Iter {
ParIter {
entries: &self.entries,
}
}
}
/// A parallel iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::par_iter`] method
/// (provided by rayon's [`IntoParallelRefIterator`] trait). See its documentation for more.
///
/// [`IndexSet::par_iter`]: ../struct.IndexSet.html#method.par_iter
pub struct ParIter<'a, T> {
entries: &'a [Bucket<T>],
}
impl<T> Clone for ParIter<'_, T> {
fn clone(&self) -> Self {
ParIter { ..*self }
}
}
impl<T: fmt::Debug> fmt::Debug for ParIter<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.entries.iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<'a, T: Sync> ParallelIterator for ParIter<'a, T> {
type Item = &'a T;
parallel_iterator_methods!(Bucket::key_ref);
}
impl<T: Sync> IndexedParallelIterator for ParIter<'_, T> {
indexed_parallel_iterator_methods!(Bucket::key_ref);
}
impl<'a, T, S> ParallelDrainRange<usize> for &'a mut IndexSet<T, S>
where
T: Send,
{
type Item = T;
type Iter = ParDrain<'a, T>;
fn par_drain<R: RangeBounds<usize>>(self, range: R) -> Self::Iter {
ParDrain {
entries: self.map.core.par_drain(range),
}
}
}
/// A parallel draining iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::par_drain`] method
/// (provided by rayon's [`ParallelDrainRange`] trait). See its documentation for more.
///
/// [`IndexSet::par_drain`]: ../struct.IndexSet.html#method.par_drain
pub struct ParDrain<'a, T: Send> {
entries: rayon::vec::Drain<'a, Bucket<T>>,
}
impl<T: Send> ParallelIterator for ParDrain<'_, T> {
type Item = T;
parallel_iterator_methods!(Bucket::key);
}
impl<T: Send> IndexedParallelIterator for ParDrain<'_, T> {
indexed_parallel_iterator_methods!(Bucket::key);
}
/// Parallel iterator methods and other parallel methods.
///
/// The following methods **require crate feature `"rayon"`**.
///
/// See also the `IntoParallelIterator` implementations.
impl<T, S> IndexSet<T, S>
where
T: Hash + Eq + Sync,
S: BuildHasher + Sync,
{
/// Return a parallel iterator over the values that are in `self` but not `other`.
///
/// While parallel iterators can process items in any order, their relative order
/// in the `self` set is still preserved for operations like `reduce` and `collect`.
pub fn par_difference<'a, S2>(
&'a self,
other: &'a IndexSet<T, S2>,
) -> ParDifference<'a, T, S, S2>
where
S2: BuildHasher + Sync,
{
ParDifference {
set1: self,
set2: other,
}
}
/// Return a parallel iterator over the values that are in `self` or `other`,
/// but not in both.
///
/// While parallel iterators can process items in any order, their relative order
/// in the sets is still preserved for operations like `reduce` and `collect`.
/// Values from `self` are produced in their original order, followed by
/// values from `other` in their original order.
pub fn par_symmetric_difference<'a, S2>(
&'a self,
other: &'a IndexSet<T, S2>,
) -> ParSymmetricDifference<'a, T, S, S2>
where
S2: BuildHasher + Sync,
{
ParSymmetricDifference {
set1: self,
set2: other,
}
}
/// Return a parallel iterator over the values that are in both `self` and `other`.
///
/// While parallel iterators can process items in any order, their relative order
/// in the `self` set is still preserved for operations like `reduce` and `collect`.
pub fn par_intersection<'a, S2>(
&'a self,
other: &'a IndexSet<T, S2>,
) -> ParIntersection<'a, T, S, S2>
where
S2: BuildHasher + Sync,
{
ParIntersection {
set1: self,
set2: other,
}
}
/// Return a parallel iterator over all values that are in `self` or `other`.
///
/// While parallel iterators can process items in any order, their relative order
/// in the sets is still preserved for operations like `reduce` and `collect`.
/// Values from `self` are produced in their original order, followed by
/// values that are unique to `other` in their original order.
pub fn par_union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> ParUnion<'a, T, S, S2>
where
S2: BuildHasher + Sync,
{
ParUnion {
set1: self,
set2: other,
}
}
/// Returns `true` if `self` contains all of the same values as `other`,
/// regardless of each set's indexed order, determined in parallel.
pub fn par_eq<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher + Sync,
{
self.len() == other.len() && self.par_is_subset(other)
}
/// Returns `true` if `self` has no elements in common with `other`,
/// determined in parallel.
pub fn par_is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher + Sync,
{
if self.len() <= other.len() {
self.par_iter().all(move |value| !other.contains(value))
} else {
other.par_iter().all(move |value| !self.contains(value))
}
}
/// Returns `true` if all elements of `other` are contained in `self`,
/// determined in parallel.
pub fn par_is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher + Sync,
{
other.par_is_subset(self)
}
/// Returns `true` if all elements of `self` are contained in `other`,
/// determined in parallel.
pub fn par_is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
where
S2: BuildHasher + Sync,
{
self.len() <= other.len() && self.par_iter().all(move |value| other.contains(value))
}
}
/// A parallel iterator producing elements in the difference of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::par_difference`] method.
/// See its documentation for more.
pub struct ParDifference<'a, T, S1, S2> {
set1: &'a IndexSet<T, S1>,
set2: &'a IndexSet<T, S2>,
}
impl<T, S1, S2> Clone for ParDifference<'_, T, S1, S2> {
fn clone(&self) -> Self {
ParDifference { ..*self }
}
}
impl<T, S1, S2> fmt::Debug for ParDifference<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list()
.entries(self.set1.difference(self.set2))
.finish()
}
}
impl<'a, T, S1, S2> ParallelIterator for ParDifference<'a, T, S1, S2>
where
T: Hash + Eq + Sync,
S1: BuildHasher + Sync,
S2: BuildHasher + Sync,
{
type Item = &'a T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let Self { set1, set2 } = self;
set1.par_iter()
.filter(move |&item| !set2.contains(item))
.drive_unindexed(consumer)
}
}
/// A parallel iterator producing elements in the intersection of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::par_intersection`] method.
/// See its documentation for more.
pub struct ParIntersection<'a, T, S1, S2> {
set1: &'a IndexSet<T, S1>,
set2: &'a IndexSet<T, S2>,
}
impl<T, S1, S2> Clone for ParIntersection<'_, T, S1, S2> {
fn clone(&self) -> Self {
ParIntersection { ..*self }
}
}
impl<T, S1, S2> fmt::Debug for ParIntersection<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list()
.entries(self.set1.intersection(self.set2))
.finish()
}
}
impl<'a, T, S1, S2> ParallelIterator for ParIntersection<'a, T, S1, S2>
where
T: Hash + Eq + Sync,
S1: BuildHasher + Sync,
S2: BuildHasher + Sync,
{
type Item = &'a T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let Self { set1, set2 } = self;
set1.par_iter()
.filter(move |&item| set2.contains(item))
.drive_unindexed(consumer)
}
}
/// A parallel iterator producing elements in the symmetric difference of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::par_symmetric_difference`] method.
/// See its documentation for more.
pub struct ParSymmetricDifference<'a, T, S1, S2> {
set1: &'a IndexSet<T, S1>,
set2: &'a IndexSet<T, S2>,
}
impl<T, S1, S2> Clone for ParSymmetricDifference<'_, T, S1, S2> {
fn clone(&self) -> Self {
ParSymmetricDifference { ..*self }
}
}
impl<T, S1, S2> fmt::Debug for ParSymmetricDifference<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list()
.entries(self.set1.symmetric_difference(self.set2))
.finish()
}
}
impl<'a, T, S1, S2> ParallelIterator for ParSymmetricDifference<'a, T, S1, S2>
where
T: Hash + Eq + Sync,
S1: BuildHasher + Sync,
S2: BuildHasher + Sync,
{
type Item = &'a T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let Self { set1, set2 } = self;
set1.par_difference(set2)
.chain(set2.par_difference(set1))
.drive_unindexed(consumer)
}
}
/// A parallel iterator producing elements in the union of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::par_union`] method.
/// See its documentation for more.
pub struct ParUnion<'a, T, S1, S2> {
set1: &'a IndexSet<T, S1>,
set2: &'a IndexSet<T, S2>,
}
impl<T, S1, S2> Clone for ParUnion<'_, T, S1, S2> {
fn clone(&self) -> Self {
ParUnion { ..*self }
}
}
impl<T, S1, S2> fmt::Debug for ParUnion<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.set1.union(self.set2)).finish()
}
}
impl<'a, T, S1, S2> ParallelIterator for ParUnion<'a, T, S1, S2>
where
T: Hash + Eq + Sync,
S1: BuildHasher + Sync,
S2: BuildHasher + Sync,
{
type Item = &'a T;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let Self { set1, set2 } = self;
set1.par_iter()
.chain(set2.par_difference(set1))
.drive_unindexed(consumer)
}
}
/// Parallel sorting methods.
///
/// The following methods **require crate feature `"rayon"`**.
impl<T, S> IndexSet<T, S>
where
T: Send,
{
/// Sort the set's values in parallel by their default ordering.
pub fn par_sort(&mut self)
where
T: Ord,
{
self.with_entries(|entries| {
entries.par_sort_by(|a, b| T::cmp(&a.key, &b.key));
});
}
/// Sort the set's values in place and in parallel, using the comparison function `cmp`.
pub fn par_sort_by<F>(&mut self, cmp: F)
where
F: Fn(&T, &T) -> Ordering + Sync,
{
self.with_entries(|entries| {
entries.par_sort_by(move |a, b| cmp(&a.key, &b.key));
});
}
/// Sort the values of the set in parallel and return a by-value parallel iterator of
/// the values with the result.
pub fn par_sorted_by<F>(self, cmp: F) -> IntoParIter<T>
where
F: Fn(&T, &T) -> Ordering + Sync,
{
let mut entries = self.into_entries();
entries.par_sort_by(move |a, b| cmp(&a.key, &b.key));
IntoParIter { entries }
}
/// Sort the set's values in place and in parallel, using a key extraction function.
pub fn par_sort_by_key<K, F>(&mut self, sort_key: F)
where
K: Ord,
F: Fn(&T) -> K + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_by_key(move |a| sort_key(&a.key));
});
}
/// Sort the set's values in parallel by their default ordering.
pub fn par_sort_unstable(&mut self)
where
T: Ord,
{
self.with_entries(|entries| {
entries.par_sort_unstable_by(|a, b| T::cmp(&a.key, &b.key));
});
}
/// Sort the set's values in place and in parallel, using the comparison function `cmp`.
pub fn par_sort_unstable_by<F>(&mut self, cmp: F)
where
F: Fn(&T, &T) -> Ordering + Sync,
{
self.with_entries(|entries| {
entries.par_sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
});
}
/// Sort the values of the set in parallel and return a by-value parallel iterator of
/// the values with the result.
pub fn par_sorted_unstable_by<F>(self, cmp: F) -> IntoParIter<T>
where
F: Fn(&T, &T) -> Ordering + Sync,
{
let mut entries = self.into_entries();
entries.par_sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
IntoParIter { entries }
}
/// Sort the set's values in place and in parallel, using a key extraction function.
pub fn par_sort_unstable_by_key<K, F>(&mut self, sort_key: F)
where
K: Ord,
F: Fn(&T) -> K + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_unstable_by_key(move |a| sort_key(&a.key));
});
}
/// Sort the set's values in place and in parallel, using a key extraction function.
pub fn par_sort_by_cached_key<K, F>(&mut self, sort_key: F)
where
K: Ord + Send,
F: Fn(&T) -> K + Sync,
{
self.with_entries(move |entries| {
entries.par_sort_by_cached_key(move |a| sort_key(&a.key));
});
}
}
impl<T, S> FromParallelIterator<T> for IndexSet<T, S>
where
T: Eq + Hash + Send,
S: BuildHasher + Default + Send,
{
fn from_par_iter<I>(iter: I) -> Self
where
I: IntoParallelIterator<Item = T>,
{
let list = collect(iter);
let len = list.iter().map(Vec::len).sum();
let mut set = Self::with_capacity_and_hasher(len, S::default());
for vec in list {
set.extend(vec);
}
set
}
}
impl<T, S> ParallelExtend<T> for IndexSet<T, S>
where
T: Eq + Hash + Send,
S: BuildHasher + Send,
{
fn par_extend<I>(&mut self, iter: I)
where
I: IntoParallelIterator<Item = T>,
{
for vec in collect(iter) {
self.extend(vec);
}
}
}
impl<'a, T: 'a, S> ParallelExtend<&'a T> for IndexSet<T, S>
where
T: Copy + Eq + Hash + Send + Sync,
S: BuildHasher + Send,
{
fn par_extend<I>(&mut self, iter: I)
where
I: IntoParallelIterator<Item = &'a T>,
{
for vec in collect(iter) {
self.extend(vec);
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn insert_order() {
let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23];
let mut set = IndexSet::new();
for &elt in &insert {
set.insert(elt);
}
assert_eq!(set.par_iter().count(), set.len());
assert_eq!(set.par_iter().count(), insert.len());
insert.par_iter().zip(&set).for_each(|(a, b)| {
assert_eq!(a, b);
});
(0..insert.len())
.into_par_iter()
.zip(&set)
.for_each(|(i, v)| {
assert_eq!(set.get_index(i).unwrap(), v);
});
}
#[test]
fn partial_eq_and_eq() {
let mut set_a = IndexSet::new();
set_a.insert(1);
set_a.insert(2);
let mut set_b = set_a.clone();
assert!(set_a.par_eq(&set_b));
set_b.swap_remove(&1);
assert!(!set_a.par_eq(&set_b));
set_b.insert(3);
assert!(!set_a.par_eq(&set_b));
let set_c: IndexSet<_> = set_b.into_par_iter().collect();
assert!(!set_a.par_eq(&set_c));
assert!(!set_c.par_eq(&set_a));
}
#[test]
fn extend() {
let mut set = IndexSet::new();
set.par_extend(vec![&1, &2, &3, &4]);
set.par_extend(vec![5, 6]);
assert_eq!(
set.into_par_iter().collect::<Vec<_>>(),
vec![1, 2, 3, 4, 5, 6]
);
}
#[test]
fn comparisons() {
let set_a: IndexSet<_> = (0..3).collect();
let set_b: IndexSet<_> = (3..6).collect();
let set_c: IndexSet<_> = (0..6).collect();
let set_d: IndexSet<_> = (3..9).collect();
assert!(!set_a.par_is_disjoint(&set_a));
assert!(set_a.par_is_subset(&set_a));
assert!(set_a.par_is_superset(&set_a));
assert!(set_a.par_is_disjoint(&set_b));
assert!(set_b.par_is_disjoint(&set_a));
assert!(!set_a.par_is_subset(&set_b));
assert!(!set_b.par_is_subset(&set_a));
assert!(!set_a.par_is_superset(&set_b));
assert!(!set_b.par_is_superset(&set_a));
assert!(!set_a.par_is_disjoint(&set_c));
assert!(!set_c.par_is_disjoint(&set_a));
assert!(set_a.par_is_subset(&set_c));
assert!(!set_c.par_is_subset(&set_a));
assert!(!set_a.par_is_superset(&set_c));
assert!(set_c.par_is_superset(&set_a));
assert!(!set_c.par_is_disjoint(&set_d));
assert!(!set_d.par_is_disjoint(&set_c));
assert!(!set_c.par_is_subset(&set_d));
assert!(!set_d.par_is_subset(&set_c));
assert!(!set_c.par_is_superset(&set_d));
assert!(!set_d.par_is_superset(&set_c));
}
#[test]
fn iter_comparisons() {
use std::iter::empty;
fn check<'a, I1, I2>(iter1: I1, iter2: I2)
where
I1: ParallelIterator<Item = &'a i32>,
I2: Iterator<Item = i32>,
{
let v1: Vec<_> = iter1.copied().collect();
let v2: Vec<_> = iter2.collect();
assert_eq!(v1, v2);
}
let set_a: IndexSet<_> = (0..3).collect();
let set_b: IndexSet<_> = (3..6).collect();
let set_c: IndexSet<_> = (0..6).collect();
let set_d: IndexSet<_> = (3..9).rev().collect();
check(set_a.par_difference(&set_a), empty());
check(set_a.par_symmetric_difference(&set_a), empty());
check(set_a.par_intersection(&set_a), 0..3);
check(set_a.par_union(&set_a), 0..3);
check(set_a.par_difference(&set_b), 0..3);
check(set_b.par_difference(&set_a), 3..6);
check(set_a.par_symmetric_difference(&set_b), 0..6);
check(set_b.par_symmetric_difference(&set_a), (3..6).chain(0..3));
check(set_a.par_intersection(&set_b), empty());
check(set_b.par_intersection(&set_a), empty());
check(set_a.par_union(&set_b), 0..6);
check(set_b.par_union(&set_a), (3..6).chain(0..3));
check(set_a.par_difference(&set_c), empty());
check(set_c.par_difference(&set_a), 3..6);
check(set_a.par_symmetric_difference(&set_c), 3..6);
check(set_c.par_symmetric_difference(&set_a), 3..6);
check(set_a.par_intersection(&set_c), 0..3);
check(set_c.par_intersection(&set_a), 0..3);
check(set_a.par_union(&set_c), 0..6);
check(set_c.par_union(&set_a), 0..6);
check(set_c.par_difference(&set_d), 0..3);
check(set_d.par_difference(&set_c), (6..9).rev());
check(
set_c.par_symmetric_difference(&set_d),
(0..3).chain((6..9).rev()),
);
check(
set_d.par_symmetric_difference(&set_c),
(6..9).rev().chain(0..3),
);
check(set_c.par_intersection(&set_d), 3..6);
check(set_d.par_intersection(&set_c), (3..6).rev());
check(set_c.par_union(&set_d), (0..6).chain((6..9).rev()));
check(set_d.par_union(&set_c), (3..9).rev().chain(0..3));
}
}

166
vendor/indexmap/src/serde.rs vendored Normal file
View File

@@ -0,0 +1,166 @@
#![cfg_attr(docsrs, doc(cfg(feature = "serde")))]
use serde_core::de::value::{MapDeserializer, SeqDeserializer};
use serde_core::de::{
Deserialize, Deserializer, Error, IntoDeserializer, MapAccess, SeqAccess, Visitor,
};
use serde_core::ser::{Serialize, Serializer};
use core::fmt::{self, Formatter};
use core::hash::{BuildHasher, Hash};
use core::marker::PhantomData;
use core::{cmp, mem};
use crate::{Bucket, IndexMap, IndexSet};
/// Limit our preallocated capacity from a deserializer `size_hint()`.
///
/// We do account for the `Bucket` overhead from its saved `hash` field, but we don't count the
/// `RawTable` allocation or the fact that its raw capacity will be rounded up to a power of two.
/// The "max" is an arbitrary choice anyway, not something that needs precise adherence.
///
/// This is based on the internal `serde::de::size_hint::cautious(hint)` function.
pub(crate) fn cautious_capacity<K, V>(hint: Option<usize>) -> usize {
const MAX_PREALLOC_BYTES: usize = 1024 * 1024;
cmp::min(
hint.unwrap_or(0),
MAX_PREALLOC_BYTES / mem::size_of::<Bucket<K, V>>(),
)
}
impl<K, V, S> Serialize for IndexMap<K, V, S>
where
K: Serialize,
V: Serialize,
{
fn serialize<T>(&self, serializer: T) -> Result<T::Ok, T::Error>
where
T: Serializer,
{
serializer.collect_map(self)
}
}
struct IndexMapVisitor<K, V, S>(PhantomData<(K, V, S)>);
impl<'de, K, V, S> Visitor<'de> for IndexMapVisitor<K, V, S>
where
K: Deserialize<'de> + Eq + Hash,
V: Deserialize<'de>,
S: Default + BuildHasher,
{
type Value = IndexMap<K, V, S>;
fn expecting(&self, formatter: &mut Formatter<'_>) -> fmt::Result {
write!(formatter, "a map")
}
fn visit_map<A>(self, mut map: A) -> Result<Self::Value, A::Error>
where
A: MapAccess<'de>,
{
let capacity = cautious_capacity::<K, V>(map.size_hint());
let mut values = IndexMap::with_capacity_and_hasher(capacity, S::default());
while let Some((key, value)) = map.next_entry()? {
values.insert(key, value);
}
Ok(values)
}
}
impl<'de, K, V, S> Deserialize<'de> for IndexMap<K, V, S>
where
K: Deserialize<'de> + Eq + Hash,
V: Deserialize<'de>,
S: Default + BuildHasher,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_map(IndexMapVisitor(PhantomData))
}
}
impl<'de, K, V, S, E> IntoDeserializer<'de, E> for IndexMap<K, V, S>
where
K: IntoDeserializer<'de, E> + Eq + Hash,
V: IntoDeserializer<'de, E>,
S: BuildHasher,
E: Error,
{
type Deserializer = MapDeserializer<'de, <Self as IntoIterator>::IntoIter, E>;
fn into_deserializer(self) -> Self::Deserializer {
MapDeserializer::new(self.into_iter())
}
}
impl<T, S> Serialize for IndexSet<T, S>
where
T: Serialize,
{
fn serialize<Se>(&self, serializer: Se) -> Result<Se::Ok, Se::Error>
where
Se: Serializer,
{
serializer.collect_seq(self)
}
}
struct IndexSetVisitor<T, S>(PhantomData<(T, S)>);
impl<'de, T, S> Visitor<'de> for IndexSetVisitor<T, S>
where
T: Deserialize<'de> + Eq + Hash,
S: Default + BuildHasher,
{
type Value = IndexSet<T, S>;
fn expecting(&self, formatter: &mut Formatter<'_>) -> fmt::Result {
write!(formatter, "a set")
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: SeqAccess<'de>,
{
let capacity = cautious_capacity::<T, ()>(seq.size_hint());
let mut values = IndexSet::with_capacity_and_hasher(capacity, S::default());
while let Some(value) = seq.next_element()? {
values.insert(value);
}
Ok(values)
}
}
impl<'de, T, S> Deserialize<'de> for IndexSet<T, S>
where
T: Deserialize<'de> + Eq + Hash,
S: Default + BuildHasher,
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
deserializer.deserialize_seq(IndexSetVisitor(PhantomData))
}
}
impl<'de, T, S, E> IntoDeserializer<'de, E> for IndexSet<T, S>
where
T: IntoDeserializer<'de, E> + Eq + Hash,
S: BuildHasher,
E: Error,
{
type Deserializer = SeqDeserializer<<Self as IntoIterator>::IntoIter, E>;
fn into_deserializer(self) -> Self::Deserializer {
SeqDeserializer::new(self.into_iter())
}
}

1453
vendor/indexmap/src/set.rs vendored Normal file

File diff suppressed because it is too large Load Diff

681
vendor/indexmap/src/set/iter.rs vendored Normal file
View File

@@ -0,0 +1,681 @@
use crate::map::{ExtractCore, IndexMapCore};
use super::{Bucket, IndexSet, Slice};
use alloc::vec::{self, Vec};
use core::fmt;
use core::hash::{BuildHasher, Hash};
use core::iter::{Chain, FusedIterator};
use core::ops::RangeBounds;
use core::slice::Iter as SliceIter;
impl<'a, T, S> IntoIterator for &'a IndexSet<T, S> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T, S> IntoIterator for IndexSet<T, S> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.into_entries())
}
}
/// An iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::iter`] method.
/// See its documentation for more.
pub struct Iter<'a, T> {
iter: SliceIter<'a, Bucket<T>>,
}
impl<'a, T> Iter<'a, T> {
pub(super) fn new(entries: &'a [Bucket<T>]) -> Self {
Self {
iter: entries.iter(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &'a Slice<T> {
Slice::from_slice(self.iter.as_slice())
}
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
iterator_methods!(Bucket::key_ref);
}
impl<T> DoubleEndedIterator for Iter<'_, T> {
double_ended_iterator_methods!(Bucket::key_ref);
}
impl<T> ExactSizeIterator for Iter<'_, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for Iter<'_, T> {}
impl<T> Clone for Iter<'_, T> {
fn clone(&self) -> Self {
Iter {
iter: self.iter.clone(),
}
}
}
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
impl<T> Default for Iter<'_, T> {
fn default() -> Self {
Self { iter: [].iter() }
}
}
/// An owning iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::into_iter`] method
/// (provided by the [`IntoIterator`] trait). See its documentation for more.
#[derive(Clone)]
pub struct IntoIter<T> {
iter: vec::IntoIter<Bucket<T>>,
}
impl<T> IntoIter<T> {
pub(super) fn new(entries: Vec<Bucket<T>>) -> Self {
Self {
iter: entries.into_iter(),
}
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<T> {
Slice::from_slice(self.iter.as_slice())
}
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
iterator_methods!(Bucket::key);
}
impl<T> DoubleEndedIterator for IntoIter<T> {
double_ended_iterator_methods!(Bucket::key);
}
impl<T> ExactSizeIterator for IntoIter<T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for IntoIter<T> {}
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
impl<T> Default for IntoIter<T> {
fn default() -> Self {
Self {
iter: Vec::new().into_iter(),
}
}
}
/// A draining iterator over the items of an [`IndexSet`].
///
/// This `struct` is created by the [`IndexSet::drain`] method.
/// See its documentation for more.
pub struct Drain<'a, T> {
iter: vec::Drain<'a, Bucket<T>>,
}
impl<'a, T> Drain<'a, T> {
pub(super) fn new(iter: vec::Drain<'a, Bucket<T>>) -> Self {
Self { iter }
}
/// Returns a slice of the remaining entries in the iterator.
pub fn as_slice(&self) -> &Slice<T> {
Slice::from_slice(self.iter.as_slice())
}
}
impl<T> Iterator for Drain<'_, T> {
type Item = T;
iterator_methods!(Bucket::key);
}
impl<T> DoubleEndedIterator for Drain<'_, T> {
double_ended_iterator_methods!(Bucket::key);
}
impl<T> ExactSizeIterator for Drain<'_, T> {
fn len(&self) -> usize {
self.iter.len()
}
}
impl<T> FusedIterator for Drain<'_, T> {}
impl<T: fmt::Debug> fmt::Debug for Drain<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let iter = self.iter.as_slice().iter().map(Bucket::key_ref);
f.debug_list().entries(iter).finish()
}
}
/// A lazy iterator producing elements in the difference of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::difference`] method.
/// See its documentation for more.
pub struct Difference<'a, T, S> {
iter: Iter<'a, T>,
other: &'a IndexSet<T, S>,
}
impl<'a, T, S> Difference<'a, T, S> {
pub(super) fn new<S1>(set: &'a IndexSet<T, S1>, other: &'a IndexSet<T, S>) -> Self {
Self {
iter: set.iter(),
other,
}
}
}
impl<'a, T, S> Iterator for Difference<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next() {
if !self.other.contains(item) {
return Some(item);
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
impl<T, S> DoubleEndedIterator for Difference<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next_back() {
if !self.other.contains(item) {
return Some(item);
}
}
None
}
}
impl<T, S> FusedIterator for Difference<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Difference<'_, T, S> {
fn clone(&self) -> Self {
Difference {
iter: self.iter.clone(),
..*self
}
}
}
impl<T, S> fmt::Debug for Difference<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the intersection of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::intersection`] method.
/// See its documentation for more.
pub struct Intersection<'a, T, S> {
iter: Iter<'a, T>,
other: &'a IndexSet<T, S>,
}
impl<'a, T, S> Intersection<'a, T, S> {
pub(super) fn new<S1>(set: &'a IndexSet<T, S1>, other: &'a IndexSet<T, S>) -> Self {
Self {
iter: set.iter(),
other,
}
}
}
impl<'a, T, S> Iterator for Intersection<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next() {
if self.other.contains(item) {
return Some(item);
}
}
None
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
impl<T, S> DoubleEndedIterator for Intersection<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
while let Some(item) = self.iter.next_back() {
if self.other.contains(item) {
return Some(item);
}
}
None
}
}
impl<T, S> FusedIterator for Intersection<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Intersection<'_, T, S> {
fn clone(&self) -> Self {
Intersection {
iter: self.iter.clone(),
..*self
}
}
}
impl<T, S> fmt::Debug for Intersection<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the symmetric difference of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::symmetric_difference`] method.
/// See its documentation for more.
pub struct SymmetricDifference<'a, T, S1, S2> {
iter: Chain<Difference<'a, T, S2>, Difference<'a, T, S1>>,
}
impl<'a, T, S1, S2> SymmetricDifference<'a, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
pub(super) fn new(set1: &'a IndexSet<T, S1>, set2: &'a IndexSet<T, S2>) -> Self {
let diff1 = set1.difference(set2);
let diff2 = set2.difference(set1);
Self {
iter: diff1.chain(diff2),
}
}
}
impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.fold(init, f)
}
}
impl<T, S1, S2> DoubleEndedIterator for SymmetricDifference<'_, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
fn rfold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.rfold(init, f)
}
}
impl<T, S1, S2> FusedIterator for SymmetricDifference<'_, T, S1, S2>
where
T: Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
}
impl<T, S1, S2> Clone for SymmetricDifference<'_, T, S1, S2> {
fn clone(&self) -> Self {
SymmetricDifference {
iter: self.iter.clone(),
}
}
}
impl<T, S1, S2> fmt::Debug for SymmetricDifference<'_, T, S1, S2>
where
T: fmt::Debug + Eq + Hash,
S1: BuildHasher,
S2: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A lazy iterator producing elements in the union of [`IndexSet`]s.
///
/// This `struct` is created by the [`IndexSet::union`] method.
/// See its documentation for more.
pub struct Union<'a, T, S> {
iter: Chain<Iter<'a, T>, Difference<'a, T, S>>,
}
impl<'a, T, S> Union<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
pub(super) fn new<S2>(set1: &'a IndexSet<T, S>, set2: &'a IndexSet<T, S2>) -> Self
where
S2: BuildHasher,
{
Self {
iter: set1.iter().chain(set2.difference(set1)),
}
}
}
impl<'a, T, S> Iterator for Union<'a, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.fold(init, f)
}
}
impl<T, S> DoubleEndedIterator for Union<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back()
}
fn rfold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.iter.rfold(init, f)
}
}
impl<T, S> FusedIterator for Union<'_, T, S>
where
T: Eq + Hash,
S: BuildHasher,
{
}
impl<T, S> Clone for Union<'_, T, S> {
fn clone(&self) -> Self {
Union {
iter: self.iter.clone(),
}
}
}
impl<T, S> fmt::Debug for Union<'_, T, S>
where
T: fmt::Debug + Eq + Hash,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self.clone()).finish()
}
}
/// A splicing iterator for `IndexSet`.
///
/// This `struct` is created by [`IndexSet::splice()`].
/// See its documentation for more.
pub struct Splice<'a, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
iter: crate::map::Splice<'a, UnitValue<I>, T, (), S>,
}
impl<'a, I, T, S> Splice<'a, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
#[track_caller]
pub(super) fn new<R>(set: &'a mut IndexSet<T, S>, range: R, replace_with: I) -> Self
where
R: RangeBounds<usize>,
{
Self {
iter: set.map.splice(range, UnitValue(replace_with)),
}
}
}
impl<I, T, S> Iterator for Splice<'_, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
Some(self.iter.next()?.0)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<I, T, S> DoubleEndedIterator for Splice<'_, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
fn next_back(&mut self) -> Option<Self::Item> {
Some(self.iter.next_back()?.0)
}
}
impl<I, T, S> ExactSizeIterator for Splice<'_, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
fn len(&self) -> usize {
self.iter.len()
}
}
impl<I, T, S> FusedIterator for Splice<'_, I, T, S>
where
I: Iterator<Item = T>,
T: Hash + Eq,
S: BuildHasher,
{
}
struct UnitValue<I>(I);
impl<I: Iterator> Iterator for UnitValue<I> {
type Item = (I::Item, ());
fn next(&mut self) -> Option<Self::Item> {
self.0.next().map(|x| (x, ()))
}
}
impl<I, T, S> fmt::Debug for Splice<'_, I, T, S>
where
I: fmt::Debug + Iterator<Item = T>,
T: fmt::Debug + Hash + Eq,
S: BuildHasher,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.iter, f)
}
}
impl<I: fmt::Debug> fmt::Debug for UnitValue<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.0, f)
}
}
/// An extracting iterator for `IndexSet`.
///
/// This `struct` is created by [`IndexSet::extract_if()`].
/// See its documentation for more.
pub struct ExtractIf<'a, T, F> {
inner: ExtractCore<'a, T, ()>,
pred: F,
}
impl<T, F> ExtractIf<'_, T, F> {
#[track_caller]
pub(super) fn new<R>(core: &mut IndexMapCore<T, ()>, range: R, pred: F) -> ExtractIf<'_, T, F>
where
R: RangeBounds<usize>,
F: FnMut(&T) -> bool,
{
ExtractIf {
inner: core.extract(range),
pred,
}
}
}
impl<T, F> Iterator for ExtractIf<'_, T, F>
where
F: FnMut(&T) -> bool,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.extract_if(|bucket| (self.pred)(bucket.key_ref()))
.map(Bucket::key)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.inner.remaining()))
}
}
impl<T, F> FusedIterator for ExtractIf<'_, T, F> where F: FnMut(&T) -> bool {}
impl<T, F> fmt::Debug for ExtractIf<'_, T, F>
where
T: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ExtractIf").finish_non_exhaustive()
}
}

86
vendor/indexmap/src/set/mutable.rs vendored Normal file
View File

@@ -0,0 +1,86 @@
use core::hash::{BuildHasher, Hash};
use super::{Equivalent, IndexSet};
use crate::map::MutableKeys;
/// Opt-in mutable access to [`IndexSet`] values.
///
/// These methods expose `&mut T`, mutable references to the value as it is stored
/// in the set.
/// You are allowed to modify the values in the set **if the modification
/// does not change the value's hash and equality**.
///
/// If values are modified erroneously, you can no longer look them up.
/// This is sound (memory safe) but a logical error hazard (just like
/// implementing `PartialEq`, `Eq`, or `Hash` incorrectly would be).
///
/// `use` this trait to enable its methods for `IndexSet`.
///
/// This trait is sealed and cannot be implemented for types outside this crate.
pub trait MutableValues: private::Sealed {
type Value;
/// Return item index and mutable reference to the value
///
/// Computes in **O(1)** time (average).
fn get_full_mut2<Q>(&mut self, value: &Q) -> Option<(usize, &mut Self::Value)>
where
Q: ?Sized + Hash + Equivalent<Self::Value>;
/// Return mutable reference to the value at an index.
///
/// Valid indices are `0 <= index < self.len()`.
///
/// Computes in **O(1)** time.
fn get_index_mut2(&mut self, index: usize) -> Option<&mut Self::Value>;
/// Scan through each value in the set and keep those where the
/// closure `keep` returns `true`.
///
/// The values are visited in order, and remaining values keep their order.
///
/// Computes in **O(n)** time (average).
fn retain2<F>(&mut self, keep: F)
where
F: FnMut(&mut Self::Value) -> bool;
}
/// Opt-in mutable access to [`IndexSet`] values.
///
/// See [`MutableValues`] for more information.
impl<T, S> MutableValues for IndexSet<T, S>
where
S: BuildHasher,
{
type Value = T;
fn get_full_mut2<Q>(&mut self, value: &Q) -> Option<(usize, &mut T)>
where
Q: ?Sized + Hash + Equivalent<T>,
{
match self.map.get_full_mut2(value) {
Some((index, value, ())) => Some((index, value)),
None => None,
}
}
fn get_index_mut2(&mut self, index: usize) -> Option<&mut T> {
match self.map.get_index_mut2(index) {
Some((value, ())) => Some(value),
None => None,
}
}
fn retain2<F>(&mut self, mut keep: F)
where
F: FnMut(&mut T) -> bool,
{
self.map.retain2(move |value, ()| keep(value));
}
}
mod private {
pub trait Sealed {}
impl<T, S> Sealed for super::IndexSet<T, S> {}
}

427
vendor/indexmap/src/set/slice.rs vendored Normal file
View File

@@ -0,0 +1,427 @@
use super::{Bucket, IndexSet, IntoIter, Iter};
use crate::util::{slice_eq, try_simplify_range};
use alloc::boxed::Box;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt;
use core::hash::{Hash, Hasher};
use core::ops::{self, Bound, Index, RangeBounds};
/// A dynamically-sized slice of values in an [`IndexSet`].
///
/// This supports indexed operations much like a `[T]` slice,
/// but not any hashed operations on the values.
///
/// Unlike `IndexSet`, `Slice` does consider the order for [`PartialEq`]
/// and [`Eq`], and it also implements [`PartialOrd`], [`Ord`], and [`Hash`].
#[repr(transparent)]
pub struct Slice<T> {
pub(crate) entries: [Bucket<T>],
}
// SAFETY: `Slice<T>` is a transparent wrapper around `[Bucket<T>]`,
// and reference lifetimes are bound together in function signatures.
#[allow(unsafe_code)]
impl<T> Slice<T> {
pub(super) const fn from_slice(entries: &[Bucket<T>]) -> &Self {
unsafe { &*(entries as *const [Bucket<T>] as *const Self) }
}
pub(super) fn from_boxed(entries: Box<[Bucket<T>]>) -> Box<Self> {
unsafe { Box::from_raw(Box::into_raw(entries) as *mut Self) }
}
fn into_boxed(self: Box<Self>) -> Box<[Bucket<T>]> {
unsafe { Box::from_raw(Box::into_raw(self) as *mut [Bucket<T>]) }
}
}
impl<T> Slice<T> {
pub(crate) fn into_entries(self: Box<Self>) -> Vec<Bucket<T>> {
self.into_boxed().into_vec()
}
/// Returns an empty slice.
pub const fn new<'a>() -> &'a Self {
Self::from_slice(&[])
}
/// Return the number of elements in the set slice.
pub const fn len(&self) -> usize {
self.entries.len()
}
/// Returns true if the set slice contains no elements.
pub const fn is_empty(&self) -> bool {
self.entries.is_empty()
}
/// Get a value by index.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_index(&self, index: usize) -> Option<&T> {
self.entries.get(index).map(Bucket::key_ref)
}
/// Returns a slice of values in the given range of indices.
///
/// Valid indices are `0 <= index < self.len()`.
pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Self> {
let range = try_simplify_range(range, self.entries.len())?;
self.entries.get(range).map(Self::from_slice)
}
/// Get the first value.
pub fn first(&self) -> Option<&T> {
self.entries.first().map(Bucket::key_ref)
}
/// Get the last value.
pub fn last(&self) -> Option<&T> {
self.entries.last().map(Bucket::key_ref)
}
/// Divides one slice into two at an index.
///
/// ***Panics*** if `index > len`.
#[track_caller]
pub fn split_at(&self, index: usize) -> (&Self, &Self) {
let (first, second) = self.entries.split_at(index);
(Self::from_slice(first), Self::from_slice(second))
}
/// Returns the first value and the rest of the slice,
/// or `None` if it is empty.
pub fn split_first(&self) -> Option<(&T, &Self)> {
if let [first, rest @ ..] = &self.entries {
Some((&first.key, Self::from_slice(rest)))
} else {
None
}
}
/// Returns the last value and the rest of the slice,
/// or `None` if it is empty.
pub fn split_last(&self) -> Option<(&T, &Self)> {
if let [rest @ .., last] = &self.entries {
Some((&last.key, Self::from_slice(rest)))
} else {
None
}
}
/// Return an iterator over the values of the set slice.
pub fn iter(&self) -> Iter<'_, T> {
Iter::new(&self.entries)
}
/// Search over a sorted set for a value.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search`] for more details.
///
/// Computes in **O(log(n))** time, which is notably less scalable than looking the value up in
/// the set this is a slice from using [`IndexSet::get_index_of`], but this can also position
/// missing values.
pub fn binary_search(&self, x: &T) -> Result<usize, usize>
where
T: Ord,
{
self.binary_search_by(|p| p.cmp(x))
}
/// Search over a sorted set with a comparator function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> Ordering,
{
self.entries.binary_search_by(move |a| f(&a.key))
}
/// Search over a sorted set with an extraction function.
///
/// Returns the position where that value is present, or the position where it can be inserted
/// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
///
/// Computes in **O(log(n))** time.
#[inline]
pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
where
F: FnMut(&'a T) -> B,
B: Ord,
{
self.binary_search_by(|k| f(k).cmp(b))
}
/// Checks if the values of this slice are sorted.
#[inline]
pub fn is_sorted(&self) -> bool
where
T: PartialOrd,
{
// TODO(MSRV 1.82): self.entries.is_sorted_by(|a, b| a.key <= b.key)
self.is_sorted_by(T::le)
}
/// Checks if this slice is sorted using the given comparator function.
#[inline]
pub fn is_sorted_by<'a, F>(&'a self, mut cmp: F) -> bool
where
F: FnMut(&'a T, &'a T) -> bool,
{
// TODO(MSRV 1.82): self.entries.is_sorted_by(move |a, b| cmp(&a.key, &b.key))
let mut iter = self.entries.iter();
match iter.next() {
Some(mut prev) => iter.all(move |next| {
let sorted = cmp(&prev.key, &next.key);
prev = next;
sorted
}),
None => true,
}
}
/// Checks if this slice is sorted using the given sort-key function.
#[inline]
pub fn is_sorted_by_key<'a, F, K>(&'a self, mut sort_key: F) -> bool
where
F: FnMut(&'a T) -> K,
K: PartialOrd,
{
// TODO(MSRV 1.82): self.entries.is_sorted_by_key(move |a| sort_key(&a.key))
let mut iter = self.entries.iter().map(move |a| sort_key(&a.key));
match iter.next() {
Some(mut prev) => iter.all(move |next| {
let sorted = prev <= next;
prev = next;
sorted
}),
None => true,
}
}
/// Returns the index of the partition point of a sorted set according to the given predicate
/// (the index of the first element of the second partition).
///
/// See [`slice::partition_point`] for more details.
///
/// Computes in **O(log(n))** time.
#[must_use]
pub fn partition_point<P>(&self, mut pred: P) -> usize
where
P: FnMut(&T) -> bool,
{
self.entries.partition_point(move |a| pred(&a.key))
}
}
impl<'a, T> IntoIterator for &'a Slice<T> {
type IntoIter = Iter<'a, T>;
type Item = &'a T;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
impl<T> IntoIterator for Box<Slice<T>> {
type IntoIter = IntoIter<T>;
type Item = T;
fn into_iter(self) -> Self::IntoIter {
IntoIter::new(self.into_entries())
}
}
impl<T> Default for &'_ Slice<T> {
fn default() -> Self {
Slice::from_slice(&[])
}
}
impl<T> Default for Box<Slice<T>> {
fn default() -> Self {
Slice::from_boxed(Box::default())
}
}
impl<T: Clone> Clone for Box<Slice<T>> {
fn clone(&self) -> Self {
Slice::from_boxed(self.entries.to_vec().into_boxed_slice())
}
}
impl<T: Copy> From<&Slice<T>> for Box<Slice<T>> {
fn from(slice: &Slice<T>) -> Self {
Slice::from_boxed(Box::from(&slice.entries))
}
}
impl<T: fmt::Debug> fmt::Debug for Slice<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_list().entries(self).finish()
}
}
impl<T, U> PartialEq<Slice<U>> for Slice<T>
where
T: PartialEq<U>,
{
fn eq(&self, other: &Slice<U>) -> bool {
slice_eq(&self.entries, &other.entries, |b1, b2| b1.key == b2.key)
}
}
impl<T, U> PartialEq<[U]> for Slice<T>
where
T: PartialEq<U>,
{
fn eq(&self, other: &[U]) -> bool {
slice_eq(&self.entries, other, |b, o| b.key == *o)
}
}
impl<T, U> PartialEq<Slice<U>> for [T]
where
T: PartialEq<U>,
{
fn eq(&self, other: &Slice<U>) -> bool {
slice_eq(self, &other.entries, |o, b| *o == b.key)
}
}
impl<T, U, const N: usize> PartialEq<[U; N]> for Slice<T>
where
T: PartialEq<U>,
{
fn eq(&self, other: &[U; N]) -> bool {
<Self as PartialEq<[U]>>::eq(self, other)
}
}
impl<T, const N: usize, U> PartialEq<Slice<U>> for [T; N]
where
T: PartialEq<U>,
{
fn eq(&self, other: &Slice<U>) -> bool {
<[T] as PartialEq<Slice<U>>>::eq(self, other)
}
}
impl<T: Eq> Eq for Slice<T> {}
impl<T: PartialOrd> PartialOrd for Slice<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.iter().partial_cmp(other)
}
}
impl<T: Ord> Ord for Slice<T> {
fn cmp(&self, other: &Self) -> Ordering {
self.iter().cmp(other)
}
}
impl<T: Hash> Hash for Slice<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for value in self {
value.hash(state);
}
}
}
impl<T> Index<usize> for Slice<T> {
type Output = T;
fn index(&self, index: usize) -> &Self::Output {
&self.entries[index].key
}
}
// We can't have `impl<I: RangeBounds<usize>> Index<I>` because that conflicts with `Index<usize>`.
// Instead, we repeat the implementations for all the core range types.
macro_rules! impl_index {
($($range:ty),*) => {$(
impl<T, S> Index<$range> for IndexSet<T, S> {
type Output = Slice<T>;
fn index(&self, range: $range) -> &Self::Output {
Slice::from_slice(&self.as_entries()[range])
}
}
impl<T> Index<$range> for Slice<T> {
type Output = Self;
fn index(&self, range: $range) -> &Self::Output {
Slice::from_slice(&self.entries[range])
}
}
)*}
}
impl_index!(
ops::Range<usize>,
ops::RangeFrom<usize>,
ops::RangeFull,
ops::RangeInclusive<usize>,
ops::RangeTo<usize>,
ops::RangeToInclusive<usize>,
(Bound<usize>, Bound<usize>)
);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn slice_index() {
fn check(vec_slice: &[i32], set_slice: &Slice<i32>, sub_slice: &Slice<i32>) {
assert_eq!(set_slice as *const _, sub_slice as *const _);
itertools::assert_equal(vec_slice, set_slice);
}
let vec: Vec<i32> = (0..10).map(|i| i * i).collect();
let set: IndexSet<i32> = vec.iter().cloned().collect();
let slice = set.as_slice();
// RangeFull
check(&vec[..], &set[..], &slice[..]);
for i in 0usize..10 {
// Index
assert_eq!(vec[i], set[i]);
assert_eq!(vec[i], slice[i]);
// RangeFrom
check(&vec[i..], &set[i..], &slice[i..]);
// RangeTo
check(&vec[..i], &set[..i], &slice[..i]);
// RangeToInclusive
check(&vec[..=i], &set[..=i], &slice[..=i]);
// (Bound<usize>, Bound<usize>)
let bounds = (Bound::Excluded(i), Bound::Unbounded);
check(&vec[i + 1..], &set[bounds], &slice[bounds]);
for j in i..=10 {
// Range
check(&vec[i..j], &set[i..j], &slice[i..j]);
}
for j in i..10 {
// RangeInclusive
check(&vec[i..=j], &set[i..=j], &slice[i..=j]);
}
}
}
}

1060
vendor/indexmap/src/set/tests.rs vendored Normal file

File diff suppressed because it is too large Load Diff

36
vendor/indexmap/src/sval.rs vendored Normal file
View File

@@ -0,0 +1,36 @@
#![cfg_attr(docsrs, doc(cfg(feature = "sval")))]
use crate::{IndexMap, IndexSet};
use sval::{Stream, Value};
impl<K: Value, V: Value, S> Value for IndexMap<K, V, S> {
fn stream<'sval, ST: Stream<'sval> + ?Sized>(&'sval self, stream: &mut ST) -> sval::Result {
stream.map_begin(Some(self.len()))?;
for (k, v) in self {
stream.map_key_begin()?;
stream.value(k)?;
stream.map_key_end()?;
stream.map_value_begin()?;
stream.value(v)?;
stream.map_value_end()?;
}
stream.map_end()
}
}
impl<K: Value, S> Value for IndexSet<K, S> {
fn stream<'sval, ST: Stream<'sval> + ?Sized>(&'sval self, stream: &mut ST) -> sval::Result {
stream.seq_begin(Some(self.len()))?;
for value in self {
stream.seq_value_begin()?;
stream.value(value)?;
stream.seq_value_end()?;
}
stream.seq_end()
}
}

78
vendor/indexmap/src/util.rs vendored Normal file
View File

@@ -0,0 +1,78 @@
use core::ops::{Bound, Range, RangeBounds};
pub(crate) fn third<A, B, C>(t: (A, B, C)) -> C {
t.2
}
#[track_caller]
pub(crate) fn simplify_range<R>(range: R, len: usize) -> Range<usize>
where
R: RangeBounds<usize>,
{
let start = match range.start_bound() {
Bound::Unbounded => 0,
Bound::Included(&i) if i <= len => i,
Bound::Excluded(&i) if i < len => i + 1,
Bound::Included(i) | Bound::Excluded(i) => {
panic!("range start index {i} out of range for slice of length {len}")
}
};
let end = match range.end_bound() {
Bound::Unbounded => len,
Bound::Excluded(&i) if i <= len => i,
Bound::Included(&i) if i < len => i + 1,
Bound::Included(i) | Bound::Excluded(i) => {
panic!("range end index {i} out of range for slice of length {len}")
}
};
if start > end {
panic!(
"range start index {:?} should be <= range end index {:?}",
range.start_bound(),
range.end_bound()
);
}
start..end
}
pub(crate) fn try_simplify_range<R>(range: R, len: usize) -> Option<Range<usize>>
where
R: RangeBounds<usize>,
{
let start = match range.start_bound() {
Bound::Unbounded => 0,
Bound::Included(&i) if i <= len => i,
Bound::Excluded(&i) if i < len => i + 1,
_ => return None,
};
let end = match range.end_bound() {
Bound::Unbounded => len,
Bound::Excluded(&i) if i <= len => i,
Bound::Included(&i) if i < len => i + 1,
_ => return None,
};
if start > end {
return None;
}
Some(start..end)
}
// Generic slice equality -- copied from the standard library but adding a custom comparator,
// allowing for our `Bucket` wrapper on either or both sides.
pub(crate) fn slice_eq<T, U>(left: &[T], right: &[U], eq: impl Fn(&T, &U) -> bool) -> bool {
if left.len() != right.len() {
return false;
}
// Implemented as explicit indexing rather
// than zipped iterators for performance reasons.
// See PR https://github.com/rust-lang/rust/pull/116846
for i in 0..left.len() {
// bound checks are optimized away
if !eq(&left[i], &right[i]) {
return false;
}
}
true
}

View File

@@ -0,0 +1,53 @@
use indexmap::indexmap;
use indexmap::Equivalent;
use std::hash::Hash;
#[derive(Debug, Hash)]
pub struct Pair<A, B>(pub A, pub B);
impl<A, B, C, D> PartialEq<(A, B)> for Pair<C, D>
where
C: PartialEq<A>,
D: PartialEq<B>,
{
fn eq(&self, rhs: &(A, B)) -> bool {
self.0 == rhs.0 && self.1 == rhs.1
}
}
impl<A, B, X> Equivalent<X> for Pair<A, B>
where
Pair<A, B>: PartialEq<X>,
A: Hash + Eq,
B: Hash + Eq,
{
fn equivalent(&self, other: &X) -> bool {
*self == *other
}
}
#[test]
fn test_lookup() {
let s = String::from;
let map = indexmap! {
(s("a"), s("b")) => 1,
(s("a"), s("x")) => 2,
};
assert!(map.contains_key(&Pair("a", "b")));
assert!(!map.contains_key(&Pair("b", "a")));
}
#[test]
fn test_string_str() {
let s = String::from;
let mut map = indexmap! {
s("a") => 1, s("b") => 2,
s("x") => 3, s("y") => 4,
};
assert!(map.contains_key("a"));
assert!(!map.contains_key("z"));
assert_eq!(map.swap_remove("b"), Some(2));
}

View File

@@ -0,0 +1,19 @@
#[test]
fn test_create_map() {
let _m = indexmap::indexmap! {
1 => 2,
7 => 1,
2 => 2,
3 => 3,
};
}
#[test]
fn test_create_set() {
let _s = indexmap::indexset! {
1,
7,
2,
3,
};
}

894
vendor/indexmap/tests/quick.rs vendored Normal file
View File

@@ -0,0 +1,894 @@
use indexmap::{IndexMap, IndexSet};
use itertools::Itertools;
use quickcheck::Arbitrary;
use quickcheck::Gen;
use quickcheck::QuickCheck;
use quickcheck::TestResult;
use fnv::FnvHasher;
use std::hash::{BuildHasher, BuildHasherDefault};
type FnvBuilder = BuildHasherDefault<FnvHasher>;
type IndexMapFnv<K, V> = IndexMap<K, V, FnvBuilder>;
use std::cmp::min;
use std::collections::HashMap;
use std::collections::HashSet;
use std::fmt::Debug;
use std::hash::Hash;
use std::ops::Bound;
use std::ops::Deref;
use indexmap::map::Entry;
use std::collections::hash_map::Entry as StdEntry;
fn set<'a, T: 'a, I>(iter: I) -> HashSet<T>
where
I: IntoIterator<Item = &'a T>,
T: Copy + Hash + Eq,
{
iter.into_iter().copied().collect()
}
fn indexmap<'a, T: 'a, I>(iter: I) -> IndexMap<T, ()>
where
I: IntoIterator<Item = &'a T>,
T: Copy + Hash + Eq,
{
IndexMap::from_iter(iter.into_iter().copied().map(|k| (k, ())))
}
// Helper macro to allow us to use smaller quickcheck limits under miri.
macro_rules! quickcheck_limit {
(@as_items $($i:item)*) => ($($i)*);
{
$(
$(#[$m:meta])*
fn $fn_name:ident($($arg_name:ident : $arg_ty:ty),*) -> $ret:ty {
$($code:tt)*
}
)*
} => (
quickcheck::quickcheck! {
@as_items
$(
#[test]
$(#[$m])*
fn $fn_name() {
fn prop($($arg_name: $arg_ty),*) -> $ret {
$($code)*
}
let mut quickcheck = QuickCheck::new();
if cfg!(miri) {
quickcheck = quickcheck
.gen(Gen::new(10))
.tests(10)
.max_tests(100);
}
quickcheck.quickcheck(prop as fn($($arg_ty),*) -> $ret);
}
)*
}
)
}
quickcheck_limit! {
fn contains(insert: Vec<u32>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
insert.iter().all(|&key| map.get(&key).is_some())
}
fn contains_not(insert: Vec<u8>, not: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
let nots = &set(&not) - &set(&insert);
nots.iter().all(|&key| map.get(&key).is_none())
}
fn insert_remove(insert: Vec<u8>, remove: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
for &key in &remove {
map.swap_remove(&key);
}
let elements = &set(&insert) - &set(&remove);
map.len() == elements.len() && map.iter().count() == elements.len() &&
elements.iter().all(|k| map.get(k).is_some())
}
fn insertion_order(insert: Vec<u32>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
itertools::assert_equal(insert.iter().unique(), map.keys());
true
}
fn insert_sorted(insert: Vec<(u32, u32)>) -> bool {
let mut hmap = HashMap::new();
let mut map = IndexMap::new();
let mut map2 = IndexMap::new();
for &(key, value) in &insert {
hmap.insert(key, value);
map.insert_sorted(key, value);
match map2.entry(key) {
Entry::Occupied(e) => *e.into_mut() = value,
Entry::Vacant(e) => { e.insert_sorted(value); }
}
}
itertools::assert_equal(hmap.iter().sorted(), &map);
itertools::assert_equal(&map, &map2);
true
}
fn insert_sorted_by(insert: Vec<(u32, u32)>) -> bool {
let mut hmap = HashMap::new();
let mut map = IndexMap::new();
let mut map2 = IndexMap::new();
for &(key, value) in &insert {
hmap.insert(key, value);
map.insert_sorted_by(key, value, |key1, _, key2, _| key2.cmp(key1));
match map2.entry(key) {
Entry::Occupied(e) => *e.into_mut() = value,
Entry::Vacant(e) => {
e.insert_sorted_by(value, |key1, _, key2, _| key2.cmp(key1));
}
}
}
let hsorted = hmap.iter().sorted_by(|(key1, _), (key2, _)| key2.cmp(key1));
itertools::assert_equal(hsorted, &map);
itertools::assert_equal(&map, &map2);
true
}
fn insert_sorted_by_key(insert: Vec<(i32, u32)>) -> bool {
let mut hmap = HashMap::new();
let mut map = IndexMap::new();
let mut map2 = IndexMap::new();
for &(key, value) in &insert {
hmap.insert(key, value);
map.insert_sorted_by_key(key, value, |&k, _| (k.unsigned_abs(), k));
match map2.entry(key) {
Entry::Occupied(e) => *e.into_mut() = value,
Entry::Vacant(e) => {
e.insert_sorted_by_key(value, |&k, _| (k.unsigned_abs(), k));
}
}
}
let hsorted = hmap.iter().sorted_by_key(|(&k, _)| (k.unsigned_abs(), k));
itertools::assert_equal(hsorted, &map);
itertools::assert_equal(&map, &map2);
true
}
fn replace_index(insert: Vec<u8>, index: u8, new_key: u8) -> TestResult {
if insert.is_empty() {
return TestResult::discard();
}
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
let mut index = usize::from(index);
if index < map.len() {
match map.replace_index(index, new_key) {
Ok(old_key) => {
assert!(old_key == new_key || !map.contains_key(&old_key));
}
Err((i, key)) => {
assert_eq!(key, new_key);
index = i;
}
}
assert_eq!(map.get_index_of(&new_key), Some(index));
assert_eq!(map.get_index(index), Some((&new_key, &())));
TestResult::passed()
} else {
TestResult::must_fail(move || map.replace_index(index, new_key))
}
}
fn vacant_replace_index(insert: Vec<u8>, index: u8, new_key: u8) -> TestResult {
if insert.is_empty() {
return TestResult::discard();
}
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
let index = usize::from(index);
if let Some((&old_key, &())) = map.get_index(index) {
match map.entry(new_key) {
Entry::Occupied(_) => return TestResult::discard(),
Entry::Vacant(entry) => {
let (replaced_key, entry) = entry.replace_index(index);
assert_eq!(old_key, replaced_key);
assert_eq!(*entry.key(), new_key);
}
};
assert!(!map.contains_key(&old_key));
assert_eq!(map.get_index_of(&new_key), Some(index));
assert_eq!(map.get_index(index), Some((&new_key, &())));
TestResult::passed()
} else {
TestResult::must_fail(move || map.replace_index(index, new_key))
}
}
fn pop(insert: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
let mut pops = Vec::new();
while let Some((key, _v)) = map.pop() {
pops.push(key);
}
pops.reverse();
itertools::assert_equal(insert.iter().unique(), &pops);
true
}
fn with_cap(template: Vec<()>) -> bool {
let cap = template.len();
let map: IndexMap<u8, u8> = IndexMap::with_capacity(cap);
println!("wish: {}, got: {} (diff: {})", cap, map.capacity(), map.capacity() as isize - cap as isize);
map.capacity() >= cap
}
fn drain_full(insert: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
let mut clone = map.clone();
let drained = clone.drain(..);
for (key, _) in drained {
map.swap_remove(&key);
}
map.is_empty()
}
fn drain_bounds(insert: Vec<u8>, range: (Bound<usize>, Bound<usize>)) -> TestResult {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
// First see if `Vec::drain` is happy with this range.
let result = std::panic::catch_unwind(|| {
let mut keys: Vec<u8> = map.keys().copied().collect();
keys.drain(range);
keys
});
if let Ok(keys) = result {
map.drain(range);
// Check that our `drain` matches the same key order.
assert!(map.keys().eq(&keys));
// Check that hash lookups all work too.
assert!(keys.iter().all(|key| map.contains_key(key)));
TestResult::passed()
} else {
// If `Vec::drain` panicked, so should we.
TestResult::must_fail(move || { map.drain(range); })
}
}
fn extract_if_odd(insert: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &x in &insert {
map.insert(x, x.to_string());
}
let (odd, even): (Vec<_>, Vec<_>) = map.keys().copied().partition(|k| k % 2 == 1);
let extracted: Vec<_> = map
.extract_if(.., |k, _| k % 2 == 1)
.map(|(k, _)| k)
.collect();
even.iter().all(|k| map.contains_key(k))
&& map.keys().eq(&even)
&& extracted == odd
}
fn extract_if_odd_limit(insert: Vec<u8>, limit: usize) -> bool {
let mut map = IndexMap::new();
for &x in &insert {
map.insert(x, x.to_string());
}
let limit = limit % (map.len() + 1);
let mut i = 0;
let (odd, other): (Vec<_>, Vec<_>) = map.keys().copied().partition(|k| {
k % 2 == 1 && i < limit && { i += 1; true }
});
let extracted: Vec<_> = map
.extract_if(.., |k, _| k % 2 == 1)
.map(|(k, _)| k)
.take(limit)
.collect();
other.iter().all(|k| map.contains_key(k))
&& map.keys().eq(&other)
&& extracted == odd
}
fn shift_remove(insert: Vec<u8>, remove: Vec<u8>) -> bool {
let mut map = IndexMap::new();
for &key in &insert {
map.insert(key, ());
}
for &key in &remove {
map.shift_remove(&key);
}
let elements = &set(&insert) - &set(&remove);
// Check that order is preserved after removals
let mut iter = map.keys();
for &key in insert.iter().unique() {
if elements.contains(&key) {
assert_eq!(Some(&key), iter.next());
}
}
map.len() == elements.len() && map.iter().count() == elements.len() &&
elements.iter().all(|k| map.get(k).is_some())
}
fn indexing(insert: Vec<u8>) -> bool {
let mut map: IndexMap<_, _> = insert.into_iter().map(|x| (x, x)).collect();
let set: IndexSet<_> = map.keys().copied().collect();
assert_eq!(map.len(), set.len());
for (i, &key) in set.iter().enumerate() {
assert_eq!(map.get_index(i), Some((&key, &key)));
assert_eq!(set.get_index(i), Some(&key));
assert_eq!(map[i], key);
assert_eq!(set[i], key);
*map.get_index_mut(i).unwrap().1 >>= 1;
map[i] <<= 1;
}
set.iter().enumerate().all(|(i, &key)| {
let value = key & !1;
map[&key] == value && map[i] == value
})
}
// Use `u8` test indices so quickcheck is less likely to go out of bounds.
fn set_swap_indices(vec: Vec<u8>, a: u8, b: u8) -> TestResult {
let mut set = IndexSet::<u8>::from_iter(vec);
let a = usize::from(a);
let b = usize::from(b);
if a >= set.len() || b >= set.len() {
return TestResult::discard();
}
let mut vec = Vec::from_iter(set.iter().cloned());
vec.swap(a, b);
set.swap_indices(a, b);
// Check both iteration order and hash lookups
assert!(set.iter().eq(vec.iter()));
assert!(vec.iter().enumerate().all(|(i, x)| {
set.get_index_of(x) == Some(i)
}));
TestResult::passed()
}
fn map_swap_indices(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_swap_indices(vec, from, to, IndexMap::swap_indices)
}
fn occupied_entry_swap_indices(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_swap_indices(vec, from, to, |map, from, to| {
let key = map.keys()[from];
match map.entry(key) {
Entry::Occupied(entry) => entry.swap_indices(to),
_ => unreachable!(),
}
})
}
fn indexed_entry_swap_indices(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_swap_indices(vec, from, to, |map, from, to| {
map.get_index_entry(from).unwrap().swap_indices(to);
})
}
fn raw_occupied_entry_swap_indices(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
use indexmap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut};
test_map_swap_indices(vec, from, to, |map, from, to| {
let key = map.keys()[from];
match map.raw_entry_mut_v1().from_key(&key) {
RawEntryMut::Occupied(entry) => entry.swap_indices(to),
_ => unreachable!(),
}
})
}
// Use `u8` test indices so quickcheck is less likely to go out of bounds.
fn set_move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
let mut set = IndexSet::<u8>::from_iter(vec);
let from = usize::from(from);
let to = usize::from(to);
if from >= set.len() || to >= set.len() {
return TestResult::discard();
}
let mut vec = Vec::from_iter(set.iter().cloned());
let x = vec.remove(from);
vec.insert(to, x);
set.move_index(from, to);
// Check both iteration order and hash lookups
assert!(set.iter().eq(vec.iter()));
assert!(vec.iter().enumerate().all(|(i, x)| {
set.get_index_of(x) == Some(i)
}));
TestResult::passed()
}
fn map_move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_move_index(vec, from, to, IndexMap::move_index)
}
fn occupied_entry_move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_move_index(vec, from, to, |map, from, to| {
let key = map.keys()[from];
match map.entry(key) {
Entry::Occupied(entry) => entry.move_index(to),
_ => unreachable!(),
}
})
}
fn indexed_entry_move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
test_map_move_index(vec, from, to, |map, from, to| {
map.get_index_entry(from).unwrap().move_index(to);
})
}
fn raw_occupied_entry_move_index(vec: Vec<u8>, from: u8, to: u8) -> TestResult {
use indexmap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut};
test_map_move_index(vec, from, to, |map, from, to| {
let key = map.keys()[from];
match map.raw_entry_mut_v1().from_key(&key) {
RawEntryMut::Occupied(entry) => entry.move_index(to),
_ => unreachable!(),
}
})
}
fn occupied_entry_shift_insert(vec: Vec<u8>, i: u8) -> TestResult {
test_map_shift_insert(vec, i, |map, i, key| {
match map.entry(key) {
Entry::Vacant(entry) => entry.shift_insert(i, ()),
_ => unreachable!(),
};
})
}
fn raw_occupied_entry_shift_insert(vec: Vec<u8>, i: u8) -> TestResult {
use indexmap::map::raw_entry_v1::{RawEntryApiV1, RawEntryMut};
test_map_shift_insert(vec, i, |map, i, key| {
match map.raw_entry_mut_v1().from_key(&key) {
RawEntryMut::Vacant(entry) => entry.shift_insert(i, key, ()),
_ => unreachable!(),
};
})
}
}
fn test_map_swap_indices<F>(vec: Vec<u8>, a: u8, b: u8, swap_indices: F) -> TestResult
where
F: FnOnce(&mut IndexMap<u8, ()>, usize, usize),
{
let mut map = IndexMap::<u8, ()>::from_iter(vec.into_iter().map(|k| (k, ())));
let a = usize::from(a);
let b = usize::from(b);
if a >= map.len() || b >= map.len() {
return TestResult::discard();
}
let mut vec = Vec::from_iter(map.keys().copied());
vec.swap(a, b);
swap_indices(&mut map, a, b);
// Check both iteration order and hash lookups
assert!(map.keys().eq(vec.iter()));
assert!(vec
.iter()
.enumerate()
.all(|(i, x)| { map.get_index_of(x) == Some(i) }));
TestResult::passed()
}
fn test_map_move_index<F>(vec: Vec<u8>, from: u8, to: u8, move_index: F) -> TestResult
where
F: FnOnce(&mut IndexMap<u8, ()>, usize, usize),
{
let mut map = IndexMap::<u8, ()>::from_iter(vec.into_iter().map(|k| (k, ())));
let from = usize::from(from);
let to = usize::from(to);
if from >= map.len() || to >= map.len() {
return TestResult::discard();
}
let mut vec = Vec::from_iter(map.keys().copied());
let x = vec.remove(from);
vec.insert(to, x);
move_index(&mut map, from, to);
// Check both iteration order and hash lookups
assert!(map.keys().eq(vec.iter()));
assert!(vec
.iter()
.enumerate()
.all(|(i, x)| { map.get_index_of(x) == Some(i) }));
TestResult::passed()
}
fn test_map_shift_insert<F>(vec: Vec<u8>, i: u8, shift_insert: F) -> TestResult
where
F: FnOnce(&mut IndexMap<u8, ()>, usize, u8),
{
let mut map = IndexMap::<u8, ()>::from_iter(vec.into_iter().map(|k| (k, ())));
let i = usize::from(i);
if i >= map.len() {
return TestResult::discard();
}
let mut vec = Vec::from_iter(map.keys().copied());
let x = vec.pop().unwrap();
vec.insert(i, x);
let (last, ()) = map.pop().unwrap();
assert_eq!(x, last);
map.shrink_to_fit(); // so we might have to grow and rehash the table
shift_insert(&mut map, i, last);
// Check both iteration order and hash lookups
assert!(map.keys().eq(vec.iter()));
assert!(vec
.iter()
.enumerate()
.all(|(i, x)| { map.get_index_of(x) == Some(i) }));
TestResult::passed()
}
use crate::Op::*;
#[derive(Copy, Clone, Debug)]
enum Op<K, V> {
Add(K, V),
Remove(K),
AddEntry(K, V),
RemoveEntry(K),
}
impl<K, V> Arbitrary for Op<K, V>
where
K: Arbitrary,
V: Arbitrary,
{
fn arbitrary(g: &mut Gen) -> Self {
match u32::arbitrary(g) % 4 {
0 => Add(K::arbitrary(g), V::arbitrary(g)),
1 => AddEntry(K::arbitrary(g), V::arbitrary(g)),
2 => Remove(K::arbitrary(g)),
_ => RemoveEntry(K::arbitrary(g)),
}
}
}
fn do_ops<K, V, S>(ops: &[Op<K, V>], a: &mut IndexMap<K, V, S>, b: &mut HashMap<K, V>)
where
K: Hash + Eq + Clone,
V: Clone,
S: BuildHasher,
{
for op in ops {
match *op {
Add(ref k, ref v) => {
a.insert(k.clone(), v.clone());
b.insert(k.clone(), v.clone());
}
AddEntry(ref k, ref v) => {
a.entry(k.clone()).or_insert_with(|| v.clone());
b.entry(k.clone()).or_insert_with(|| v.clone());
}
Remove(ref k) => {
a.swap_remove(k);
b.remove(k);
}
RemoveEntry(ref k) => {
if let Entry::Occupied(ent) = a.entry(k.clone()) {
ent.swap_remove_entry();
}
if let StdEntry::Occupied(ent) = b.entry(k.clone()) {
ent.remove_entry();
}
}
}
//println!("{:?}", a);
}
}
fn assert_maps_equivalent<K, V>(a: &IndexMap<K, V>, b: &HashMap<K, V>) -> bool
where
K: Hash + Eq + Debug,
V: Eq + Debug,
{
assert_eq!(a.len(), b.len());
assert_eq!(a.iter().next().is_some(), b.iter().next().is_some());
for key in a.keys() {
assert!(b.contains_key(key), "b does not contain {:?}", key);
}
for key in b.keys() {
assert!(a.get(key).is_some(), "a does not contain {:?}", key);
}
for key in a.keys() {
assert_eq!(a[key], b[key]);
}
true
}
quickcheck_limit! {
fn operations_i8(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = IndexMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
assert_maps_equivalent(&map, &reference)
}
fn operations_string(ops: Vec<Op<Alpha, i8>>) -> bool {
let mut map = IndexMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
assert_maps_equivalent(&map, &reference)
}
fn keys_values(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = IndexMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
let mut visit = IndexMap::new();
for (k, v) in map.keys().zip(map.values()) {
assert_eq!(&map[k], v);
assert!(!visit.contains_key(k));
visit.insert(*k, *v);
}
assert_eq!(visit.len(), reference.len());
true
}
fn keys_values_mut(ops: Large<Vec<Op<i8, i8>>>) -> bool {
let mut map = IndexMap::new();
let mut reference = HashMap::new();
do_ops(&ops, &mut map, &mut reference);
let mut visit = IndexMap::new();
let keys = Vec::from_iter(map.keys().copied());
for (k, v) in keys.iter().zip(map.values_mut()) {
assert_eq!(&reference[k], v);
assert!(!visit.contains_key(k));
visit.insert(*k, *v);
}
assert_eq!(visit.len(), reference.len());
true
}
fn equality(ops1: Vec<Op<i8, i8>>, removes: Vec<usize>) -> bool {
let mut map = IndexMap::new();
let mut reference = HashMap::new();
do_ops(&ops1, &mut map, &mut reference);
let mut ops2 = ops1.clone();
for &r in &removes {
if !ops2.is_empty() {
let i = r % ops2.len();
ops2.remove(i);
}
}
let mut map2 = IndexMapFnv::default();
let mut reference2 = HashMap::new();
do_ops(&ops2, &mut map2, &mut reference2);
assert_eq!(map == map2, reference == reference2);
true
}
fn retain_ordered(keys: Large<Vec<i8>>, remove: Large<Vec<i8>>) -> () {
let mut map = indexmap(keys.iter());
let initial_map = map.clone(); // deduplicated in-order input
let remove_map = indexmap(remove.iter());
let keys_s = set(keys.iter());
let remove_s = set(remove.iter());
let answer = &keys_s - &remove_s;
map.retain(|k, _| !remove_map.contains_key(k));
// check the values
assert_eq!(map.len(), answer.len());
for key in &answer {
assert!(map.contains_key(key));
}
// check the order
itertools::assert_equal(map.keys(), initial_map.keys().filter(|&k| !remove_map.contains_key(k)));
}
fn sort_1(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
let mut answer = keyvals.0;
answer.sort_by_key(|t| t.0);
// reverse dedup: Because IndexMap::from_iter keeps the last value for
// identical keys
answer.reverse();
answer.dedup_by_key(|t| t.0);
answer.reverse();
map.sort_by(|k1, _, k2, _| Ord::cmp(k1, k2));
// check it contains all the values it should
for &(key, val) in &answer {
assert_eq!(map[&key], val);
}
// check the order
let mapv = Vec::from_iter(map);
assert_eq!(answer, mapv);
}
fn sort_2(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
map.sort_by(|_, v1, _, v2| Ord::cmp(v1, v2));
assert_sorted_by_key(map, |t| t.1);
}
fn sort_3(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
map.sort_by_cached_key(|&k, _| std::cmp::Reverse(k));
assert_sorted_by_key(map, |t| std::cmp::Reverse(t.0));
}
fn reverse(keyvals: Large<Vec<(i8, i8)>>) -> () {
let mut map: IndexMap<_, _> = IndexMap::from_iter(keyvals.to_vec());
fn generate_answer(input: &Vec<(i8, i8)>) -> Vec<(i8, i8)> {
// to mimic what `IndexMap::from_iter` does:
// need to get (A) the unique keys in forward order, and (B) the
// last value of each of those keys.
// create (A): an iterable that yields the unique keys in ltr order
let mut seen_keys = HashSet::new();
let unique_keys_forward = input.iter().filter_map(move |(k, _)| {
if seen_keys.contains(k) { None }
else { seen_keys.insert(*k); Some(*k) }
});
// create (B): a mapping of keys to the last value seen for that key
// this is the same as reversing the input and taking the first
// value seen for that key!
let mut last_val_per_key = HashMap::new();
for &(k, v) in input.iter().rev() {
if !last_val_per_key.contains_key(&k) {
last_val_per_key.insert(k, v);
}
}
// iterate over the keys in (A) in order, and match each one with
// the corresponding last value from (B)
let mut ans: Vec<_> = unique_keys_forward
.map(|k| (k, *last_val_per_key.get(&k).unwrap()))
.collect();
// finally, since this test is testing `.reverse()`, reverse the
// answer in-place
ans.reverse();
ans
}
let answer = generate_answer(&keyvals.0);
// perform the work
map.reverse();
// check it contains all the values it should
for &(key, val) in &answer {
assert_eq!(map[&key], val);
}
// check the order
let mapv = Vec::from_iter(map);
assert_eq!(answer, mapv);
}
}
fn assert_sorted_by_key<I, Key, X>(iterable: I, key: Key)
where
I: IntoIterator,
I::Item: Ord + Clone + Debug,
Key: Fn(&I::Item) -> X,
X: Ord,
{
let input = Vec::from_iter(iterable);
let mut sorted = input.clone();
sorted.sort_by_key(key);
assert_eq!(input, sorted);
}
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
struct Alpha(String);
impl Deref for Alpha {
type Target = String;
fn deref(&self) -> &String {
&self.0
}
}
const ALPHABET: &[u8] = b"abcdefghijklmnopqrstuvwxyz";
impl Arbitrary for Alpha {
fn arbitrary(g: &mut Gen) -> Self {
let len = usize::arbitrary(g) % g.size();
let len = min(len, 16);
Alpha(
(0..len)
.map(|_| ALPHABET[usize::arbitrary(g) % ALPHABET.len()] as char)
.collect(),
)
}
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
Box::new((**self).shrink().map(Alpha))
}
}
/// quickcheck Arbitrary adaptor -- make a larger vec
#[derive(Clone, Debug)]
struct Large<T>(T);
impl<T> Deref for Large<T> {
type Target = T;
fn deref(&self) -> &T {
&self.0
}
}
impl<T> Arbitrary for Large<Vec<T>>
where
T: Arbitrary,
{
fn arbitrary(g: &mut Gen) -> Self {
let len = usize::arbitrary(g) % (g.size() * 10);
Large((0..len).map(|_| T::arbitrary(g)).collect())
}
fn shrink(&self) -> Box<dyn Iterator<Item = Self>> {
Box::new((**self).shrink().map(Large))
}
}

28
vendor/indexmap/tests/tests.rs vendored Normal file
View File

@@ -0,0 +1,28 @@
use indexmap::{indexmap, indexset};
#[test]
fn test_sort() {
let m = indexmap! {
1 => 2,
7 => 1,
2 => 2,
3 => 3,
};
itertools::assert_equal(
m.sorted_by(|_k1, v1, _k2, v2| v1.cmp(v2)),
vec![(7, 1), (1, 2), (2, 2), (3, 3)],
);
}
#[test]
fn test_sort_set() {
let s = indexset! {
1,
7,
2,
3,
};
itertools::assert_equal(s.sorted_by(|v1, v2| v1.cmp(v2)), vec![1, 2, 3, 7]);
}