Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

1
vendor/itertools/.cargo-checksum.json vendored Normal file

File diff suppressed because one or more lines are too long

570
vendor/itertools/CHANGELOG.md vendored Normal file
View File

@@ -0,0 +1,570 @@
# Changelog
## 0.14.0
### Breaking
- Increased MSRV to 1.63.0 (#960)
- Removed generic parameter from `cons_tuples` (#988)
### Added
- Added `array_combinations` (#991)
- Added `k_smallest_relaxed` and variants (#925)
- Added `next_array` and `collect_array` (#560)
- Implemented `DoubleEndedIterator` for `FilterOk` (#948)
- Implemented `DoubleEndedIterator` for `FilterMapOk` (#950)
### Changed
- Allow `Q: ?Sized` in `Itertools::contains` (#971)
- Improved hygiene of `chain!` (#943)
- Improved `into_group_map_by` documentation (#1000)
- Improved `tree_reduce` documentation (#955)
- Improved discoverability of `merge_join_by` (#966)
- Improved discoverability of `take_while_inclusive` (#972)
- Improved documentation of `find_or_last` and `find_or_first` (#984)
- Prevented exponentially large type sizes in `tuple_combinations` (#945)
- Added `track_caller` attr for `asser_equal` (#976)
### Notable Internal Changes
- Fixed clippy lints (#956, #987, #1008)
- Addressed warnings within doctests (#964)
- CI: Run most tests with miri (#961)
- CI: Speed up "cargo-semver-checks" action (#938)
- Changed an instance of `default_features` in `Cargo.toml` to `default-features` (#985)
## 0.13.0
### Breaking
- Removed implementation of `DoubleEndedIterator` for `ConsTuples` (#853)
- Made `MultiProduct` fused and fixed on an empty iterator (#835, #834)
- Changed `iproduct!` to return tuples for maxi one iterator too (#870)
- Changed `PutBack::put_back` to return the old value (#880)
- Removed deprecated `repeat_call, Itertools::{foreach, step, map_results, fold_results}` (#878)
- Removed `TakeWhileInclusive::new` (#912)
### Added
- Added `Itertools::{smallest_by, smallest_by_key, largest, largest_by, largest_by_key}` (#654, #885)
- Added `Itertools::tail` (#899)
- Implemented `DoubleEndedIterator` for `ProcessResults` (#910)
- Implemented `Debug` for `FormatWith` (#931)
- Added `Itertools::get` (#891)
### Changed
- Deprecated `Itertools::group_by` (renamed `chunk_by`) (#866, #879)
- Deprecated `unfold` (use `std::iter::from_fn` instead) (#871)
- Optimized `GroupingMapBy` (#873, #876)
- Relaxed `Fn` bounds to `FnMut` in `diff_with, Itertools::into_group_map_by` (#886)
- Relaxed `Debug/Clone` bounds for `MapInto` (#889)
- Documented the `use_alloc` feature (#887)
- Optimized `Itertools::set_from` (#888)
- Removed badges in `README.md` (#890)
- Added "no-std" categories in `Cargo.toml` (#894)
- Fixed `Itertools::k_smallest` on short unfused iterators (#900)
- Deprecated `Itertools::tree_fold1` (renamed `tree_reduce`) (#895)
- Deprecated `GroupingMap::fold_first` (renamed `reduce`) (#902)
- Fixed `Itertools::k_smallest(0)` to consume the iterator, optimized `Itertools::k_smallest(1)` (#909)
- Specialized `Combinations::nth` (#914)
- Specialized `MergeBy::fold` (#920)
- Specialized `CombinationsWithReplacement::nth` (#923)
- Specialized `FlattenOk::{fold, rfold}` (#927)
- Specialized `Powerset::nth` (#924)
- Documentation fixes (#882, #936)
- Fixed `assert_equal` for iterators longer than `i32::MAX` (#932)
- Updated the `must_use` message of non-lazy `KMergeBy` and `TupleCombinations` (#939)
### Notable Internal Changes
- Tested iterator laziness (#792)
- Created `CONTRIBUTING.md` (#767)
## 0.12.1
### Added
- Documented iteration order guarantee for `Itertools::[tuple_]combinations` (#822)
- Documented possible panic in `iterate` (#842)
- Implemented `Clone` and `Debug` for `Diff` (#845)
- Implemented `Debug` for `WithPosition` (#859)
- Implemented `Eq` for `MinMaxResult` (#838)
- Implemented `From<EitherOrBoth<A, B>>` for `Option<Either<A, B>>` (#843)
- Implemented `PeekingNext` for `RepeatN` (#855)
### Changed
- Made `CoalesceBy` lazy (#801)
- Optimized `Filter[Map]Ok::next`, `Itertools::partition`, `Unique[By]::next[_back]` (#818)
- Optimized `Itertools::find_position` (#837)
- Optimized `Positions::next[_back]` (#816)
- Optimized `ZipLongest::fold` (#854)
- Relaxed `Debug` bounds for `GroupingMapBy` (#860)
- Specialized `ExactlyOneError::fold` (#826)
- Specialized `Interleave[Shortest]::fold` (#849)
- Specialized `MultiPeek::fold` (#820)
- Specialized `PadUsing::[r]fold` (#825)
- Specialized `PeekNth::fold` (#824)
- Specialized `Positions::[r]fold` (#813)
- Specialized `PutBackN::fold` (#823)
- Specialized `RepeatN::[r]fold` (#821)
- Specialized `TakeWhileInclusive::fold` (#851)
- Specialized `ZipLongest::rfold` (#848)
### Notable Internal Changes
- Added test coverage in CI (#847, #856)
- Added semver check in CI (#784)
- Enforced `clippy` in CI (#740)
- Enforced `rustdoc` in CI (#840)
- Improved specialization tests (#807)
- More specialization benchmarks (#806)
## 0.12.0
### Breaking
- Made `take_while_inclusive` consume iterator by value (#709)
- Added `Clone` bound to `Unique` (#777)
### Added
- Added `Itertools::try_len` (#723)
- Added free function `sort_unstable` (#796)
- Added `GroupMap::fold_with` (#778, #785)
- Added `PeekNth::{peek_mut, peek_nth_mut}` (#716)
- Added `PeekNth::{next_if, next_if_eq}` (#734)
- Added conversion into `(Option<A>,Option<B>)` to `EitherOrBoth` (#713)
- Added conversion from `Either<A, B>` to `EitherOrBoth<A, B>` (#715)
- Implemented `ExactSizeIterator` for `Tuples` (#761)
- Implemented `ExactSizeIterator` for `(Circular)TupleWindows` (#752)
- Made `EitherOrBoth<T>` a shorthand for `EitherOrBoth<T, T>` (#719)
### Changed
- Added missing `#[must_use]` annotations on iterator adaptors (#794)
- Made `Combinations` lazy (#795)
- Made `Intersperse(With)` lazy (#797)
- Made `Permutations` lazy (#793)
- Made `Product` lazy (#800)
- Made `TupleWindows` lazy (#602)
- Specialized `Combinations::{count, size_hint}` (#729)
- Specialized `CombinationsWithReplacement::{count, size_hint}` (#737)
- Specialized `Powerset::fold` (#765)
- Specialized `Powerset::count` (#735)
- Specialized `TupleCombinations::{count, size_hint}` (#763)
- Specialized `TupleCombinations::fold` (#775)
- Specialized `WhileSome::fold` (#780)
- Specialized `WithPosition::fold` (#772)
- Specialized `ZipLongest::fold` (#774)
- Changed `{min, max}_set*` operations require `alloc` feature, instead of `std` (#760)
- Improved documentation of `tree_fold1` (#787)
- Improved documentation of `permutations` (#724)
- Fixed typo in documentation of `multiunzip` (#770)
### Notable Internal Changes
- Improved specialization tests (#799, #786, #782)
- Simplified implementation of `Permutations` (#739, #748, #790)
- Combined `Merge`/`MergeBy`/`MergeJoinBy` implementations (#736)
- Simplified `Permutations::size_hint` (#739)
- Fix wrapping arithmetic in benchmarks (#770)
- Enforced `rustfmt` in CI (#751)
- Disallowed compile warnings in CI (#720)
- Used `cargo hack` to check MSRV (#754)
## 0.11.0
### Breaking
- Make `Itertools::merge_join_by` also accept functions returning bool (#704)
- Implement `PeekingNext` transitively over mutable references (#643)
- Change `with_position` to yield `(Position, Item)` instead of `Position<Item>` (#699)
### Added
- Add `Itertools::take_while_inclusive` (#616)
- Implement `PeekingNext` for `PeekingTakeWhile` (#644)
- Add `EitherOrBoth::{just_left, just_right, into_left, into_right, as_deref, as_deref_mut, left_or_insert, right_or_insert, left_or_insert_with, right_or_insert_with, insert_left, insert_right, insert_both}` (#629)
- Implement `Clone` for `CircularTupleWindows` (#686)
- Implement `Clone` for `Chunks` (#683)
- Add `Itertools::process_results` (#680)
### Changed
- Use `Cell` instead of `RefCell` in `Format` and `FormatWith` (#608)
- CI tweaks (#674, #675)
- Document and test the difference between stable and unstable sorts (#653)
- Fix documentation error on `Itertools::max_set_by_key` (#692)
- Move MSRV metadata to `Cargo.toml` (#672)
- Implement `equal` with `Iterator::eq` (#591)
## 0.10.5
- Maintenance
## 0.10.4
- Add `EitherOrBoth::or` and `EitherOrBoth::or_else` (#593)
- Add `min_set`, `max_set` et al. (#613, #323)
- Use `either/use_std` (#628)
- Documentation fixes (#612, #625, #632, #633, #634, #638)
- Code maintenance (#623, #624, #627, #630)
## 0.10.3
- Maintenance
## 0.10.2
- Add `Itertools::multiunzip` (#362, #565)
- Add `intersperse` and `intersperse_with` free functions (#555)
- Add `Itertools::sorted_by_cached_key` (#424, #575)
- Specialize `ProcessResults::fold` (#563)
- Fix subtraction overflow in `DuplicatesBy::size_hint` (#552)
- Fix specialization tests (#574)
- More `Debug` impls (#573)
- Deprecate `fold1` (use `reduce` instead) (#580)
- Documentation fixes (`HomogenousTuple`, `into_group_map`, `into_group_map_by`, `MultiPeek::peek`) (#543 et al.)
## 0.10.1
- Add `Itertools::contains` (#514)
- Add `Itertools::counts_by` (#515)
- Add `Itertools::partition_result` (#511)
- Add `Itertools::all_unique` (#241)
- Add `Itertools::duplicates` and `Itertools::duplicates_by` (#502)
- Add `chain!` (#525)
- Add `Itertools::at_most_one` (#523)
- Add `Itertools::flatten_ok` (#527)
- Add `EitherOrBoth::or_default` (#583)
- Add `Itertools::find_or_last` and `Itertools::find_or_first` (#535)
- Implement `FusedIterator` for `FilterOk`, `FilterMapOk`, `InterleaveShortest`, `KMergeBy`, `MergeBy`, `PadUsing`, `Positions`, `Product` , `RcIter`, `TupleWindows`, `Unique`, `UniqueBy`, `Update`, `WhileSome`, `Combinations`, `CombinationsWithReplacement`, `Powerset`, `RepeatN`, and `WithPosition` (#550)
- Implement `FusedIterator` for `Interleave`, `IntersperseWith`, and `ZipLongest` (#548)
## 0.10.0
- **Increase minimum supported Rust version to 1.32.0**
- Improve macro hygiene (#507)
- Add `Itertools::powerset` (#335)
- Add `Itertools::sorted_unstable`, `Itertools::sorted_unstable_by`, and `Itertools::sorted_unstable_by_key` (#494)
- Implement `Error` for `ExactlyOneError` (#484)
- Undeprecate `Itertools::fold_while` (#476)
- Tuple-related adapters work for tuples of arity up to 12 (#475)
- `use_alloc` feature for users who have `alloc`, but not `std` (#474)
- Add `Itertools::k_smallest` (#473)
- Add `Itertools::into_grouping_map` and `GroupingMap` (#465)
- Add `Itertools::into_grouping_map_by` and `GroupingMapBy` (#465)
- Add `Itertools::counts` (#468)
- Add implementation of `DoubleEndedIterator` for `Unique` (#442)
- Add implementation of `DoubleEndedIterator` for `UniqueBy` (#442)
- Add implementation of `DoubleEndedIterator` for `Zip` (#346)
- Add `Itertools::multipeek` (#435)
- Add `Itertools::dedup_with_count` and `DedupWithCount` (#423)
- Add `Itertools::dedup_by_with_count` and `DedupByWithCount` (#423)
- Add `Itertools::intersperse_with` and `IntersperseWith` (#381)
- Add `Itertools::filter_ok` and `FilterOk` (#377)
- Add `Itertools::filter_map_ok` and `FilterMapOk` (#377)
- Deprecate `Itertools::fold_results`, use `Itertools::fold_ok` instead (#377)
- Deprecate `Itertools::map_results`, use `Itertools::map_ok` instead (#377)
- Deprecate `FoldResults`, use `FoldOk` instead (#377)
- Deprecate `MapResults`, use `MapOk` instead (#377)
- Add `Itertools::circular_tuple_windows` and `CircularTupleWindows` (#350)
- Add `peek_nth` and `PeekNth` (#303)
## 0.9.0
- Fix potential overflow in `MergeJoinBy::size_hint` (#385)
- Add `derive(Clone)` where possible (#382)
- Add `try_collect` method (#394)
- Add `HomogeneousTuple` trait (#389)
- Fix `combinations(0)` and `combinations_with_replacement(0)` (#383)
- Don't require `ParitalEq` to the `Item` of `DedupBy` (#397)
- Implement missing specializations on the `PutBack` adaptor and on the `MergeJoinBy` iterator (#372)
- Add `position_*` methods (#412)
- Derive `Hash` for `EitherOrBoth` (#417)
- Increase minimum supported Rust version to 1.32.0
## 0.8.2
- Use `slice::iter` instead of `into_iter` to avoid future breakage (#378, by @LukasKalbertodt)
## 0.8.1
- Added a [`.exactly_one()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.exactly_one) iterator method that, on success, extracts the single value of an iterator ; by @Xaeroxe
- Added combinatory iterator adaptors:
- [`.permutations(k)`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.permutations):
`[0, 1, 2].iter().permutations(2)` yields
```rust
[
vec![0, 1],
vec![0, 2],
vec![1, 0],
vec![1, 2],
vec![2, 0],
vec![2, 1],
]
```
; by @tobz1000
- [`.combinations_with_replacement(k)`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.combinations_with_replacement):
`[0, 1, 2].iter().combinations_with_replacement(2)` yields
```rust
[
vec![0, 0],
vec![0, 1],
vec![0, 2],
vec![1, 1],
vec![1, 2],
vec![2, 2],
]
```
; by @tommilligan
- For reference, these methods join the already existing [`.combinations(k)`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.combinations):
`[0, 1, 2].iter().combinations(2)` yields
```rust
[
vec![0, 1],
vec![0, 2],
vec![1, 2],
]
```
- Improved the performance of [`.fold()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.fold)-based internal iteration for the [`.intersperse()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.intersperse) iterator ; by @jswrenn
- Added [`.dedup_by()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.dedup_by), [`.merge_by()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.merge_by) and [`.kmerge_by()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.kmerge_by) adaptors that work like [`.dedup()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.dedup), [`.merge()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.merge) and [`.kmerge()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.kmerge), but taking an additional custom comparison closure parameter. ; by @phimuemue
- Improved the performance of [`.all_equal()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.all_equal) ; by @fyrchik
- Loosened the bounds on [`.partition_map()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.partition_map) to take just a `FnMut` closure rather than a `Fn` closure, and made its implementation use internal iteration for better performance ; by @danielhenrymantilla
- Added convenience methods to [`EitherOrBoth`](https://docs.rs/itertools/0.8.1/itertools/enum.EitherOrBoth.html) elements yielded from the [`.zip_longest()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.zip_longest) iterator adaptor ; by @Avi-D-coder
- Added [`.sum1()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.sum1) and [`.product1()`](https://docs.rs/itertools/0.8.1/itertools/trait.Itertools.html#method.product1) iterator methods that respectively try to return the sum and the product of the elements of an iterator **when it is not empty**, otherwise they return `None` ; by @Emerentius
## 0.8.0
- Added new adaptor `.map_into()` for conversions using `Into` by @vorner
- Improved `Itertools` docs by @JohnHeitmann
- The return type of `.sorted_by_by_key()` is now an iterator, not a Vec.
- The return type of the `izip!(x, y)` macro with exactly two arguments is now the usual `Iterator::zip`.
- Remove `.flatten()` in favour of std's `.flatten()`
- Deprecate `.foreach()` in favour of std's `.for_each()`
- Deprecate `.step()` in favour of std's `.step_by()`
- Deprecate `repeat_call` in favour of std's `repeat_with`
- Deprecate `.fold_while()` in favour of std's `.try_fold()`
- Require Rust 1.24 as minimal version.
## 0.7.11
- Add convenience methods to `EitherOrBoth`, making it more similar to `Option` and `Either` by @jethrogb
## 0.7.10
- No changes.
## 0.7.9
- New inclusion policy: See the readme about suggesting features for std before accepting them in itertools.
- The `FoldWhile` type now implements `Eq` and `PartialEq` by @jturner314
## 0.7.8
- Add new iterator method `.tree_fold1()` which is like `.fold1()` except items are combined in a tree structure (see its docs). By @scottmcm
- Add more `Debug` impls by @phimuemue: KMerge, KMergeBy, MergeJoinBy, ConsTuples, Intersperse, ProcessResults, RcIter, Tee, TupleWindows, Tee, ZipLongest, ZipEq, Zip.
## 0.7.7
- Add new iterator method `.into_group_map() -> HashMap<K, Vec<V>>` which turns an iterator of `(K, V)` elements into such a hash table, where values are grouped by key. By @tobz1000
- Add new free function `flatten` for the `.flatten()` adaptor. **NOTE:** recent Rust nightlies have `Iterator::flatten` and thus a clash with our flatten adaptor. One workaround is to use the itertools `flatten` free function.
## 0.7.6
- Add new adaptor `.multi_cartesian_product()` which is an n-ary product iterator by @tobz1000
- Add new method `.sorted_by_key()` by @Xion
- Provide simpler and faster `.count()` for `.unique()` and `.unique_by()`
## 0.7.5
- `.multipeek()` now implements `PeekingNext`, by @nicopap.
## 0.7.4
- Add new adaptor `.update()` by @lucasem; this adaptor is used to modify an element before passing it on in an iterator chain.
## 0.7.3
- Add new method `.collect_tuple()` by @matklad; it makes a tuple out of the iterator's elements if the number of them matches **exactly**.
- Implement `fold` and `collect` for `.map_results()` which means it reuses the code of the standard `.map()` for these methods.
## 0.7.2
- Add new adaptor `.merge_join_by` by @srijs; a heterogeneous merge join for two ordered sequences.
## 0.7.1
- Iterator adaptors and iterators in itertools now use the same `must_use` reminder that the standard library adaptors do, by @matematikaedit and @bluss *“iterator adaptors are lazy and do nothing unless consumed”*.
## 0.7.0
- Faster `izip!()` by @krdln
- `izip!()` is now a wrapper for repeated regular `.zip()` and a single `.map()`. This means it optimizes as well as the standard library `.zip()` it uses. **Note:** `multizip` and `izip!()` are now different! The former has a named type but the latter optimizes better.
- Faster `.unique()`
- `no_std` support, which is opt-in!
- Many lovable features are still there without std, like `izip!()` or `.format()` or `.merge()`, but not those that use collections.
- Trait bounds were required up front instead of just on the type: `group_by`'s `PartialEq` by @Phlosioneer and `repeat_call`'s `FnMut`.
- Removed deprecated constructor `Zip::new` — use `izip!()` or `multizip()`
## 0.6.5
- Fix bug in `.cartesian_product()`'s fold (which only was visible for unfused iterators).
## 0.6.4
- Add specific `fold` implementations for `.cartesian_product()` and `cons_tuples()`, which improves their performance in fold, foreach, and iterator consumers derived from them.
## 0.6.3
- Add iterator adaptor `.positions(predicate)` by @tmccombs
## 0.6.2
- Add function `process_results` which can “lift” a function of the regular values of an iterator so that it can process the `Ok` values from an iterator of `Results` instead, by @shepmaster
- Add iterator method `.concat()` which combines all iterator elements into a single collection using the `Extend` trait, by @srijs
## 0.6.1
- Better size hint testing and subsequent size hint bugfixes by @rkarp. Fixes bugs in product, `interleave_shortest` size hints.
- New iterator method `.all_equal()` by @phimuemue
## 0.6.0
- Deprecated names were removed in favour of their replacements
- `.flatten()` does not implement double ended iteration anymore
- `.fold_while()` uses `&mut self` and returns `FoldWhile<T>`, for composability #168
- `.foreach()` and `.fold1()` use `self`, like `.fold()` does.
- `.combinations(0)` now produces a single empty vector. #174
## 0.5.10
- Add itertools method `.kmerge_by()` (and corresponding free function)
- Relaxed trait requirement of `.kmerge()` and `.minmax()` to PartialOrd.
## 0.5.9
- Add multipeek method `.reset_peek()`
- Add categories
## 0.5.8
- Add iterator adaptor `.peeking_take_while()` and its trait `PeekingNext`.
## 0.5.7
- Add iterator adaptor `.with_position()`
- Fix multipeek's performance for long peeks by using `VecDeque`.
## 0.5.6
- Add `.map_results()`
## 0.5.5
- Many more adaptors now implement `Debug`
- Add free function constructor `repeat_n`. `RepeatN::new` is now deprecated.
## 0.5.4
- Add infinite generator function `iterate`, that takes a seed and a closure.
## 0.5.3
- Special-cased `.fold()` for flatten and put back. `.foreach()` now uses fold on the iterator, to pick up any iterator specific loop implementation.
- `.combinations(n)` asserts up front that `n != 0`, instead of running into an error on the second iterator element.
## 0.5.2
- Add `.tuples::<T>()` that iterates by two, three or four elements at a time (where `T` is a tuple type).
- Add `.tuple_windows::<T>()` that iterates using a window of the two, three or four most recent elements.
- Add `.next_tuple::<T>()` method, that picks the next two, three or four elements in one go.
- `.interleave()` now has an accurate size hint.
## 0.5.1
- Workaround module/function name clash that made racer crash on completing itertools. Only internal changes needed.
## 0.5.0
- [Release announcement](https://bluss.github.io/rust/2016/09/26/itertools-0.5.0/)
- Renamed:
- `combinations` is now `tuple_combinations`
- `combinations_n` to `combinations`
- `group_by_lazy`, `chunks_lazy` to `group_by`, `chunks`
- `Unfold::new` to `unfold()`
- `RepeatCall::new` to `repeat_call()`
- `Zip::new` to `multizip`
- `PutBack::new`, `PutBackN::new` to `put_back`, `put_back_n`
- `PutBack::with_value` is now a builder setter, not a constructor
- `MultiPeek::new`, `.multipeek()` to `multipeek()`
- `format` to `format_with` and `format_default` to `format`
- `.into_rc()` to `rciter`
- `Partition` enum is now `Either`
- Module reorganization:
- All iterator structs are under `itertools::structs` but also reexported to the top level, for backwards compatibility
- All free functions are reexported at the root, `itertools::free` will be removed in the next version
- Removed:
- `ZipSlices`, use `.zip()` instead
- `.enumerate_from()`, `ZipTrusted`, due to being unstable
- `.mend_slices()`, moved to crate `odds`
- Stride, StrideMut, moved to crate `odds`
- `linspace()`, moved to crate `itertools-num`
- `.sort_by()`, use `.sorted_by()`
- `.is_empty_hint()`, use `.size_hint()`
- `.dropn()`, use `.dropping()`
- `.map_fn()`, use `.map()`
- `.slice()`, use `.take()` / `.skip()`
- helper traits in `misc`
- `new` constructors on iterator structs, use `Itertools` trait or free functions instead
- `itertools::size_hint` is now private
- Behaviour changes:
- `format` and `format_with` helpers now panic if you try to format them more than once.
- `repeat_call` is not double ended anymore
- New features:
- tuple flattening iterator is constructible with `cons_tuples`
- itertools reexports `Either` from the `either` crate. `Either<L, R>` is an iterator when `L, R` are.
- `MinMaxResult` now implements `Copy` and `Clone`
- `tuple_combinations` supports 1-4 tuples of combinations (previously just 2)
## 0.4.19
- Add `.minmax_by()`
- Add `itertools::free::cloned`
- Add `itertools::free::rciter`
- Improve `.step(n)` slightly to take advantage of specialized Fuse better.
## 0.4.18
- Only changes related to the "unstable" crate feature. This feature is more or less deprecated.
- Use deprecated warnings when unstable is enabled. `.enumerate_from()` will be removed imminently since it's using a deprecated libstd trait.
## 0.4.17
- Fix bug in `.kmerge()` that caused it to often produce the wrong order #134
## 0.4.16
- Improve precision of the `interleave_shortest` adaptor's size hint (it is now computed exactly when possible).
## 0.4.15
- Fixup on top of the workaround in 0.4.14. A function in `itertools::free` was removed by mistake and now it is added back again.
## 0.4.14
- Workaround an upstream regression in a Rust nightly build that broke compilation of of `itertools::free::{interleave, merge}`
## 0.4.13
- Add `.minmax()` and `.minmax_by_key()`, iterator methods for finding both minimum and maximum in one scan.
- Add `.format_default()`, a simpler version of `.format()` (lazy formatting for iterators).
## 0.4.12
- Add `.zip_eq()`, an adaptor like `.zip()` except it ensures iterators of inequal length don't pass silently (instead it panics).
- Add `.fold_while()`, an iterator method that is a fold that can short-circuit.
- Add `.partition_map()`, an iterator method that can separate elements into two collections.
## 0.4.11
- Add `.get()` for `Stride{,Mut}` and `.get_mut()` for `StrideMut`
## 0.4.10
- Improve performance of `.kmerge()`
## 0.4.9
- Add k-ary merge adaptor `.kmerge()`
- Fix a bug in `.islice()` with ranges `a..b` where a `> b`.
## 0.4.8
- Implement `Clone`, `Debug` for `Linspace`
## 0.4.7
- Add function `diff_with()` that compares two iterators
- Add `.combinations_n()`, an n-ary combinations iterator
- Add methods `PutBack::with_value` and `PutBack::into_parts`.
## 0.4.6
- Add method `.sorted()`
- Add module `itertools::free` with free function variants of common iterator adaptors and methods. For example `enumerate(iterable)`, `rev(iterable)`, and so on.
## 0.4.5
- Add `.flatten()`
## 0.4.4
- Allow composing `ZipSlices` with itself
## 0.4.3
- Write `iproduct!()` as a single expression; this allows temporary values in its arguments.
## 0.4.2
- Add `.fold_options()`
- Require Rust 1.1 or later
## 0.4.1
- Update `.dropping()` to take advantage of `.nth()`
## 0.4.0
- `.merge()`, `.unique()` and `.dedup()` now perform better due to not using function pointers
- Add free functions `enumerate()` and `rev()`
- Breaking changes:
- Return types of `.merge()` and `.merge_by()` renamed and changed
- Method `Merge::new` removed
- `.merge_by()` now takes a closure that returns bool.
- Return type of `.dedup()` changed
- Return type of `.mend_slices()` changed
- Return type of `.unique()` changed
- Removed function `times()`, struct `Times`: use a range instead
- Removed deprecated macro `icompr!()`
- Removed deprecated `FnMap` and method `.fn_map()`: use `.map_fn()`
- `.interleave_shortest()` is no longer guaranteed to act like fused
## 0.3.25
- Rename `.sort_by()` to `.sorted_by()`. Old name is deprecated.
- Fix well-formedness warnings from RFC 1214, no user visible impact
## 0.3.24
- Improve performance of `.merge()`'s ordering function slightly
## 0.3.23
- Added `.chunks()`, similar to (and based on) `.group_by_lazy()`.
- Tweak linspace to match numpy.linspace and make it double ended.
## 0.3.22
- Added `ZipSlices`, a fast zip for slices
## 0.3.21
- Remove `Debug` impl for `Format`, it will have different use later
## 0.3.20
- Optimize `.group_by_lazy()`
## 0.3.19
- Added `.group_by_lazy()`, a possibly nonallocating group by
- Added `.format()`, a nonallocating formatting helper for iterators
- Remove uses of `RandomAccessIterator` since it has been deprecated in Rust.
## 0.3.17
- Added (adopted) `Unfold` from Rust
## 0.3.16
- Added adaptors `.unique()`, `.unique_by()`
## 0.3.15
- Added method `.sort_by()`
## 0.3.14
- Added adaptor `.while_some()`
## 0.3.13
- Added adaptor `.interleave_shortest()`
- Added adaptor `.pad_using()`
## 0.3.11
- Added `assert_equal` function
## 0.3.10
- Bugfix `.combinations()` `size_hint`.
## 0.3.8
- Added source `RepeatCall`
## 0.3.7
- Added adaptor `PutBackN`
- Added adaptor `.combinations()`
## 0.3.6
- Added `itertools::partition`, partition a sequence in place based on a predicate.
- Deprecate `icompr!()` with no replacement.
## 0.3.5
- `.map_fn()` replaces deprecated `.fn_map()`.
## 0.3.4
- `.take_while_ref()` *by-ref adaptor*
- `.coalesce()` *adaptor*
- `.mend_slices()` *adaptor*
## 0.3.3
- `.dropping_back()` *method*
- `.fold1()` *method*
- `.is_empty_hint()` *method*

189
vendor/itertools/CONTRIBUTING.md vendored Normal file
View File

@@ -0,0 +1,189 @@
# Contributing to itertools
We use stable Rust only.
Please check the minimum version of Rust we use in `Cargo.toml`.
_If you are proposing a major change to CI or a new iterator adaptor for this crate,
then **please first file an issue** describing your proposal._
[Usual concerns about new methods](https://github.com/rust-itertools/itertools/issues/413#issuecomment-657670781).
To pass CI tests successfully, your code must be free of "compiler warnings" and "clippy warnings" and be "rustfmt" formatted.
Note that small PRs are easier to review and therefore are more easily merged.
## Write a new method/adaptor for `Itertools` trait
In general, the code logic should be tested with [quickcheck](https://crates.io/crates/quickcheck) tests in `tests/quick.rs`
which allow us to test properties about the code with randomly generated inputs.
### Behind `use_std`/`use_alloc` feature?
If it needs the "std" (such as using hashes) then it should be behind the `use_std` feature,
or if it requires heap allocation (such as using vectors) then it should be behind the `use_alloc` feature.
Otherwise it should be able to run in `no_std` context.
This mostly applies to your new module, each import from it, and to your new `Itertools` method.
### Pick the right receiver
`self`, `&mut self` or `&self`? From [#710](https://github.com/rust-itertools/itertools/pull/710):
- Take by value when:
- It transfers ownership to another iterator type, such as `filter`, `map`...
- It consumes the iterator completely, such as `count`, `last`, `max`...
- Mutably borrow when it consumes only part of the iterator, such as `find`, `all`, `try_collect`...
- Immutably borrow when there is no change, such as `size_hint`.
### Laziness
Iterators are [lazy](https://doc.rust-lang.org/std/iter/index.html#laziness):
- structs of iterator adaptors should have `#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]` ;
- structs of iterators should have `#[must_use = "iterators are lazy and do nothing unless consumed"]`.
Those behaviors are **tested** in `tests/laziness.rs`.
## Specialize `Iterator` methods
It might be more performant to specialize some methods.
However, each specialization should be thoroughly tested.
Correctly specializing methods can be difficult, and _we do not require that you do it on your initial PR_.
Most of the time, we want specializations of:
- [`size_hint`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.size_hint):
It mostly allows allocation optimizations.
When always exact, it also enables to implement `ExactSizeIterator`.
See our private module `src/size_hint.rs` for helpers.
- [`fold`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.fold)
might make iteration faster than calling `next` repeatedly.
- [`count`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.count),
[`last`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.last),
[`nth`](https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.nth)
as we might be able to avoid iterating on every item with `next`.
Additionally,
- `for_each`, `reduce`, `max/min[_by[_key]]` and `partition` all rely on `fold` so you should specialize it instead.
- `all`, `any`, `find`, `find_map`, `cmp`, `partial_cmp`, `eq`, `ne`, `lt`, `le`, `gt`, `ge` and `position` all rely (by default) on `try_fold`
which we can not specialize on stable rust, so you might want to wait it stabilizes
or specialize each of them.
- `DoubleEndedIterator::{nth_back, rfold, rfind}`: similar reasoning.
An adaptor might use the inner iterator specializations for its own specializations.
They are **tested** in `tests/specializations.rs` and **benchmarked** in `benches/specializations.rs`
(build those benchmarks is slow so you might want to temporarily remove the ones you do not want to measure).
## Additional implementations
### The [`Debug`](https://doc.rust-lang.org/std/fmt/trait.Debug.html) implementation
All our iterators should implement `Debug`.
When one of the field is not debuggable (such as _functions_), you must not derive `Debug`.
Instead, manually implement it and _ignore this field_ in our helper macro `debug_fmt_fields`.
<details>
<summary>4 examples (click to expand)</summary>
```rust
use std::fmt;
/* ===== Simple derive. ===== */
#[derive(Debug)]
struct Name1<I> {
iter: I,
}
/* ===== With an unclonable field. ===== */
struct Name2<I, F> {
iter: I,
func: F,
}
// No `F: Debug` bound and the field `func` is ignored.
impl<I: fmt::Debug, F> fmt::Debug for Name2<I, F> {
// it defines the `fmt` function from a struct name and the fields you want to debug.
debug_fmt_fields!(Name2, iter);
}
/* ===== With an unclonable field, but another bound to add. ===== */
struct Name3<I: Iterator, F> {
iter: I,
item: Option<I::Item>,
func: F,
}
// Same about `F` and `func`, similar about `I` but we must add the `I::Item: Debug` bound.
impl<I: Iterator + fmt::Debug, F> fmt::Debug for Name3<I, F>
where
I::Item: fmt::Debug,
{
debug_fmt_fields!(Name3, iter, item);
}
/* ===== With an unclonable field for which we can provide some information. ===== */
struct Name4<I, F> {
iter: I,
func: Option<F>,
}
// If ignore a field is not good enough, implement Debug fully manually.
impl<I: fmt::Debug, F> fmt::Debug for Name4<I, F> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let func = if self.func.is_some() { "Some(_)" } else { "None" };
f.debug_struct("Name4")
.field("iter", &self.iter)
.field("func", &func)
.finish()
}
}
```
</details>
### When/How to implement [`Clone`](https://doc.rust-lang.org/std/clone/trait.Clone.html)
All our iterators should implement `Clone` when possible.
Note that a mutable reference is never clonable so `struct Name<'a, I: 'a> { iter: &'a mut I }` can not implement `Clone`.
Derive `Clone` on a generic struct adds the bound `Clone` on each generic parameter.
It might be an issue in which case you should manually implement it with our helper macro `clone_fields` (it defines the `clone` function calling `clone` on each field) and be careful about the bounds.
### When to implement [`std::iter::FusedIterator`](https://doc.rust-lang.org/std/iter/trait.FusedIterator.html)
This trait should be implemented _by all iterators that always return `None` after returning `None` once_, because it allows to optimize `Iterator::fuse()`.
The conditions on which it should be implemented are usually the ones from the `Iterator` implementation, eventually refined to ensure it behaves in a fused way.
### When to implement [`ExactSizeIterator`](https://doc.rust-lang.org/std/iter/trait.ExactSizeIterator.html)
_When we are always able to return an exact non-overflowing length._
Therefore, we do not implement it on adaptors that makes the iterator longer as the resulting length could overflow.
One should not override `ExactSizeIterator::len` method but rely on an exact `Iterator::size_hint` implementation, meaning it returns `(length, Some(length))` (unless you could make `len` more performant than the default).
The conditions on which it should be implemented are usually the ones from the `Iterator` implementation, probably refined to ensure the size hint is exact.
### When to implement [`DoubleEndedIterator`](https://doc.rust-lang.org/std/iter/trait.DoubleEndedIterator.html)
When the iterator structure allows to handle _iterating on both fronts simultaneously_.
The iteration might stop in the middle when both fronts meet.
The conditions on which it should be implemented are usually the ones from the `Iterator` implementation, probably refined to ensure we can iterate on both fronts simultaneously.
### When to implement [`itertools::PeekingNext`](https://docs.rs/itertools/latest/itertools/trait.PeekingNext.html)
TODO
This is currently **tested** in `tests/test_std.rs`.
## About lending iterators
TODO
## Other notes
No guideline about using `#[inline]` yet.
### `.fold` / `.for_each` / `.try_fold` / `.try_for_each`
In the Rust standard library, it's quite common for `fold` to be implemented in terms of `try_fold`. But it's not something we do yet because we can not specialize `try_fold` methods yet (it uses the unstable `Try`).
From [#781](https://github.com/rust-itertools/itertools/pull/781), the general rule to follow is something like this:
- If you need to completely consume an iterator:
- Use `fold` if you need an _owned_ access to an accumulator.
- Use `for_each` otherwise.
- If you need to partly consume an iterator, the same applies with `try_` versions:
- Use `try_fold` if you need an _owned_ access to an accumulator.
- Use `try_for_each` otherwise.

740
vendor/itertools/Cargo.lock generated vendored Normal file
View File

@@ -0,0 +1,740 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "aho-corasick"
version = "1.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8e60d3430d3a69478ad0993f19238d2df97c507009a52b3c10addcd7f6bcb916"
dependencies = [
"memchr",
]
[[package]]
name = "anes"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4b46cbb362ab8752921c97e041f5e366ee6297bd428a31275b9fcf1e380f7299"
[[package]]
name = "atty"
version = "0.2.14"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8"
dependencies = [
"hermit-abi",
"libc",
"winapi",
]
[[package]]
name = "autocfg"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
[[package]]
name = "bitflags"
version = "1.3.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
[[package]]
name = "bumpalo"
version = "3.16.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "79296716171880943b8470b5f8d03aa55eb2e645a4874bdbb28adb49162e012c"
[[package]]
name = "cast"
version = "0.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "37b2a672a2cb129a2e41c10b1224bb368f9f37a2b16b612598138befd7b37eb5"
[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "ciborium"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42e69ffd6f0917f5c029256a24d0161db17cea3997d185db0d35926308770f0e"
dependencies = [
"ciborium-io",
"ciborium-ll",
"serde",
]
[[package]]
name = "ciborium-io"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "05afea1e0a06c9be33d539b876f1ce3692f4afea2cb41f740e7743225ed1c757"
[[package]]
name = "ciborium-ll"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57663b653d948a338bfb3eeba9bb2fd5fcfaecb9e199e87e1eda4d9e8b240fd9"
dependencies = [
"ciborium-io",
"half",
]
[[package]]
name = "clap"
version = "3.2.25"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4ea181bf566f71cb9a5d17a59e1871af638180a18fb0035c92ae62b705207123"
dependencies = [
"bitflags",
"clap_lex",
"indexmap",
"textwrap",
]
[[package]]
name = "clap_lex"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2850f2f5a82cbf437dd5af4d49848fbdfc27c157c3d010345776f952765261c5"
dependencies = [
"os_str_bytes",
]
[[package]]
name = "criterion"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e7c76e09c1aae2bc52b3d2f29e13c6572553b30c4aa1b8a49fd70de6412654cb"
dependencies = [
"anes",
"atty",
"cast",
"ciborium",
"clap",
"criterion-plot",
"itertools 0.10.5",
"lazy_static",
"num-traits",
"oorandom",
"plotters",
"rayon",
"regex",
"serde",
"serde_derive",
"serde_json",
"tinytemplate",
"walkdir",
]
[[package]]
name = "criterion-plot"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6b50826342786a51a89e2da3a28f1c32b06e387201bc2d19791f622c673706b1"
dependencies = [
"cast",
"itertools 0.10.5",
]
[[package]]
name = "crossbeam-deque"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "613f8cc01fe9cf1a3eb3d7f488fd2fa8388403e97039e2f73692932e291a770d"
dependencies = [
"crossbeam-epoch",
"crossbeam-utils",
]
[[package]]
name = "crossbeam-epoch"
version = "0.9.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b82ac4a3c2ca9c3460964f020e1402edd5753411d7737aa39c3714ad1b5420e"
dependencies = [
"crossbeam-utils",
]
[[package]]
name = "crossbeam-utils"
version = "0.8.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "248e3bacc7dc6baa3b21e405ee045c3047101a49145e7e9eca583ab4c2ca5345"
[[package]]
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
[[package]]
name = "either"
version = "1.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a47c1c47d2f5964e29c61246e81db715514cd532db6b5116a25ea3c03d6780a2"
[[package]]
name = "getrandom"
version = "0.1.16"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8fc3cb4d91f53b50155bdcfd23f6a4c39ae1969c2ae85982b135750cccaf5fce"
dependencies = [
"cfg-if",
"libc",
"wasi",
]
[[package]]
name = "half"
version = "2.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
dependencies = [
"cfg-if",
"crunchy",
]
[[package]]
name = "hashbrown"
version = "0.12.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a9ee70c43aaf417c914396645a0fa852624801b24ebb7ae78fe8272889ac888"
[[package]]
name = "hermit-abi"
version = "0.1.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33"
dependencies = [
"libc",
]
[[package]]
name = "indexmap"
version = "1.9.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bd070e393353796e801d209ad339e89596eb4c8d430d18ede6a1cced8fafbd99"
dependencies = [
"autocfg",
"hashbrown",
]
[[package]]
name = "itertools"
version = "0.10.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b0fd2260e829bddf4cb6ea802289de2f86d6a7a690192fbe91b3f46e0f2c8473"
dependencies = [
"either",
]
[[package]]
name = "itertools"
version = "0.14.0"
dependencies = [
"criterion",
"either",
"paste",
"permutohedron",
"quickcheck",
"rand",
]
[[package]]
name = "itoa"
version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"
[[package]]
name = "js-sys"
version = "0.3.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "29c15563dc2726973df627357ce0c9ddddbea194836909d655df6a75d2cf296d"
dependencies = [
"wasm-bindgen",
]
[[package]]
name = "lazy_static"
version = "1.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646"
[[package]]
name = "libc"
version = "0.2.154"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae743338b92ff9146ce83992f766a31066a91a8c84a45e0e9f21e7cf6de6d346"
[[package]]
name = "log"
version = "0.4.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"
[[package]]
name = "memchr"
version = "2.7.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6c8640c5d730cb13ebd907d8d04b52f55ac9a2eec55b440c8892f40d56c76c1d"
[[package]]
name = "num-traits"
version = "0.2.19"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
dependencies = [
"autocfg",
]
[[package]]
name = "once_cell"
version = "1.19.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"
[[package]]
name = "oorandom"
version = "11.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ab1bc2a289d34bd04a330323ac98a1b4bc82c9d9fcb1e66b63caa84da26b575"
[[package]]
name = "os_str_bytes"
version = "6.6.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e2355d85b9a3786f481747ced0e0ff2ba35213a1f9bd406ed906554d7af805a1"
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "permutohedron"
version = "0.2.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b687ff7b5da449d39e418ad391e5e08da53ec334903ddbb921db208908fc372c"
[[package]]
name = "plotters"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d2c224ba00d7cadd4d5c660deaf2098e5e80e07846537c51f9cfa4be50c1fd45"
dependencies = [
"num-traits",
"plotters-backend",
"plotters-svg",
"wasm-bindgen",
"web-sys",
]
[[package]]
name = "plotters-backend"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9e76628b4d3a7581389a35d5b6e2139607ad7c75b17aed325f210aa91f4a9609"
[[package]]
name = "plotters-svg"
version = "0.3.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "38f6d39893cca0701371e3c27294f09797214b86f1fb951b89ade8ec04e2abab"
dependencies = [
"plotters-backend",
]
[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"
[[package]]
name = "proc-macro2"
version = "1.0.82"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ad3d49ab951a01fbaafe34f2ec74122942fe18a3f9814c3268f1bb72042131b"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quickcheck"
version = "0.9.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a44883e74aa97ad63db83c4bf8ca490f02b2fc02f92575e720c8551e843c945f"
dependencies = [
"rand",
"rand_core",
]
[[package]]
name = "quote"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
"proc-macro2",
]
[[package]]
name = "rand"
version = "0.7.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6a6b1679d49b24bbfe0c803429aa1874472f50d9b363131f0e89fc356b544d03"
dependencies = [
"getrandom",
"libc",
"rand_chacha",
"rand_core",
"rand_hc",
]
[[package]]
name = "rand_chacha"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f4c8ed856279c9737206bf725bf36935d8666ead7aa69b52be55af369d193402"
dependencies = [
"ppv-lite86",
"rand_core",
]
[[package]]
name = "rand_core"
version = "0.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bde5296fc891b0cef12a6d03ddccc162ce7b2aff54160af9338f8d40df6d19"
dependencies = [
"getrandom",
]
[[package]]
name = "rand_hc"
version = "0.2.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ca3129af7b92a17112d59ad498c6f81eaf463253766b90396d39ea7a39d6613c"
dependencies = [
"rand_core",
]
[[package]]
name = "rayon"
version = "1.10.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b418a60154510ca1a002a752ca9714984e21e4241e804d32555251faf8b78ffa"
dependencies = [
"either",
"rayon-core",
]
[[package]]
name = "rayon-core"
version = "1.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1465873a3dfdaa8ae7cb14b4383657caab0b3e8a0aa9ae8e04b044854c8dfce2"
dependencies = [
"crossbeam-deque",
"crossbeam-utils",
]
[[package]]
name = "regex"
version = "1.10.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c117dbdfde9c8308975b6a18d71f3f385c89461f7b3fb054288ecf2a2058ba4c"
dependencies = [
"aho-corasick",
"memchr",
"regex-automata",
"regex-syntax",
]
[[package]]
name = "regex-automata"
version = "0.4.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86b83b8b9847f9bf95ef68afb0b8e6cdb80f498442f5179a29fad448fcc1eaea"
dependencies = [
"aho-corasick",
"memchr",
"regex-syntax",
]
[[package]]
name = "regex-syntax"
version = "0.8.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adad44e29e4c806119491a7f06f03de4d1af22c3a680dd47f1e6e179439d1f56"
[[package]]
name = "ryu"
version = "1.0.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f3cb5ba0dc43242ce17de99c180e96db90b235b8a9fdc9543c96d2209116bd9f"
[[package]]
name = "same-file"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "93fc1dc3aaa9bfed95e02e6eadabb4baf7e3078b0bd1b4d7b6b0b68378900502"
dependencies = [
"winapi-util",
]
[[package]]
name = "serde"
version = "1.0.202"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "226b61a0d411b2ba5ff6d7f73a476ac4f8bb900373459cd00fab8512828ba395"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.202"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6048858004bcff69094cd972ed40a32500f153bd3be9f716b2eed2e8217c4838"
dependencies = [
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "serde_json"
version = "1.0.117"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "455182ea6142b14f93f4bc5320a2b31c1f266b66a4a5c858b013302a5d8cbfc3"
dependencies = [
"itoa",
"ryu",
"serde",
]
[[package]]
name = "syn"
version = "2.0.63"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bf5be731623ca1a1fb7d8be6f261a3be6d3e2337b8a1f97be944d020c8fcb704"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "textwrap"
version = "0.16.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23d434d3f8967a09480fb04132ebe0a3e088c173e6d0ee7897abbdf4eab0f8b9"
[[package]]
name = "tinytemplate"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "be4d6b5f19ff7664e8c98d03e2139cb510db9b0a60b55f8e8709b689d939b6bc"
dependencies = [
"serde",
"serde_json",
]
[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
[[package]]
name = "walkdir"
version = "2.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "29790946404f91d9c5d06f9874efddea1dc06c5efe94541a7d6863108e3a5e4b"
dependencies = [
"same-file",
"winapi-util",
]
[[package]]
name = "wasi"
version = "0.9.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "cccddf32554fecc6acb585f82a32a72e28b48f8c4c1883ddfeeeaa96f7d8e519"
[[package]]
name = "wasm-bindgen"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4be2531df63900aeb2bca0daaaddec08491ee64ceecbee5076636a3b026795a8"
dependencies = [
"cfg-if",
"wasm-bindgen-macro",
]
[[package]]
name = "wasm-bindgen-backend"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "614d787b966d3989fa7bb98a654e369c762374fd3213d212cfc0251257e747da"
dependencies = [
"bumpalo",
"log",
"once_cell",
"proc-macro2",
"quote",
"syn",
"wasm-bindgen-shared",
]
[[package]]
name = "wasm-bindgen-macro"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a1f8823de937b71b9460c0c34e25f3da88250760bec0ebac694b49997550d726"
dependencies = [
"quote",
"wasm-bindgen-macro-support",
]
[[package]]
name = "wasm-bindgen-macro-support"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e94f17b526d0a461a191c78ea52bbce64071ed5c04c9ffe424dcb38f74171bb7"
dependencies = [
"proc-macro2",
"quote",
"syn",
"wasm-bindgen-backend",
"wasm-bindgen-shared",
]
[[package]]
name = "wasm-bindgen-shared"
version = "0.2.92"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "af190c94f2773fdb3729c55b007a722abb5384da03bc0986df4c289bf5567e96"
[[package]]
name = "web-sys"
version = "0.3.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "77afa9a11836342370f4817622a2f0f418b134426d91a82dfb48f532d2ec13ef"
dependencies = [
"js-sys",
"wasm-bindgen",
]
[[package]]
name = "winapi"
version = "0.3.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419"
dependencies = [
"winapi-i686-pc-windows-gnu",
"winapi-x86_64-pc-windows-gnu",
]
[[package]]
name = "winapi-i686-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6"
[[package]]
name = "winapi-util"
version = "0.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d4cc384e1e73b93bafa6fb4f1df8c41695c8a91cf9c4c64358067d15a7b6c6b"
dependencies = [
"windows-sys",
]
[[package]]
name = "winapi-x86_64-pc-windows-gnu"
version = "0.4.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f"
[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
"windows-targets",
]
[[package]]
name = "windows-targets"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6f0713a46559409d202e70e28227288446bf7841d3211583a4b53e3f6d96e7eb"
dependencies = [
"windows_aarch64_gnullvm",
"windows_aarch64_msvc",
"windows_i686_gnu",
"windows_i686_gnullvm",
"windows_i686_msvc",
"windows_x86_64_gnu",
"windows_x86_64_gnullvm",
"windows_x86_64_msvc",
]
[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7088eed71e8b8dda258ecc8bac5fb1153c5cffaf2578fc8ff5d61e23578d3263"
[[package]]
name = "windows_aarch64_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9985fd1504e250c615ca5f281c3f7a6da76213ebd5ccc9561496568a2752afb6"
[[package]]
name = "windows_i686_gnu"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "88ba073cf16d5372720ec942a8ccbf61626074c6d4dd2e745299726ce8b89670"
[[package]]
name = "windows_i686_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87f4261229030a858f36b459e748ae97545d6f1ec60e5e0d6a3d32e0dc232ee9"
[[package]]
name = "windows_i686_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "db3c2bf3d13d5b658be73463284eaf12830ac9a26a90c717b7f771dfe97487bf"
[[package]]
name = "windows_x86_64_gnu"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4e4246f76bdeff09eb48875a0fd3e2af6aada79d409d33011886d3e1581517d9"
[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "852298e482cd67c356ddd9570386e2862b5673c85bd5f88df9ab6802b334c596"
[[package]]
name = "windows_x86_64_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"

180
vendor/itertools/Cargo.toml vendored Normal file
View File

@@ -0,0 +1,180 @@
# THIS FILE IS AUTOMATICALLY GENERATED BY CARGO
#
# When uploading crates to the registry Cargo will automatically
# "normalize" Cargo.toml files for maximal compatibility
# with all versions of Cargo and also rewrite `path` dependencies
# to registry (e.g., crates.io) dependencies.
#
# If you are reading this file be aware that the original Cargo.toml
# will likely look very different (and much more reasonable).
# See Cargo.toml.orig for the original contents.
[package]
edition = "2018"
rust-version = "1.63.0"
name = "itertools"
version = "0.14.0"
authors = ["bluss"]
build = false
autolib = false
autobins = false
autoexamples = false
autotests = false
autobenches = false
description = "Extra iterator adaptors, iterator methods, free functions, and macros."
documentation = "https://docs.rs/itertools/"
readme = "README.md"
keywords = [
"iterator",
"data-structure",
"zip",
"product",
]
categories = [
"algorithms",
"rust-patterns",
"no-std",
"no-std::no-alloc",
]
license = "MIT OR Apache-2.0"
repository = "https://github.com/rust-itertools/itertools"
[features]
default = ["use_std"]
use_alloc = []
use_std = [
"use_alloc",
"either/use_std",
]
[lib]
name = "itertools"
path = "src/lib.rs"
test = false
bench = false
[[example]]
name = "iris"
path = "examples/iris.rs"
[[test]]
name = "adaptors_no_collect"
path = "tests/adaptors_no_collect.rs"
[[test]]
name = "flatten_ok"
path = "tests/flatten_ok.rs"
[[test]]
name = "laziness"
path = "tests/laziness.rs"
[[test]]
name = "macros_hygiene"
path = "tests/macros_hygiene.rs"
[[test]]
name = "merge_join"
path = "tests/merge_join.rs"
[[test]]
name = "peeking_take_while"
path = "tests/peeking_take_while.rs"
[[test]]
name = "quick"
path = "tests/quick.rs"
[[test]]
name = "specializations"
path = "tests/specializations.rs"
[[test]]
name = "test_core"
path = "tests/test_core.rs"
[[test]]
name = "test_std"
path = "tests/test_std.rs"
[[test]]
name = "tuples"
path = "tests/tuples.rs"
[[test]]
name = "zip"
path = "tests/zip.rs"
[[bench]]
name = "bench1"
path = "benches/bench1.rs"
harness = false
[[bench]]
name = "combinations"
path = "benches/combinations.rs"
harness = false
[[bench]]
name = "combinations_with_replacement"
path = "benches/combinations_with_replacement.rs"
harness = false
[[bench]]
name = "fold_specialization"
path = "benches/fold_specialization.rs"
harness = false
[[bench]]
name = "k_smallest"
path = "benches/k_smallest.rs"
harness = false
[[bench]]
name = "powerset"
path = "benches/powerset.rs"
harness = false
[[bench]]
name = "specializations"
path = "benches/specializations.rs"
harness = false
[[bench]]
name = "tree_reduce"
path = "benches/tree_reduce.rs"
harness = false
[[bench]]
name = "tuple_combinations"
path = "benches/tuple_combinations.rs"
harness = false
[[bench]]
name = "tuples"
path = "benches/tuples.rs"
harness = false
[dependencies.either]
version = "1.0"
default-features = false
[dev-dependencies.criterion]
version = "0.4.0"
features = ["html_reports"]
[dev-dependencies.paste]
version = "1.0.0"
[dev-dependencies.permutohedron]
version = "0.2"
[dev-dependencies.quickcheck]
version = "0.9"
default-features = false
[dev-dependencies.rand]
version = "0.7"
[profile.bench]
debug = 2

201
vendor/itertools/LICENSE-APACHE vendored Normal file
View File

@@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
vendor/itertools/LICENSE-MIT vendored Normal file
View File

@@ -0,0 +1,25 @@
Copyright (c) 2015
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

33
vendor/itertools/README.md vendored Normal file
View File

@@ -0,0 +1,33 @@
# Itertools
Extra iterator adaptors, functions and macros.
Please read the [API documentation here](https://docs.rs/itertools/).
How to use with Cargo:
```toml
[dependencies]
itertools = "0.14.0"
```
How to use in your crate:
```rust
use itertools::Itertools;
```
## How to contribute
If you're not sure what to work on, try checking the [help wanted](https://github.com/rust-itertools/itertools/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22) label.
See our [CONTRIBUTING.md](https://github.com/rust-itertools/itertools/blob/master/CONTRIBUTING.md) for a detailed guide.
## License
Dual-licensed to be compatible with the Rust project.
Licensed under the Apache License, Version 2.0
https://www.apache.org/licenses/LICENSE-2.0 or the MIT license
https://opensource.org/licenses/MIT, at your
option. This file may not be copied, modified, or distributed
except according to those terms.

767
vendor/itertools/benches/bench1.rs vendored Normal file
View File

@@ -0,0 +1,767 @@
use criterion::{black_box, criterion_group, criterion_main, BatchSize, Criterion};
use itertools::free::cloned;
use itertools::iproduct;
use itertools::Itertools;
use std::cmp;
use std::iter::repeat;
use std::ops::{Add, Range};
fn slice_iter(c: &mut Criterion) {
let xs: Vec<_> = repeat(1i32).take(20).collect();
c.bench_function("slice iter", move |b| {
b.iter(|| {
for elt in xs.iter() {
black_box(elt);
}
})
});
}
fn slice_iter_rev(c: &mut Criterion) {
let xs: Vec<_> = repeat(1i32).take(20).collect();
c.bench_function("slice iter rev", move |b| {
b.iter(|| {
for elt in xs.iter().rev() {
black_box(elt);
}
})
});
}
fn zip_default_zip(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zip default zip", move |b| {
b.iter(|| {
for (&x, &y) in xs.iter().zip(&ys) {
black_box(x);
black_box(y);
}
})
});
}
fn zipdot_i32_default_zip(c: &mut Criterion) {
let xs = vec![2; 1024];
let ys = vec![2; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot i32 default zip", move |b| {
b.iter(|| {
let mut s = 0;
for (&x, &y) in xs.iter().zip(&ys) {
s += x * y;
}
s
})
});
}
fn zipdot_f32_default_zip(c: &mut Criterion) {
let xs = vec![2f32; 1024];
let ys = vec![2f32; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot f32 default zip", move |b| {
b.iter(|| {
let mut s = 0.;
for (&x, &y) in xs.iter().zip(&ys) {
s += x * y;
}
s
})
});
}
fn zip_default_zip3(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
let zs = vec![0; 766];
let xs = black_box(xs);
let ys = black_box(ys);
let zs = black_box(zs);
c.bench_function("zip default zip3", move |b| {
b.iter(|| {
for ((&x, &y), &z) in xs.iter().zip(&ys).zip(&zs) {
black_box(x);
black_box(y);
black_box(z);
}
})
});
}
fn zip_slices_ziptuple(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
c.bench_function("zip slices ziptuple", move |b| {
b.iter(|| {
let xs = black_box(&xs);
let ys = black_box(&ys);
for (&x, &y) in itertools::multizip((xs, ys)) {
black_box(x);
black_box(y);
}
})
});
}
fn zip_checked_counted_loop(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zip checked counted loop", move |b| {
b.iter(|| {
// Must slice to equal lengths, and then bounds checks are eliminated!
let len = cmp::min(xs.len(), ys.len());
let xs = &xs[..len];
let ys = &ys[..len];
for i in 0..len {
let x = xs[i];
let y = ys[i];
black_box(x);
black_box(y);
}
})
});
}
fn zipdot_i32_checked_counted_loop(c: &mut Criterion) {
let xs = vec![2; 1024];
let ys = vec![2; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot i32 checked counted loop", move |b| {
b.iter(|| {
// Must slice to equal lengths, and then bounds checks are eliminated!
let len = cmp::min(xs.len(), ys.len());
let xs = &xs[..len];
let ys = &ys[..len];
let mut s = 0i32;
for i in 0..len {
s += xs[i] * ys[i];
}
s
})
});
}
fn zipdot_f32_checked_counted_loop(c: &mut Criterion) {
let xs = vec![2f32; 1024];
let ys = vec![2f32; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot f32 checked counted loop", move |b| {
b.iter(|| {
// Must slice to equal lengths, and then bounds checks are eliminated!
let len = cmp::min(xs.len(), ys.len());
let xs = &xs[..len];
let ys = &ys[..len];
let mut s = 0.;
for i in 0..len {
s += xs[i] * ys[i];
}
s
})
});
}
fn zipdot_f32_checked_counted_unrolled_loop(c: &mut Criterion) {
let xs = vec![2f32; 1024];
let ys = vec![2f32; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot f32 checked counted unrolled loop", move |b| {
b.iter(|| {
// Must slice to equal lengths, and then bounds checks are eliminated!
let len = cmp::min(xs.len(), ys.len());
let mut xs = &xs[..len];
let mut ys = &ys[..len];
let mut s = 0.;
let (mut p0, mut p1, mut p2, mut p3, mut p4, mut p5, mut p6, mut p7) =
(0., 0., 0., 0., 0., 0., 0., 0.);
// how to unroll and have bounds checks eliminated (by cristicbz)
// split sum into eight parts to enable vectorization (by bluss)
while xs.len() >= 8 {
p0 += xs[0] * ys[0];
p1 += xs[1] * ys[1];
p2 += xs[2] * ys[2];
p3 += xs[3] * ys[3];
p4 += xs[4] * ys[4];
p5 += xs[5] * ys[5];
p6 += xs[6] * ys[6];
p7 += xs[7] * ys[7];
xs = &xs[8..];
ys = &ys[8..];
}
s += p0 + p4;
s += p1 + p5;
s += p2 + p6;
s += p3 + p7;
for i in 0..xs.len() {
s += xs[i] * ys[i];
}
s
})
});
}
fn zip_unchecked_counted_loop(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zip unchecked counted loop", move |b| {
b.iter(|| {
let len = cmp::min(xs.len(), ys.len());
for i in 0..len {
unsafe {
let x = *xs.get_unchecked(i);
let y = *ys.get_unchecked(i);
black_box(x);
black_box(y);
}
}
})
});
}
fn zipdot_i32_unchecked_counted_loop(c: &mut Criterion) {
let xs = vec![2; 1024];
let ys = vec![2; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot i32 unchecked counted loop", move |b| {
b.iter(|| {
let len = cmp::min(xs.len(), ys.len());
let mut s = 0i32;
for i in 0..len {
unsafe {
let x = *xs.get_unchecked(i);
let y = *ys.get_unchecked(i);
s += x * y;
}
}
s
})
});
}
fn zipdot_f32_unchecked_counted_loop(c: &mut Criterion) {
let xs = vec![2.; 1024];
let ys = vec![2.; 768];
let xs = black_box(xs);
let ys = black_box(ys);
c.bench_function("zipdot f32 unchecked counted loop", move |b| {
b.iter(|| {
let len = cmp::min(xs.len(), ys.len());
let mut s = 0f32;
for i in 0..len {
unsafe {
let x = *xs.get_unchecked(i);
let y = *ys.get_unchecked(i);
s += x * y;
}
}
s
})
});
}
fn zip_unchecked_counted_loop3(c: &mut Criterion) {
let xs = vec![0; 1024];
let ys = vec![0; 768];
let zs = vec![0; 766];
let xs = black_box(xs);
let ys = black_box(ys);
let zs = black_box(zs);
c.bench_function("zip unchecked counted loop3", move |b| {
b.iter(|| {
let len = cmp::min(xs.len(), cmp::min(ys.len(), zs.len()));
for i in 0..len {
unsafe {
let x = *xs.get_unchecked(i);
let y = *ys.get_unchecked(i);
let z = *zs.get_unchecked(i);
black_box(x);
black_box(y);
black_box(z);
}
}
})
});
}
fn chunk_by_lazy_1(c: &mut Criterion) {
let mut data = vec![0; 1024];
for (index, elt) in data.iter_mut().enumerate() {
*elt = index / 10;
}
let data = black_box(data);
c.bench_function("chunk by lazy 1", move |b| {
b.iter(|| {
for (_key, chunk) in &data.iter().chunk_by(|elt| **elt) {
for elt in chunk {
black_box(elt);
}
}
})
});
}
fn chunk_by_lazy_2(c: &mut Criterion) {
let mut data = vec![0; 1024];
for (index, elt) in data.iter_mut().enumerate() {
*elt = index / 2;
}
let data = black_box(data);
c.bench_function("chunk by lazy 2", move |b| {
b.iter(|| {
for (_key, chunk) in &data.iter().chunk_by(|elt| **elt) {
for elt in chunk {
black_box(elt);
}
}
})
});
}
fn slice_chunks(c: &mut Criterion) {
let data = vec![0; 1024];
let data = black_box(data);
let sz = black_box(10);
c.bench_function("slice chunks", move |b| {
b.iter(|| {
for chunk in data.chunks(sz) {
for elt in chunk {
black_box(elt);
}
}
})
});
}
fn chunks_lazy_1(c: &mut Criterion) {
let data = vec![0; 1024];
let data = black_box(data);
let sz = black_box(10);
c.bench_function("chunks lazy 1", move |b| {
b.iter(|| {
for chunk in &data.iter().chunks(sz) {
for elt in chunk {
black_box(elt);
}
}
})
});
}
fn equal(c: &mut Criterion) {
let data = vec![7; 1024];
let l = data.len();
let alpha = black_box(&data[1..]);
let beta = black_box(&data[..l - 1]);
c.bench_function("equal", move |b| b.iter(|| itertools::equal(alpha, beta)));
}
fn merge_default(c: &mut Criterion) {
let mut data1 = vec![0; 1024];
let mut data2 = vec![0; 800];
let mut x = 0;
#[allow(clippy::explicit_counter_loop, clippy::unused_enumerate_index)]
for (_, elt) in data1.iter_mut().enumerate() {
*elt = x;
x += 1;
}
let mut y = 0;
for (i, elt) in data2.iter_mut().enumerate() {
*elt += y;
if i % 3 == 0 {
y += 3;
} else {
y += 0;
}
}
let data1 = black_box(data1);
let data2 = black_box(data2);
c.bench_function("merge default", move |b| {
b.iter(|| data1.iter().merge(&data2).count())
});
}
fn merge_by_cmp(c: &mut Criterion) {
let mut data1 = vec![0; 1024];
let mut data2 = vec![0; 800];
let mut x = 0;
#[allow(clippy::explicit_counter_loop, clippy::unused_enumerate_index)]
for (_, elt) in data1.iter_mut().enumerate() {
*elt = x;
x += 1;
}
let mut y = 0;
for (i, elt) in data2.iter_mut().enumerate() {
*elt += y;
if i % 3 == 0 {
y += 3;
} else {
y += 0;
}
}
let data1 = black_box(data1);
let data2 = black_box(data2);
c.bench_function("merge by cmp", move |b| {
b.iter(|| data1.iter().merge_by(&data2, PartialOrd::le).count())
});
}
fn merge_by_lt(c: &mut Criterion) {
let mut data1 = vec![0; 1024];
let mut data2 = vec![0; 800];
let mut x = 0;
#[allow(clippy::explicit_counter_loop, clippy::unused_enumerate_index)]
for (_, elt) in data1.iter_mut().enumerate() {
*elt = x;
x += 1;
}
let mut y = 0;
for (i, elt) in data2.iter_mut().enumerate() {
*elt += y;
if i % 3 == 0 {
y += 3;
} else {
y += 0;
}
}
let data1 = black_box(data1);
let data2 = black_box(data2);
c.bench_function("merge by lt", move |b| {
b.iter(|| data1.iter().merge_by(&data2, |a, b| a <= b).count())
});
}
fn kmerge_default(c: &mut Criterion) {
let mut data1 = vec![0; 1024];
let mut data2 = vec![0; 800];
let mut x = 0;
#[allow(clippy::explicit_counter_loop, clippy::unused_enumerate_index)]
for (_, elt) in data1.iter_mut().enumerate() {
*elt = x;
x += 1;
}
let mut y = 0;
for (i, elt) in data2.iter_mut().enumerate() {
*elt += y;
if i % 3 == 0 {
y += 3;
} else {
y += 0;
}
}
let data1 = black_box(data1);
let data2 = black_box(data2);
let its = &[data1.iter(), data2.iter()];
c.bench_function("kmerge default", move |b| {
b.iter(|| its.iter().cloned().kmerge().count())
});
}
fn kmerge_tenway(c: &mut Criterion) {
let mut data = vec![0; 10240];
let mut state = 1729u16;
fn rng(state: &mut u16) -> u16 {
let new = state.wrapping_mul(31421).wrapping_add(6927);
*state = new;
new
}
for elt in &mut data {
*elt = rng(&mut state);
}
let mut chunks = Vec::new();
let mut rest = &mut data[..];
while !rest.is_empty() {
let chunk_len = 1 + rng(&mut state) % 512;
let chunk_len = cmp::min(rest.len(), chunk_len as usize);
let (fst, tail) = { rest }.split_at_mut(chunk_len);
fst.sort();
chunks.push(fst.iter().cloned());
rest = tail;
}
// println!("Chunk lengths: {}", chunks.iter().format_with(", ", |elt, f| f(&elt.len())));
c.bench_function("kmerge tenway", move |b| {
b.iter(|| chunks.iter().cloned().kmerge().count())
});
}
fn fast_integer_sum<I>(iter: I) -> I::Item
where
I: IntoIterator,
I::Item: Default + Add<Output = I::Item>,
{
iter.into_iter().fold(<_>::default(), |x, y| x + y)
}
fn step_vec_2(c: &mut Criterion) {
let v = vec![0; 1024];
c.bench_function("step vec 2", move |b| {
b.iter(|| fast_integer_sum(cloned(v.iter().step_by(2))))
});
}
fn step_vec_10(c: &mut Criterion) {
let v = vec![0; 1024];
c.bench_function("step vec 10", move |b| {
b.iter(|| fast_integer_sum(cloned(v.iter().step_by(10))))
});
}
fn step_range_2(c: &mut Criterion) {
let v = black_box(0..1024);
c.bench_function("step range 2", move |b| {
b.iter(|| fast_integer_sum(v.clone().step_by(2)))
});
}
fn step_range_10(c: &mut Criterion) {
let v = black_box(0..1024);
c.bench_function("step range 10", move |b| {
b.iter(|| fast_integer_sum(v.clone().step_by(10)))
});
}
fn vec_iter_mut_partition(c: &mut Criterion) {
let data = std::iter::repeat(-1024i32..1024)
.take(256)
.flatten()
.collect_vec();
c.bench_function("vec iter mut partition", move |b| {
b.iter_batched(
|| data.clone(),
|mut data| {
black_box(itertools::partition(black_box(&mut data), |n| *n >= 0));
},
BatchSize::LargeInput,
)
});
}
fn cartesian_product_iterator(c: &mut Criterion) {
let xs = vec![0; 16];
c.bench_function("cartesian product iterator", move |b| {
b.iter(|| {
let mut sum = 0;
for (&x, &y, &z) in iproduct!(&xs, &xs, &xs) {
sum += x;
sum += y;
sum += z;
}
sum
})
});
}
fn multi_cartesian_product_iterator(c: &mut Criterion) {
let xs = [vec![0; 16], vec![0; 16], vec![0; 16]];
c.bench_function("multi cartesian product iterator", move |b| {
b.iter(|| {
let mut sum = 0;
for x in xs.iter().multi_cartesian_product() {
sum += x[0];
sum += x[1];
sum += x[2];
}
sum
})
});
}
fn cartesian_product_nested_for(c: &mut Criterion) {
let xs = vec![0; 16];
c.bench_function("cartesian product nested for", move |b| {
b.iter(|| {
let mut sum = 0;
for &x in &xs {
for &y in &xs {
for &z in &xs {
sum += x;
sum += y;
sum += z;
}
}
}
sum
})
});
}
fn all_equal(c: &mut Criterion) {
let mut xs = vec![0; 5_000_000];
xs.extend(vec![1; 5_000_000]);
c.bench_function("all equal", move |b| b.iter(|| xs.iter().all_equal()));
}
fn all_equal_for(c: &mut Criterion) {
let mut xs = vec![0; 5_000_000];
xs.extend(vec![1; 5_000_000]);
c.bench_function("all equal for", move |b| {
b.iter(|| {
for &x in &xs {
if x != xs[0] {
return false;
}
}
true
})
});
}
fn all_equal_default(c: &mut Criterion) {
let mut xs = vec![0; 5_000_000];
xs.extend(vec![1; 5_000_000]);
c.bench_function("all equal default", move |b| {
b.iter(|| xs.iter().dedup().nth(1).is_none())
});
}
const PERM_COUNT: usize = 6;
fn permutations_iter(c: &mut Criterion) {
struct NewIterator(Range<usize>);
impl Iterator for NewIterator {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
c.bench_function("permutations iter", move |b| {
b.iter(
|| {
for _ in NewIterator(0..PERM_COUNT).permutations(PERM_COUNT) {}
},
)
});
}
fn permutations_range(c: &mut Criterion) {
c.bench_function("permutations range", move |b| {
b.iter(|| for _ in (0..PERM_COUNT).permutations(PERM_COUNT) {})
});
}
fn permutations_slice(c: &mut Criterion) {
let v = (0..PERM_COUNT).collect_vec();
c.bench_function("permutations slice", move |b| {
b.iter(|| for _ in v.as_slice().iter().permutations(PERM_COUNT) {})
});
}
criterion_group!(
benches,
slice_iter,
slice_iter_rev,
zip_default_zip,
zipdot_i32_default_zip,
zipdot_f32_default_zip,
zip_default_zip3,
zip_slices_ziptuple,
zip_checked_counted_loop,
zipdot_i32_checked_counted_loop,
zipdot_f32_checked_counted_loop,
zipdot_f32_checked_counted_unrolled_loop,
zip_unchecked_counted_loop,
zipdot_i32_unchecked_counted_loop,
zipdot_f32_unchecked_counted_loop,
zip_unchecked_counted_loop3,
chunk_by_lazy_1,
chunk_by_lazy_2,
slice_chunks,
chunks_lazy_1,
equal,
merge_default,
merge_by_cmp,
merge_by_lt,
kmerge_default,
kmerge_tenway,
step_vec_2,
step_vec_10,
step_range_2,
step_range_10,
vec_iter_mut_partition,
cartesian_product_iterator,
multi_cartesian_product_iterator,
cartesian_product_nested_for,
all_equal,
all_equal_for,
all_equal_default,
permutations_iter,
permutations_range,
permutations_slice,
);
criterion_main!(benches);

117
vendor/itertools/benches/combinations.rs vendored Normal file
View File

@@ -0,0 +1,117 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use itertools::Itertools;
// approximate 100_000 iterations for each combination
const N1: usize = 100_000;
const N2: usize = 448;
const N3: usize = 86;
const N4: usize = 41;
const N14: usize = 21;
fn comb_for1(c: &mut Criterion) {
c.bench_function("comb for1", move |b| {
b.iter(|| {
for i in 0..N1 {
black_box(vec![i]);
}
})
});
}
fn comb_for2(c: &mut Criterion) {
c.bench_function("comb for2", move |b| {
b.iter(|| {
for i in 0..N2 {
for j in (i + 1)..N2 {
black_box(vec![i, j]);
}
}
})
});
}
fn comb_for3(c: &mut Criterion) {
c.bench_function("comb for3", move |b| {
b.iter(|| {
for i in 0..N3 {
for j in (i + 1)..N3 {
for k in (j + 1)..N3 {
black_box(vec![i, j, k]);
}
}
}
})
});
}
fn comb_for4(c: &mut Criterion) {
c.bench_function("comb for4", move |b| {
b.iter(|| {
for i in 0..N4 {
for j in (i + 1)..N4 {
for k in (j + 1)..N4 {
for l in (k + 1)..N4 {
black_box(vec![i, j, k, l]);
}
}
}
}
})
});
}
fn comb_c1(c: &mut Criterion) {
c.bench_function("comb c1", move |b| {
b.iter(|| {
for combo in (0..N1).combinations(1) {
black_box(combo);
}
})
});
}
fn comb_c2(c: &mut Criterion) {
c.bench_function("comb c2", move |b| {
b.iter(|| {
for combo in (0..N2).combinations(2) {
black_box(combo);
}
})
});
}
fn comb_c3(c: &mut Criterion) {
c.bench_function("comb c3", move |b| {
b.iter(|| {
for combo in (0..N3).combinations(3) {
black_box(combo);
}
})
});
}
fn comb_c4(c: &mut Criterion) {
c.bench_function("comb c4", move |b| {
b.iter(|| {
for combo in (0..N4).combinations(4) {
black_box(combo);
}
})
});
}
fn comb_c14(c: &mut Criterion) {
c.bench_function("comb c14", move |b| {
b.iter(|| {
for combo in (0..N14).combinations(14) {
black_box(combo);
}
})
});
}
criterion_group!(
benches, comb_for1, comb_for2, comb_for3, comb_for4, comb_c1, comb_c2, comb_c3, comb_c4,
comb_c14,
);
criterion_main!(benches);

View File

@@ -0,0 +1,40 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use itertools::Itertools;
fn comb_replacement_n10_k5(c: &mut Criterion) {
c.bench_function("comb replacement n10k5", move |b| {
b.iter(|| {
for i in (0..10).combinations_with_replacement(5) {
black_box(i);
}
})
});
}
fn comb_replacement_n5_k10(c: &mut Criterion) {
c.bench_function("comb replacement n5 k10", move |b| {
b.iter(|| {
for i in (0..5).combinations_with_replacement(10) {
black_box(i);
}
})
});
}
fn comb_replacement_n10_k10(c: &mut Criterion) {
c.bench_function("comb replacement n10 k10", move |b| {
b.iter(|| {
for i in (0..10).combinations_with_replacement(10) {
black_box(i);
}
})
});
}
criterion_group!(
benches,
comb_replacement_n10_k5,
comb_replacement_n5_k10,
comb_replacement_n10_k10,
);
criterion_main!(benches);

View File

@@ -0,0 +1,75 @@
#![allow(unstable_name_collisions)]
use criterion::{criterion_group, criterion_main, Criterion};
use itertools::Itertools;
struct Unspecialized<I>(I);
impl<I> Iterator for Unspecialized<I>
where
I: Iterator,
{
type Item = I::Item;
#[inline(always)]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
#[inline(always)]
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
mod specialization {
use super::*;
pub mod intersperse {
use super::*;
pub fn external(c: &mut Criterion) {
let arr = [1; 1024];
c.bench_function("external", move |b| {
b.iter(|| {
let mut sum = 0;
for &x in arr.iter().intersperse(&0) {
sum += x;
}
sum
})
});
}
pub fn internal_specialized(c: &mut Criterion) {
let arr = [1; 1024];
c.bench_function("internal specialized", move |b| {
b.iter(|| {
#[allow(clippy::unnecessary_fold)]
arr.iter().intersperse(&0).fold(0, |acc, x| acc + x)
})
});
}
pub fn internal_unspecialized(c: &mut Criterion) {
let arr = [1; 1024];
c.bench_function("internal unspecialized", move |b| {
b.iter(|| {
#[allow(clippy::unnecessary_fold)]
Unspecialized(arr.iter().intersperse(&0)).fold(0, |acc, x| acc + x)
})
});
}
}
}
criterion_group!(
benches,
specialization::intersperse::external,
specialization::intersperse::internal_specialized,
specialization::intersperse::internal_unspecialized,
);
criterion_main!(benches);

61
vendor/itertools/benches/k_smallest.rs vendored Normal file
View File

@@ -0,0 +1,61 @@
use criterion::{black_box, criterion_group, criterion_main, Bencher, BenchmarkId, Criterion};
use itertools::Itertools;
use rand::{rngs::StdRng, seq::SliceRandom, SeedableRng};
fn strict(b: &mut Bencher, (k, vals): &(usize, &Vec<usize>)) {
b.iter(|| black_box(vals.iter()).k_smallest(*k))
}
fn relaxed(b: &mut Bencher, (k, vals): &(usize, &Vec<usize>)) {
b.iter(|| black_box(vals.iter()).k_smallest_relaxed(*k))
}
fn ascending(n: usize) -> Vec<usize> {
(0..n).collect()
}
fn random(n: usize) -> Vec<usize> {
let mut vals = (0..n).collect_vec();
vals.shuffle(&mut StdRng::seed_from_u64(42));
vals
}
fn descending(n: usize) -> Vec<usize> {
(0..n).rev().collect()
}
fn k_smallest(c: &mut Criterion, order: &str, vals: fn(usize) -> Vec<usize>) {
let mut g = c.benchmark_group(format!("k-smallest/{order}"));
for log_n in 20..23 {
let n = 1 << log_n;
let vals = vals(n);
for log_k in 7..10 {
let k = 1 << log_k;
let params = format!("{log_n}/{log_k}");
let input = (k, &vals);
g.bench_with_input(BenchmarkId::new("strict", &params), &input, strict);
g.bench_with_input(BenchmarkId::new("relaxed", &params), &input, relaxed);
}
}
g.finish()
}
fn k_smallest_asc(c: &mut Criterion) {
k_smallest(c, "asc", ascending);
}
fn k_smallest_rand(c: &mut Criterion) {
k_smallest(c, "rand", random);
}
fn k_smallest_desc(c: &mut Criterion) {
k_smallest(c, "desc", descending);
}
criterion_group!(benches, k_smallest_asc, k_smallest_rand, k_smallest_desc);
criterion_main!(benches);

97
vendor/itertools/benches/powerset.rs vendored Normal file
View File

@@ -0,0 +1,97 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use itertools::Itertools;
// Keep aggregate generated elements the same, regardless of powerset length.
const TOTAL_ELEMENTS: usize = 1 << 12;
const fn calc_iters(n: usize) -> usize {
TOTAL_ELEMENTS / (1 << n)
}
fn powerset_n(c: &mut Criterion, n: usize) {
let id = format!("powerset {}", n);
c.bench_function(id.as_str(), move |b| {
b.iter(|| {
for _ in 0..calc_iters(n) {
for elt in (0..n).powerset() {
black_box(elt);
}
}
})
});
}
fn powerset_n_fold(c: &mut Criterion, n: usize) {
let id = format!("powerset {} fold", n);
c.bench_function(id.as_str(), move |b| {
b.iter(|| {
for _ in 0..calc_iters(n) {
(0..n).powerset().fold(0, |s, elt| s + black_box(elt).len());
}
})
});
}
fn powerset_0(c: &mut Criterion) {
powerset_n(c, 0);
}
fn powerset_1(c: &mut Criterion) {
powerset_n(c, 1);
}
fn powerset_2(c: &mut Criterion) {
powerset_n(c, 2);
}
fn powerset_4(c: &mut Criterion) {
powerset_n(c, 4);
}
fn powerset_8(c: &mut Criterion) {
powerset_n(c, 8);
}
fn powerset_12(c: &mut Criterion) {
powerset_n(c, 12);
}
fn powerset_0_fold(c: &mut Criterion) {
powerset_n_fold(c, 0);
}
fn powerset_1_fold(c: &mut Criterion) {
powerset_n_fold(c, 1);
}
fn powerset_2_fold(c: &mut Criterion) {
powerset_n_fold(c, 2);
}
fn powerset_4_fold(c: &mut Criterion) {
powerset_n_fold(c, 4);
}
fn powerset_8_fold(c: &mut Criterion) {
powerset_n_fold(c, 8);
}
fn powerset_12_fold(c: &mut Criterion) {
powerset_n_fold(c, 12);
}
criterion_group!(
benches,
powerset_0,
powerset_1,
powerset_2,
powerset_4,
powerset_8,
powerset_12,
powerset_0_fold,
powerset_1_fold,
powerset_2_fold,
powerset_4_fold,
powerset_8_fold,
powerset_12_fold,
);
criterion_main!(benches);

View File

@@ -0,0 +1,669 @@
#![allow(unstable_name_collisions)]
use criterion::black_box;
use criterion::BenchmarkId;
use itertools::Itertools;
const NTH_INPUTS: &[usize] = &[0, 1, 2, 4, 8];
/// Create multiple functions each defining a benchmark group about iterator methods.
///
/// Each created group has functions with the following ids:
///
/// - `next`, `size_hint`, `count`, `last`, `nth`, `collect`, `fold`
/// - and when marked as `DoubleEndedIterator`: `next_back`, `nth_back`, `rfold`
/// - and when marked as `ExactSizeIterator`: `len`
///
/// Note that this macro can be called only once.
macro_rules! bench_specializations {
(
$(
$name:ident {
$($extra:ident)*
{$(
$init:stmt;
)*}
$iterator:expr
}
)*
) => {
$(
#[allow(unused_must_use)]
fn $name(c: &mut ::criterion::Criterion) {
let mut bench_group = c.benchmark_group(stringify!($name));
$(
$init
)*
let bench_first_its = {
let mut bench_idx = 0;
[0; 1000].map(|_| {
let mut it = $iterator;
if bench_idx != 0 {
it.nth(bench_idx - 1);
}
bench_idx += 1;
it
})
};
bench_specializations!(@Iterator bench_group bench_first_its: $iterator);
$(
bench_specializations!(@$extra bench_group bench_first_its: $iterator);
)*
bench_group.finish();
}
)*
::criterion::criterion_group!(benches, $($name, )*);
::criterion::criterion_main!(benches);
};
(@Iterator $group:ident $first_its:ident: $iterator:expr) => {
$group.bench_function("next", |bencher| bencher.iter(|| {
let mut it = $iterator;
while let Some(x) = it.next() {
black_box(x);
}
}));
$group.bench_function("size_hint", |bencher| bencher.iter(|| {
$first_its.iter().for_each(|it| {
black_box(it.size_hint());
})
}));
$group.bench_function("count", |bencher| bencher.iter(|| {
$iterator.count()
}));
$group.bench_function("last", |bencher| bencher.iter(|| {
$iterator.last()
}));
for n in NTH_INPUTS {
$group.bench_with_input(BenchmarkId::new("nth", n), n, |bencher, n| bencher.iter(|| {
for start in 0_usize..10 {
let mut it = $iterator;
if let Some(s) = start.checked_sub(1) {
black_box(it.nth(s));
}
while let Some(x) = it.nth(*n) {
black_box(x);
}
}
}));
}
$group.bench_function("collect", |bencher| bencher.iter(|| {
$iterator.collect::<Vec<_>>()
}));
$group.bench_function("fold", |bencher| bencher.iter(|| {
$iterator.fold((), |(), x| {
black_box(x);
})
}));
};
(@DoubleEndedIterator $group:ident $_first_its:ident: $iterator:expr) => {
$group.bench_function("next_back", |bencher| bencher.iter(|| {
let mut it = $iterator;
while let Some(x) = it.next_back() {
black_box(x);
}
}));
for n in NTH_INPUTS {
$group.bench_with_input(BenchmarkId::new("nth_back", n), n, |bencher, n| bencher.iter(|| {
for start in 0_usize..10 {
let mut it = $iterator;
if let Some(s) = start.checked_sub(1) {
black_box(it.nth_back(s));
}
while let Some(x) = it.nth_back(*n) {
black_box(x);
}
}
}));
}
$group.bench_function("rfold", |bencher| bencher.iter(|| {
$iterator.rfold((), |(), x| {
black_box(x);
})
}));
};
(@ExactSizeIterator $group:ident $first_its:ident: $_iterator:expr) => {
$group.bench_function("len", |bencher| bencher.iter(|| {
$first_its.iter().for_each(|it| {
black_box(it.len());
})
}));
};
}
// Usage examples:
// - For `ZipLongest::fold` only:
// cargo bench --bench specializations zip_longest/fold
// - For `.combinations(k).nth(8)`:
// cargo bench --bench specializations combinations./nth/8
bench_specializations! {
interleave {
{
let v1 = black_box(vec![0; 1024]);
let v2 = black_box(vec![0; 768]);
}
v1.iter().interleave(&v2)
}
interleave_shortest {
{
let v1 = black_box(vec![0; 1024]);
let v2 = black_box(vec![0; 768]);
}
v1.iter().interleave_shortest(&v2)
}
batching {
{
let v = black_box(vec![0; 1024]);
}
v.iter().batching(Iterator::next)
}
tuple_windows1 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuple_windows::<(_,)>()
}
tuple_windows2 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuple_windows::<(_, _)>()
}
tuple_windows3 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuple_windows::<(_, _, _)>()
}
tuple_windows4 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuple_windows::<(_, _, _, _)>()
}
circular_tuple_windows1 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().circular_tuple_windows::<(_,)>()
}
circular_tuple_windows2 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().circular_tuple_windows::<(_, _)>()
}
circular_tuple_windows3 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().circular_tuple_windows::<(_, _, _)>()
}
circular_tuple_windows4 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().circular_tuple_windows::<(_, _, _, _)>()
}
tuples1 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuples::<(_,)>()
}
tuples2 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuples::<(_, _)>()
}
tuples3 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuples::<(_, _, _)>()
}
tuples4 {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuples::<(_, _, _, _)>()
}
tuple_buffer {
ExactSizeIterator
{
let v = black_box(vec![0; 11]);
// Short but the buffer can't have 12 or more elements.
}
{
let mut it = v.iter().tuples::<(_, _, _, _, _, _, _, _, _, _, _, _)>();
it.next(); // No element but it fills the buffer.
it.into_buffer()
}
}
cartesian_product {
{
let v = black_box(vec![0; 16]);
}
itertools::iproduct!(&v, &v, &v)
}
multi_cartesian_product {
{
let vs = black_box([0; 3].map(|_| vec![0; 16]));
}
vs.iter().multi_cartesian_product()
}
coalesce {
{
let v = black_box(vec![0; 1024]);
}
v.iter().coalesce(|x, y| if x == y { Ok(x) } else { Err((x, y)) })
}
dedup {
{
let v = black_box((0..32).flat_map(|x| [x; 32]).collect_vec());
}
v.iter().dedup()
}
dedup_by {
{
let v = black_box((0..32).flat_map(|x| [x; 32]).collect_vec());
}
v.iter().dedup_by(PartialOrd::ge)
}
dedup_with_count {
{
let v = black_box((0..32).flat_map(|x| [x; 32]).collect_vec());
}
v.iter().dedup_with_count()
}
dedup_by_with_count {
{
let v = black_box((0..32).flat_map(|x| [x; 32]).collect_vec());
}
v.iter().dedup_by_with_count(PartialOrd::ge)
}
duplicates {
DoubleEndedIterator
{
let v = black_box((0..32).cycle().take(1024).collect_vec());
}
v.iter().duplicates()
}
duplicates_by {
DoubleEndedIterator
{
let v = black_box((0..1024).collect_vec());
}
v.iter().duplicates_by(|x| *x % 10)
}
unique {
DoubleEndedIterator
{
let v = black_box((0..32).cycle().take(1024).collect_vec());
}
v.iter().unique()
}
unique_by {
DoubleEndedIterator
{
let v = black_box((0..1024).collect_vec());
}
v.iter().unique_by(|x| *x % 50)
}
take_while_inclusive {
{
let v = black_box((0..1024).collect_vec());
}
v.iter().take_while_inclusive(|x| **x < 1000)
}
pad_using {
DoubleEndedIterator
ExactSizeIterator
{
let v = black_box((0..1024).collect_vec());
}
v.iter().copied().pad_using(2048, |i| 5 * i)
}
positions {
DoubleEndedIterator
{
let v = black_box((0..1024).collect_vec());
}
v.iter().positions(|x| x % 5 == 0)
}
update {
DoubleEndedIterator
ExactSizeIterator
{
let v = black_box((0_i32..1024).collect_vec());
}
v.iter().copied().update(|x| *x *= 7)
}
tuple_combinations1 {
{
let v = black_box(vec![0; 1024]);
}
v.iter().tuple_combinations::<(_,)>()
}
tuple_combinations2 {
{
let v = black_box(vec![0; 64]);
}
v.iter().tuple_combinations::<(_, _)>()
}
tuple_combinations3 {
{
let v = black_box(vec![0; 64]);
}
v.iter().tuple_combinations::<(_, _, _)>()
}
tuple_combinations4 {
{
let v = black_box(vec![0; 64]);
}
v.iter().tuple_combinations::<(_, _, _, _)>()
}
intersperse {
{
let v = black_box(vec![0; 1024]);
let n = black_box(0);
}
v.iter().intersperse(&n)
}
intersperse_with {
{
let v = black_box(vec![0; 1024]);
let n = black_box(0);
}
v.iter().intersperse_with(|| &n)
}
combinations1 {
{
let v = black_box(vec![0; 1792]);
}
v.iter().combinations(1)
}
combinations2 {
{
let v = black_box(vec![0; 60]);
}
v.iter().combinations(2)
}
combinations3 {
{
let v = black_box(vec![0; 23]);
}
v.iter().combinations(3)
}
combinations4 {
{
let v = black_box(vec![0; 16]);
}
v.iter().combinations(4)
}
combinations_with_replacement1 {
{
let v = black_box(vec![0; 4096]);
}
v.iter().combinations_with_replacement(1)
}
combinations_with_replacement2 {
{
let v = black_box(vec![0; 90]);
}
v.iter().combinations_with_replacement(2)
}
combinations_with_replacement3 {
{
let v = black_box(vec![0; 28]);
}
v.iter().combinations_with_replacement(3)
}
combinations_with_replacement4 {
{
let v = black_box(vec![0; 16]);
}
v.iter().combinations_with_replacement(4)
}
permutations1 {
{
let v = black_box(vec![0; 1024]);
}
v.iter().permutations(1)
}
permutations2 {
{
let v = black_box(vec![0; 36]);
}
v.iter().permutations(2)
}
permutations3 {
{
let v = black_box(vec![0; 12]);
}
v.iter().permutations(3)
}
permutations4 {
{
let v = black_box(vec![0; 8]);
}
v.iter().permutations(4)
}
powerset {
{
let v = black_box(vec![0; 10]);
}
v.iter().powerset()
}
while_some {
{}
(0..)
.map(black_box)
.map(|i| char::from_digit(i, 16))
.while_some()
}
with_position {
ExactSizeIterator
{
let v = black_box((0..10240).collect_vec());
}
v.iter().with_position()
}
zip_longest {
DoubleEndedIterator
ExactSizeIterator
{
let xs = black_box(vec![0; 1024]);
let ys = black_box(vec![0; 768]);
}
xs.iter().zip_longest(ys.iter())
}
zip_eq {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
v.iter().zip_eq(v.iter().rev())
}
multizip {
DoubleEndedIterator
ExactSizeIterator
{
let v1 = black_box(vec![0; 1024]);
let v2 = black_box(vec![0; 768]);
let v3 = black_box(vec![0; 2048]);
}
itertools::multizip((&v1, &v2, &v3))
}
izip {
DoubleEndedIterator
ExactSizeIterator
{
let v1 = black_box(vec![0; 1024]);
let v2 = black_box(vec![0; 768]);
let v3 = black_box(vec![0; 2048]);
}
itertools::izip!(&v1, &v2, &v3)
}
put_back {
{
let v = black_box(vec![0; 1024]);
}
itertools::put_back(&v).with_value(black_box(&0))
}
put_back_n {
{
let v1 = black_box(vec![0; 1024]);
let v2 = black_box(vec![0; 16]);
}
{
let mut it = itertools::put_back_n(&v1);
for n in &v2 {
it.put_back(n);
}
it
}
}
exactly_one_error {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
}
// Use `at_most_one` would be similar.
v.iter().exactly_one().unwrap_err()
}
multipeek {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
let n = black_box(16);
}
{
let mut it = v.iter().multipeek();
for _ in 0..n {
it.peek();
}
it
}
}
peek_nth {
ExactSizeIterator
{
let v = black_box(vec![0; 1024]);
let n = black_box(16);
}
{
let mut it = itertools::peek_nth(&v);
it.peek_nth(n);
it
}
}
repeat_n {
DoubleEndedIterator
ExactSizeIterator
{}
itertools::repeat_n(black_box(0), black_box(1024))
}
merge {
{
let v1 = black_box((0..1024).collect_vec());
let v2 = black_box((0..768).collect_vec());
}
v1.iter().merge(&v2)
}
merge_by {
{
let v1 = black_box((0..1024).collect_vec());
let v2 = black_box((0..768).collect_vec());
}
v1.iter().merge_by(&v2, PartialOrd::ge)
}
merge_join_by_ordering {
{
let v1 = black_box((0..1024).collect_vec());
let v2 = black_box((0..768).collect_vec());
}
v1.iter().merge_join_by(&v2, Ord::cmp)
}
merge_join_by_bool {
{
let v1 = black_box((0..1024).collect_vec());
let v2 = black_box((0..768).collect_vec());
}
v1.iter().merge_join_by(&v2, PartialOrd::ge)
}
kmerge {
{
let vs = black_box(vec![vec![0; 1024], vec![0; 256], vec![0; 768]]);
}
vs.iter().kmerge()
}
kmerge_by {
{
let vs = black_box(vec![vec![0; 1024], vec![0; 256], vec![0; 768]]);
}
vs.iter().kmerge_by(PartialOrd::ge)
}
map_into {
DoubleEndedIterator
ExactSizeIterator
{
let v = black_box(vec![0_u8; 1024]);
}
v.iter().copied().map_into::<u32>()
}
map_ok {
DoubleEndedIterator
ExactSizeIterator
{
let v = black_box((0_u32..1024)
.map(|x| if x % 2 == 1 { Err(x) } else { Ok(x) })
.collect_vec());
}
v.iter().copied().map_ok(|x| x + 1)
}
filter_ok {
DoubleEndedIterator
{
let v = black_box((0_u32..1024)
.map(|x| if x % 2 == 1 { Err(x) } else { Ok(x) })
.collect_vec());
}
v.iter().copied().filter_ok(|x| x % 3 == 0)
}
filter_map_ok {
DoubleEndedIterator
{
let v = black_box((0_u32..1024)
.map(|x| if x % 2 == 1 { Err(x) } else { Ok(x) })
.collect_vec());
}
v.iter().copied().filter_map_ok(|x| if x % 3 == 0 { Some(x + 1) } else { None })
}
flatten_ok {
DoubleEndedIterator
{
let d = black_box(vec![0; 8]);
let v = black_box((0..512)
.map(|x| if x % 2 == 0 { Ok(&d) } else { Err(x) })
.collect_vec());
}
v.iter().copied().flatten_ok()
}
}

150
vendor/itertools/benches/tree_reduce.rs vendored Normal file
View File

@@ -0,0 +1,150 @@
#![allow(deprecated)]
use criterion::{criterion_group, criterion_main, Criterion};
use itertools::{cloned, Itertools};
trait IterEx: Iterator {
// Another efficient implementation against which to compare,
// but needs `std` so is less desirable.
fn tree_reduce_vec<F>(self, mut f: F) -> Option<Self::Item>
where
F: FnMut(Self::Item, Self::Item) -> Self::Item,
Self: Sized,
{
let hint = self.size_hint().0;
let cap = std::mem::size_of::<usize>() * 8 - hint.leading_zeros() as usize;
let mut stack = Vec::with_capacity(cap);
self.enumerate().for_each(|(mut i, mut x)| {
while (i & 1) != 0 {
x = f(stack.pop().unwrap(), x);
i >>= 1;
}
stack.push(x);
});
stack.into_iter().fold1(f)
}
}
impl<T: Iterator> IterEx for T {}
macro_rules! def_benchs {
($N:expr,
$FUN:ident,
$BENCH_NAME:ident,
) => {
mod $BENCH_NAME {
use super::*;
pub fn sum(c: &mut Criterion) {
let v: Vec<u32> = (0..$N).collect();
c.bench_function(
&(stringify!($BENCH_NAME).replace('_', " ") + " sum"),
move |b| b.iter(|| cloned(&v).$FUN(|x, y| x + y)),
);
}
pub fn complex_iter(c: &mut Criterion) {
let u = (3..).take($N / 2);
let v = (5..).take($N / 2);
let it = u.chain(v);
c.bench_function(
&(stringify!($BENCH_NAME).replace('_', " ") + " complex iter"),
move |b| b.iter(|| it.clone().map(|x| x as f32).$FUN(f32::atan2)),
);
}
pub fn string_format(c: &mut Criterion) {
// This goes quadratic with linear `fold1`, so use a smaller
// size to not waste too much time in travis. The allocations
// in here are so expensive anyway that it'll still take
// way longer per iteration than the other two benchmarks.
let v: Vec<u32> = (0..($N / 4)).collect();
c.bench_function(
&(stringify!($BENCH_NAME).replace('_', " ") + " string format"),
move |b| {
b.iter(|| {
cloned(&v)
.map(|x| x.to_string())
.$FUN(|x, y| format!("{} + {}", x, y))
})
},
);
}
}
criterion_group!(
$BENCH_NAME,
$BENCH_NAME::sum,
$BENCH_NAME::complex_iter,
$BENCH_NAME::string_format,
);
};
}
def_benchs! {
10_000,
fold1,
fold1_10k,
}
def_benchs! {
10_000,
tree_reduce,
tree_reduce_stack_10k,
}
def_benchs! {
10_000,
tree_reduce_vec,
tree_reduce_vec_10k,
}
def_benchs! {
100,
fold1,
fold1_100,
}
def_benchs! {
100,
tree_reduce,
tree_reduce_stack_100,
}
def_benchs! {
100,
tree_reduce_vec,
tree_reduce_vec_100,
}
def_benchs! {
8,
fold1,
fold1_08,
}
def_benchs! {
8,
tree_reduce,
tree_reduce_stack_08,
}
def_benchs! {
8,
tree_reduce_vec,
tree_reduce_vec_08,
}
criterion_main!(
fold1_10k,
tree_reduce_stack_10k,
tree_reduce_vec_10k,
fold1_100,
tree_reduce_stack_100,
tree_reduce_vec_100,
fold1_08,
tree_reduce_stack_08,
tree_reduce_vec_08,
);

View File

@@ -0,0 +1,113 @@
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use itertools::Itertools;
// approximate 100_000 iterations for each combination
const N1: usize = 100_000;
const N2: usize = 448;
const N3: usize = 86;
const N4: usize = 41;
fn tuple_comb_for1(c: &mut Criterion) {
c.bench_function("tuple comb for1", move |b| {
b.iter(|| {
for i in 0..N1 {
black_box(i);
}
})
});
}
fn tuple_comb_for2(c: &mut Criterion) {
c.bench_function("tuple comb for2", move |b| {
b.iter(|| {
for i in 0..N2 {
for j in (i + 1)..N2 {
black_box(i + j);
}
}
})
});
}
fn tuple_comb_for3(c: &mut Criterion) {
c.bench_function("tuple comb for3", move |b| {
b.iter(|| {
for i in 0..N3 {
for j in (i + 1)..N3 {
for k in (j + 1)..N3 {
black_box(i + j + k);
}
}
}
})
});
}
fn tuple_comb_for4(c: &mut Criterion) {
c.bench_function("tuple comb for4", move |b| {
b.iter(|| {
for i in 0..N4 {
for j in (i + 1)..N4 {
for k in (j + 1)..N4 {
for l in (k + 1)..N4 {
black_box(i + j + k + l);
}
}
}
}
})
});
}
fn tuple_comb_c1(c: &mut Criterion) {
c.bench_function("tuple comb c1", move |b| {
b.iter(|| {
for (i,) in (0..N1).tuple_combinations() {
black_box(i);
}
})
});
}
fn tuple_comb_c2(c: &mut Criterion) {
c.bench_function("tuple comb c2", move |b| {
b.iter(|| {
for (i, j) in (0..N2).tuple_combinations() {
black_box(i + j);
}
})
});
}
fn tuple_comb_c3(c: &mut Criterion) {
c.bench_function("tuple comb c3", move |b| {
b.iter(|| {
for (i, j, k) in (0..N3).tuple_combinations() {
black_box(i + j + k);
}
})
});
}
fn tuple_comb_c4(c: &mut Criterion) {
c.bench_function("tuple comb c4", move |b| {
b.iter(|| {
for (i, j, k, l) in (0..N4).tuple_combinations() {
black_box(i + j + k + l);
}
})
});
}
criterion_group!(
benches,
tuple_comb_for1,
tuple_comb_for2,
tuple_comb_for3,
tuple_comb_for4,
tuple_comb_c1,
tuple_comb_c2,
tuple_comb_c3,
tuple_comb_c4,
);
criterion_main!(benches);

208
vendor/itertools/benches/tuples.rs vendored Normal file
View File

@@ -0,0 +1,208 @@
use criterion::{criterion_group, criterion_main, Criterion};
use itertools::Itertools;
fn s1(a: u32) -> u32 {
a
}
fn s2(a: u32, b: u32) -> u32 {
a + b
}
fn s3(a: u32, b: u32, c: u32) -> u32 {
a + b + c
}
fn s4(a: u32, b: u32, c: u32, d: u32) -> u32 {
a + b + c + d
}
fn sum_s1(s: &[u32]) -> u32 {
s1(s[0])
}
fn sum_s2(s: &[u32]) -> u32 {
s2(s[0], s[1])
}
fn sum_s3(s: &[u32]) -> u32 {
s3(s[0], s[1], s[2])
}
fn sum_s4(s: &[u32]) -> u32 {
s4(s[0], s[1], s[2], s[3])
}
fn sum_t1(s: &(&u32,)) -> u32 {
s1(*s.0)
}
fn sum_t2(s: &(&u32, &u32)) -> u32 {
s2(*s.0, *s.1)
}
fn sum_t3(s: &(&u32, &u32, &u32)) -> u32 {
s3(*s.0, *s.1, *s.2)
}
fn sum_t4(s: &(&u32, &u32, &u32, &u32)) -> u32 {
s4(*s.0, *s.1, *s.2, *s.3)
}
macro_rules! def_benchs {
($N:expr;
$BENCH_GROUP:ident,
$TUPLE_FUN:ident,
$TUPLES:ident,
$TUPLE_WINDOWS:ident;
$SLICE_FUN:ident,
$CHUNKS:ident,
$WINDOWS:ident;
$FOR_CHUNKS:ident,
$FOR_WINDOWS:ident
) => {
fn $FOR_CHUNKS(c: &mut Criterion) {
let v: Vec<u32> = (0..$N * 1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($FOR_CHUNKS).replace('_', " "), move |b| {
b.iter(|| {
let mut j = 0;
for _ in 0..1_000 {
s += $SLICE_FUN(&v[j..(j + $N)]);
j += $N;
}
s
})
});
}
fn $FOR_WINDOWS(c: &mut Criterion) {
let v: Vec<u32> = (0..1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($FOR_WINDOWS).replace('_', " "), move |b| {
b.iter(|| {
for i in 0..(1_000 - $N) {
s += $SLICE_FUN(&v[i..(i + $N)]);
}
s
})
});
}
fn $TUPLES(c: &mut Criterion) {
let v: Vec<u32> = (0..$N * 1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($TUPLES).replace('_', " "), move |b| {
b.iter(|| {
for x in v.iter().tuples() {
s += $TUPLE_FUN(&x);
}
s
})
});
}
fn $CHUNKS(c: &mut Criterion) {
let v: Vec<u32> = (0..$N * 1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($CHUNKS).replace('_', " "), move |b| {
b.iter(|| {
for x in v.chunks($N) {
s += $SLICE_FUN(x);
}
s
})
});
}
fn $TUPLE_WINDOWS(c: &mut Criterion) {
let v: Vec<u32> = (0..1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($TUPLE_WINDOWS).replace('_', " "), move |b| {
b.iter(|| {
for x in v.iter().tuple_windows() {
s += $TUPLE_FUN(&x);
}
s
})
});
}
fn $WINDOWS(c: &mut Criterion) {
let v: Vec<u32> = (0..1_000).collect();
let mut s = 0;
c.bench_function(&stringify!($WINDOWS).replace('_', " "), move |b| {
b.iter(|| {
for x in v.windows($N) {
s += $SLICE_FUN(x);
}
s
})
});
}
criterion_group!(
$BENCH_GROUP,
$FOR_CHUNKS,
$FOR_WINDOWS,
$TUPLES,
$CHUNKS,
$TUPLE_WINDOWS,
$WINDOWS,
);
};
}
def_benchs! {
1;
benches_1,
sum_t1,
tuple_chunks_1,
tuple_windows_1;
sum_s1,
slice_chunks_1,
slice_windows_1;
for_chunks_1,
for_windows_1
}
def_benchs! {
2;
benches_2,
sum_t2,
tuple_chunks_2,
tuple_windows_2;
sum_s2,
slice_chunks_2,
slice_windows_2;
for_chunks_2,
for_windows_2
}
def_benchs! {
3;
benches_3,
sum_t3,
tuple_chunks_3,
tuple_windows_3;
sum_s3,
slice_chunks_3,
slice_windows_3;
for_chunks_3,
for_windows_3
}
def_benchs! {
4;
benches_4,
sum_t4,
tuple_chunks_4,
tuple_windows_4;
sum_s4,
slice_chunks_4,
slice_windows_4;
for_chunks_4,
for_windows_4
}
criterion_main!(benches_1, benches_2, benches_3, benches_4,);

150
vendor/itertools/examples/iris.data vendored Normal file
View File

@@ -0,0 +1,150 @@
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5.0,3.6,1.4,0.2,Iris-setosa
5.4,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
5.0,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.4,3.7,1.5,0.2,Iris-setosa
4.8,3.4,1.6,0.2,Iris-setosa
4.8,3.0,1.4,0.1,Iris-setosa
4.3,3.0,1.1,0.1,Iris-setosa
5.8,4.0,1.2,0.2,Iris-setosa
5.7,4.4,1.5,0.4,Iris-setosa
5.4,3.9,1.3,0.4,Iris-setosa
5.1,3.5,1.4,0.3,Iris-setosa
5.7,3.8,1.7,0.3,Iris-setosa
5.1,3.8,1.5,0.3,Iris-setosa
5.4,3.4,1.7,0.2,Iris-setosa
5.1,3.7,1.5,0.4,Iris-setosa
4.6,3.6,1.0,0.2,Iris-setosa
5.1,3.3,1.7,0.5,Iris-setosa
4.8,3.4,1.9,0.2,Iris-setosa
5.0,3.0,1.6,0.2,Iris-setosa
5.0,3.4,1.6,0.4,Iris-setosa
5.2,3.5,1.5,0.2,Iris-setosa
5.2,3.4,1.4,0.2,Iris-setosa
4.7,3.2,1.6,0.2,Iris-setosa
4.8,3.1,1.6,0.2,Iris-setosa
5.4,3.4,1.5,0.4,Iris-setosa
5.2,4.1,1.5,0.1,Iris-setosa
5.5,4.2,1.4,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
5.0,3.2,1.2,0.2,Iris-setosa
5.5,3.5,1.3,0.2,Iris-setosa
4.9,3.1,1.5,0.1,Iris-setosa
4.4,3.0,1.3,0.2,Iris-setosa
5.1,3.4,1.5,0.2,Iris-setosa
5.0,3.5,1.3,0.3,Iris-setosa
4.5,2.3,1.3,0.3,Iris-setosa
4.4,3.2,1.3,0.2,Iris-setosa
5.0,3.5,1.6,0.6,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3.0,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5.0,3.3,1.4,0.2,Iris-setosa
7.0,3.2,4.7,1.4,Iris-versicolor
6.4,3.2,4.5,1.5,Iris-versicolor
6.9,3.1,4.9,1.5,Iris-versicolor
5.5,2.3,4.0,1.3,Iris-versicolor
6.5,2.8,4.6,1.5,Iris-versicolor
5.7,2.8,4.5,1.3,Iris-versicolor
6.3,3.3,4.7,1.6,Iris-versicolor
4.9,2.4,3.3,1.0,Iris-versicolor
6.6,2.9,4.6,1.3,Iris-versicolor
5.2,2.7,3.9,1.4,Iris-versicolor
5.0,2.0,3.5,1.0,Iris-versicolor
5.9,3.0,4.2,1.5,Iris-versicolor
6.0,2.2,4.0,1.0,Iris-versicolor
6.1,2.9,4.7,1.4,Iris-versicolor
5.6,2.9,3.6,1.3,Iris-versicolor
6.7,3.1,4.4,1.4,Iris-versicolor
5.6,3.0,4.5,1.5,Iris-versicolor
5.8,2.7,4.1,1.0,Iris-versicolor
6.2,2.2,4.5,1.5,Iris-versicolor
5.6,2.5,3.9,1.1,Iris-versicolor
5.9,3.2,4.8,1.8,Iris-versicolor
6.1,2.8,4.0,1.3,Iris-versicolor
6.3,2.5,4.9,1.5,Iris-versicolor
6.1,2.8,4.7,1.2,Iris-versicolor
6.4,2.9,4.3,1.3,Iris-versicolor
6.6,3.0,4.4,1.4,Iris-versicolor
6.8,2.8,4.8,1.4,Iris-versicolor
6.7,3.0,5.0,1.7,Iris-versicolor
6.0,2.9,4.5,1.5,Iris-versicolor
5.7,2.6,3.5,1.0,Iris-versicolor
5.5,2.4,3.8,1.1,Iris-versicolor
5.5,2.4,3.7,1.0,Iris-versicolor
5.8,2.7,3.9,1.2,Iris-versicolor
6.0,2.7,5.1,1.6,Iris-versicolor
5.4,3.0,4.5,1.5,Iris-versicolor
6.0,3.4,4.5,1.6,Iris-versicolor
6.7,3.1,4.7,1.5,Iris-versicolor
6.3,2.3,4.4,1.3,Iris-versicolor
5.6,3.0,4.1,1.3,Iris-versicolor
5.5,2.5,4.0,1.3,Iris-versicolor
5.5,2.6,4.4,1.2,Iris-versicolor
6.1,3.0,4.6,1.4,Iris-versicolor
5.8,2.6,4.0,1.2,Iris-versicolor
5.0,2.3,3.3,1.0,Iris-versicolor
5.6,2.7,4.2,1.3,Iris-versicolor
5.7,3.0,4.2,1.2,Iris-versicolor
5.7,2.9,4.2,1.3,Iris-versicolor
6.2,2.9,4.3,1.3,Iris-versicolor
5.1,2.5,3.0,1.1,Iris-versicolor
5.7,2.8,4.1,1.3,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
7.1,3.0,5.9,2.1,Iris-virginica
6.3,2.9,5.6,1.8,Iris-virginica
6.5,3.0,5.8,2.2,Iris-virginica
7.6,3.0,6.6,2.1,Iris-virginica
4.9,2.5,4.5,1.7,Iris-virginica
7.3,2.9,6.3,1.8,Iris-virginica
6.7,2.5,5.8,1.8,Iris-virginica
7.2,3.6,6.1,2.5,Iris-virginica
6.5,3.2,5.1,2.0,Iris-virginica
6.4,2.7,5.3,1.9,Iris-virginica
6.8,3.0,5.5,2.1,Iris-virginica
5.7,2.5,5.0,2.0,Iris-virginica
5.8,2.8,5.1,2.4,Iris-virginica
6.4,3.2,5.3,2.3,Iris-virginica
6.5,3.0,5.5,1.8,Iris-virginica
7.7,3.8,6.7,2.2,Iris-virginica
7.7,2.6,6.9,2.3,Iris-virginica
6.0,2.2,5.0,1.5,Iris-virginica
6.9,3.2,5.7,2.3,Iris-virginica
5.6,2.8,4.9,2.0,Iris-virginica
7.7,2.8,6.7,2.0,Iris-virginica
6.3,2.7,4.9,1.8,Iris-virginica
6.7,3.3,5.7,2.1,Iris-virginica
7.2,3.2,6.0,1.8,Iris-virginica
6.2,2.8,4.8,1.8,Iris-virginica
6.1,3.0,4.9,1.8,Iris-virginica
6.4,2.8,5.6,2.1,Iris-virginica
7.2,3.0,5.8,1.6,Iris-virginica
7.4,2.8,6.1,1.9,Iris-virginica
7.9,3.8,6.4,2.0,Iris-virginica
6.4,2.8,5.6,2.2,Iris-virginica
6.3,2.8,5.1,1.5,Iris-virginica
6.1,2.6,5.6,1.4,Iris-virginica
7.7,3.0,6.1,2.3,Iris-virginica
6.3,3.4,5.6,2.4,Iris-virginica
6.4,3.1,5.5,1.8,Iris-virginica
6.0,3.0,4.8,1.8,Iris-virginica
6.9,3.1,5.4,2.1,Iris-virginica
6.7,3.1,5.6,2.4,Iris-virginica
6.9,3.1,5.1,2.3,Iris-virginica
5.8,2.7,5.1,1.9,Iris-virginica
6.8,3.2,5.9,2.3,Iris-virginica
6.7,3.3,5.7,2.5,Iris-virginica
6.7,3.0,5.2,2.3,Iris-virginica
6.3,2.5,5.0,1.9,Iris-virginica
6.5,3.0,5.2,2.0,Iris-virginica
6.2,3.4,5.4,2.3,Iris-virginica
5.9,3.0,5.1,1.8,Iris-virginica

140
vendor/itertools/examples/iris.rs vendored Normal file
View File

@@ -0,0 +1,140 @@
///
/// This example parses, sorts and groups the iris dataset
/// and does some simple manipulations.
///
/// Iterators and itertools functionality are used throughout.
use itertools::Itertools;
use std::collections::HashMap;
use std::iter::repeat;
use std::num::ParseFloatError;
use std::str::FromStr;
static DATA: &str = include_str!("iris.data");
#[derive(Clone, Debug)]
struct Iris {
name: String,
data: [f32; 4],
}
#[allow(dead_code)] // fields are currently ignored
#[derive(Clone, Debug)]
enum ParseError {
Numeric(ParseFloatError),
Other(&'static str),
}
impl From<ParseFloatError> for ParseError {
fn from(err: ParseFloatError) -> Self {
Self::Numeric(err)
}
}
/// Parse an Iris from a comma-separated line
impl FromStr for Iris {
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut iris = Self {
name: "".into(),
data: [0.; 4],
};
let mut parts = s.split(',').map(str::trim);
// using Iterator::by_ref()
for (index, part) in parts.by_ref().take(4).enumerate() {
iris.data[index] = part.parse::<f32>()?;
}
if let Some(name) = parts.next() {
iris.name = name.into();
} else {
return Err(ParseError::Other("Missing name"));
}
Ok(iris)
}
}
fn main() {
// using Itertools::fold_results to create the result of parsing
let irises = DATA
.lines()
.map(str::parse)
.fold_ok(Vec::new(), |mut v, iris: Iris| {
v.push(iris);
v
});
let mut irises = match irises {
Err(e) => {
println!("Error parsing: {:?}", e);
std::process::exit(1);
}
Ok(data) => data,
};
// Sort them and group them
irises.sort_by(|a, b| Ord::cmp(&a.name, &b.name));
// using Iterator::cycle()
let mut plot_symbols = "+ox".chars().cycle();
let mut symbolmap = HashMap::new();
// using Itertools::chunk_by
for (species, species_chunk) in &irises.iter().chunk_by(|iris| &iris.name) {
// assign a plot symbol
symbolmap
.entry(species)
.or_insert_with(|| plot_symbols.next().unwrap());
println!("{} (symbol={})", species, symbolmap[species]);
for iris in species_chunk {
// using Itertools::format for lazy formatting
println!("{:>3.1}", iris.data.iter().format(", "));
}
}
// Look at all combinations of the four columns
//
// See https://en.wikipedia.org/wiki/Iris_flower_data_set
//
let n = 30; // plot size
let mut plot = vec![' '; n * n];
// using Itertools::tuple_combinations
for (a, b) in (0..4).tuple_combinations() {
println!("Column {} vs {}:", a, b);
// Clear plot
//
// using std::iter::repeat;
// using Itertools::set_from
plot.iter_mut().set_from(repeat(' '));
// using Itertools::minmax
let min_max = |data: &[Iris], col| {
data.iter()
.map(|iris| iris.data[col])
.minmax()
.into_option()
.expect("Can't find min/max of empty iterator")
};
let (min_x, max_x) = min_max(&irises, a);
let (min_y, max_y) = min_max(&irises, b);
// Plot the data points
let round_to_grid = |x, min, max| ((x - min) / (max - min) * ((n - 1) as f32)) as usize;
let flip = |ix| n - 1 - ix; // reverse axis direction
for iris in &irises {
let ix = round_to_grid(iris.data[a], min_x, max_x);
let iy = flip(round_to_grid(iris.data[b], min_y, max_y));
plot[n * iy + ix] = symbolmap[&iris.name];
}
// render plot
//
// using Itertools::join
for line in plot.chunks(n) {
println!("{}", line.iter().join(" "))
}
}
}

View File

@@ -0,0 +1,286 @@
use std::fmt;
use std::iter::FusedIterator;
use crate::size_hint;
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct CoalesceBy<I, F, C>
where
I: Iterator,
C: CountItem<I::Item>,
{
iter: I,
/// `last` is `None` while no item have been taken out of `iter` (at definition).
/// Then `last` will be `Some(Some(item))` until `iter` is exhausted,
/// in which case `last` will be `Some(None)`.
last: Option<Option<C::CItem>>,
f: F,
}
impl<I, F, C> Clone for CoalesceBy<I, F, C>
where
I: Clone + Iterator,
F: Clone,
C: CountItem<I::Item>,
C::CItem: Clone,
{
clone_fields!(last, iter, f);
}
impl<I, F, C> fmt::Debug for CoalesceBy<I, F, C>
where
I: Iterator + fmt::Debug,
C: CountItem<I::Item>,
C::CItem: fmt::Debug,
{
debug_fmt_fields!(CoalesceBy, iter, last);
}
pub trait CoalescePredicate<Item, T> {
fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)>;
}
impl<I, F, C> Iterator for CoalesceBy<I, F, C>
where
I: Iterator,
F: CoalescePredicate<I::Item, C::CItem>,
C: CountItem<I::Item>,
{
type Item = C::CItem;
fn next(&mut self) -> Option<Self::Item> {
let Self { iter, last, f } = self;
// this fuses the iterator
let init = match last {
Some(elt) => elt.take(),
None => {
*last = Some(None);
iter.next().map(C::new)
}
}?;
Some(
iter.try_fold(init, |accum, next| match f.coalesce_pair(accum, next) {
Ok(joined) => Ok(joined),
Err((last_, next_)) => {
*last = Some(Some(next_));
Err(last_)
}
})
.unwrap_or_else(|x| x),
)
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = size_hint::add_scalar(
self.iter.size_hint(),
matches!(self.last, Some(Some(_))) as usize,
);
((low > 0) as usize, hi)
}
fn fold<Acc, FnAcc>(self, acc: Acc, mut fn_acc: FnAcc) -> Acc
where
FnAcc: FnMut(Acc, Self::Item) -> Acc,
{
let Self {
mut iter,
last,
mut f,
} = self;
if let Some(last) = last.unwrap_or_else(|| iter.next().map(C::new)) {
let (last, acc) = iter.fold((last, acc), |(last, acc), elt| {
match f.coalesce_pair(last, elt) {
Ok(joined) => (joined, acc),
Err((last_, next_)) => (next_, fn_acc(acc, last_)),
}
});
fn_acc(acc, last)
} else {
acc
}
}
}
impl<I, F, C> FusedIterator for CoalesceBy<I, F, C>
where
I: Iterator,
F: CoalescePredicate<I::Item, C::CItem>,
C: CountItem<I::Item>,
{
}
pub struct NoCount;
pub struct WithCount;
pub trait CountItem<T> {
type CItem;
fn new(t: T) -> Self::CItem;
}
impl<T> CountItem<T> for NoCount {
type CItem = T;
#[inline(always)]
fn new(t: T) -> T {
t
}
}
impl<T> CountItem<T> for WithCount {
type CItem = (usize, T);
#[inline(always)]
fn new(t: T) -> (usize, T) {
(1, t)
}
}
/// An iterator adaptor that may join together adjacent elements.
///
/// See [`.coalesce()`](crate::Itertools::coalesce) for more information.
pub type Coalesce<I, F> = CoalesceBy<I, F, NoCount>;
impl<F, Item, T> CoalescePredicate<Item, T> for F
where
F: FnMut(T, Item) -> Result<T, (T, T)>,
{
fn coalesce_pair(&mut self, t: T, item: Item) -> Result<T, (T, T)> {
self(t, item)
}
}
/// Create a new `Coalesce`.
pub fn coalesce<I, F>(iter: I, f: F) -> Coalesce<I, F>
where
I: Iterator,
{
Coalesce {
last: None,
iter,
f,
}
}
/// An iterator adaptor that removes repeated duplicates, determining equality using a comparison function.
///
/// See [`.dedup_by()`](crate::Itertools::dedup_by) or [`.dedup()`](crate::Itertools::dedup) for more information.
pub type DedupBy<I, Pred> = CoalesceBy<I, DedupPred2CoalescePred<Pred>, NoCount>;
#[derive(Clone)]
pub struct DedupPred2CoalescePred<DP>(DP);
impl<DP> fmt::Debug for DedupPred2CoalescePred<DP> {
debug_fmt_fields!(DedupPred2CoalescePred,);
}
pub trait DedupPredicate<T> {
// TODO replace by Fn(&T, &T)->bool once Rust supports it
fn dedup_pair(&mut self, a: &T, b: &T) -> bool;
}
impl<DP, T> CoalescePredicate<T, T> for DedupPred2CoalescePred<DP>
where
DP: DedupPredicate<T>,
{
fn coalesce_pair(&mut self, t: T, item: T) -> Result<T, (T, T)> {
if self.0.dedup_pair(&t, &item) {
Ok(t)
} else {
Err((t, item))
}
}
}
#[derive(Clone, Debug)]
pub struct DedupEq;
impl<T: PartialEq> DedupPredicate<T> for DedupEq {
fn dedup_pair(&mut self, a: &T, b: &T) -> bool {
a == b
}
}
impl<T, F: FnMut(&T, &T) -> bool> DedupPredicate<T> for F {
fn dedup_pair(&mut self, a: &T, b: &T) -> bool {
self(a, b)
}
}
/// Create a new `DedupBy`.
pub fn dedup_by<I, Pred>(iter: I, dedup_pred: Pred) -> DedupBy<I, Pred>
where
I: Iterator,
{
DedupBy {
last: None,
iter,
f: DedupPred2CoalescePred(dedup_pred),
}
}
/// An iterator adaptor that removes repeated duplicates.
///
/// See [`.dedup()`](crate::Itertools::dedup) for more information.
pub type Dedup<I> = DedupBy<I, DedupEq>;
/// Create a new `Dedup`.
pub fn dedup<I>(iter: I) -> Dedup<I>
where
I: Iterator,
{
dedup_by(iter, DedupEq)
}
/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many
/// repeated elements were present. This will determine equality using a comparison function.
///
/// See [`.dedup_by_with_count()`](crate::Itertools::dedup_by_with_count) or
/// [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information.
pub type DedupByWithCount<I, Pred> =
CoalesceBy<I, DedupPredWithCount2CoalescePred<Pred>, WithCount>;
#[derive(Clone, Debug)]
pub struct DedupPredWithCount2CoalescePred<DP>(DP);
impl<DP, T> CoalescePredicate<T, (usize, T)> for DedupPredWithCount2CoalescePred<DP>
where
DP: DedupPredicate<T>,
{
fn coalesce_pair(
&mut self,
(c, t): (usize, T),
item: T,
) -> Result<(usize, T), ((usize, T), (usize, T))> {
if self.0.dedup_pair(&t, &item) {
Ok((c + 1, t))
} else {
Err(((c, t), (1, item)))
}
}
}
/// An iterator adaptor that removes repeated duplicates, while keeping a count of how many
/// repeated elements were present.
///
/// See [`.dedup_with_count()`](crate::Itertools::dedup_with_count) for more information.
pub type DedupWithCount<I> = DedupByWithCount<I, DedupEq>;
/// Create a new `DedupByWithCount`.
pub fn dedup_by_with_count<I, Pred>(iter: I, dedup_pred: Pred) -> DedupByWithCount<I, Pred>
where
I: Iterator,
{
DedupByWithCount {
last: None,
iter,
f: DedupPredWithCount2CoalescePred(dedup_pred),
}
}
/// Create a new `DedupWithCount`.
pub fn dedup_with_count<I>(iter: I) -> DedupWithCount<I>
where
I: Iterator,
{
dedup_by_with_count(iter, DedupEq)
}

130
vendor/itertools/src/adaptors/map.rs vendored Normal file
View File

@@ -0,0 +1,130 @@
use std::iter::FromIterator;
use std::marker::PhantomData;
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MapSpecialCase<I, F> {
pub(crate) iter: I,
pub(crate) f: F,
}
pub trait MapSpecialCaseFn<T> {
type Out;
fn call(&mut self, t: T) -> Self::Out;
}
impl<I, R> Iterator for MapSpecialCase<I, R>
where
I: Iterator,
R: MapSpecialCaseFn<I::Item>,
{
type Item = R::Out;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next().map(|i| self.f.call(i))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
fn fold<Acc, Fold>(self, init: Acc, mut fold_f: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let mut f = self.f;
self.iter.fold(init, move |acc, v| fold_f(acc, f.call(v)))
}
fn collect<C>(self) -> C
where
C: FromIterator<Self::Item>,
{
let mut f = self.f;
self.iter.map(move |v| f.call(v)).collect()
}
}
impl<I, R> DoubleEndedIterator for MapSpecialCase<I, R>
where
I: DoubleEndedIterator,
R: MapSpecialCaseFn<I::Item>,
{
fn next_back(&mut self) -> Option<Self::Item> {
self.iter.next_back().map(|i| self.f.call(i))
}
}
impl<I, R> ExactSizeIterator for MapSpecialCase<I, R>
where
I: ExactSizeIterator,
R: MapSpecialCaseFn<I::Item>,
{
}
/// An iterator adapter to apply a transformation within a nested `Result::Ok`.
///
/// See [`.map_ok()`](crate::Itertools::map_ok) for more information.
pub type MapOk<I, F> = MapSpecialCase<I, MapSpecialCaseFnOk<F>>;
impl<F, T, U, E> MapSpecialCaseFn<Result<T, E>> for MapSpecialCaseFnOk<F>
where
F: FnMut(T) -> U,
{
type Out = Result<U, E>;
fn call(&mut self, t: Result<T, E>) -> Self::Out {
t.map(|v| self.0(v))
}
}
#[derive(Clone)]
pub struct MapSpecialCaseFnOk<F>(F);
impl<F> std::fmt::Debug for MapSpecialCaseFnOk<F> {
debug_fmt_fields!(MapSpecialCaseFnOk,);
}
/// Create a new `MapOk` iterator.
pub fn map_ok<I, F, T, U, E>(iter: I, f: F) -> MapOk<I, F>
where
I: Iterator<Item = Result<T, E>>,
F: FnMut(T) -> U,
{
MapSpecialCase {
iter,
f: MapSpecialCaseFnOk(f),
}
}
/// An iterator adapter to apply `Into` conversion to each element.
///
/// See [`.map_into()`](crate::Itertools::map_into) for more information.
pub type MapInto<I, R> = MapSpecialCase<I, MapSpecialCaseFnInto<R>>;
impl<T: Into<U>, U> MapSpecialCaseFn<T> for MapSpecialCaseFnInto<U> {
type Out = U;
fn call(&mut self, t: T) -> Self::Out {
t.into()
}
}
pub struct MapSpecialCaseFnInto<U>(PhantomData<U>);
impl<U> std::fmt::Debug for MapSpecialCaseFnInto<U> {
debug_fmt_fields!(MapSpecialCaseFnInto, 0);
}
impl<U> Clone for MapSpecialCaseFnInto<U> {
#[inline]
fn clone(&self) -> Self {
Self(PhantomData)
}
}
/// Create a new [`MapInto`] iterator.
pub fn map_into<I, R>(iter: I) -> MapInto<I, R> {
MapSpecialCase {
iter,
f: MapSpecialCaseFnInto(PhantomData),
}
}

1265
vendor/itertools/src/adaptors/mod.rs vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,231 @@
#![cfg(feature = "use_alloc")]
use Option::{self as State, None as ProductEnded, Some as ProductInProgress};
use Option::{self as CurrentItems, None as NotYetPopulated, Some as Populated};
use alloc::vec::Vec;
use crate::size_hint;
#[derive(Clone)]
/// An iterator adaptor that iterates over the cartesian product of
/// multiple iterators of type `I`.
///
/// An iterator element type is `Vec<I::Item>`.
///
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiProduct<I>(State<MultiProductInner<I>>)
where
I: Iterator + Clone,
I::Item: Clone;
#[derive(Clone)]
/// Internals for `MultiProduct`.
struct MultiProductInner<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
/// Holds the iterators.
iters: Vec<MultiProductIter<I>>,
/// Not populated at the beginning then it holds the current item of each iterator.
cur: CurrentItems<Vec<I::Item>>,
}
impl<I> std::fmt::Debug for MultiProduct<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(MultiProduct, 0);
}
impl<I> std::fmt::Debug for MultiProductInner<I>
where
I: Iterator + Clone + std::fmt::Debug,
I::Item: Clone + std::fmt::Debug,
{
debug_fmt_fields!(MultiProductInner, iters, cur);
}
/// Create a new cartesian product iterator over an arbitrary number
/// of iterators of the same type.
///
/// Iterator element is of type `Vec<H::Item::Item>`.
pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter>
where
H: Iterator,
H::Item: IntoIterator,
<H::Item as IntoIterator>::IntoIter: Clone,
<H::Item as IntoIterator>::Item: Clone,
{
let inner = MultiProductInner {
iters: iters
.map(|i| MultiProductIter::new(i.into_iter()))
.collect(),
cur: NotYetPopulated,
};
MultiProduct(ProductInProgress(inner))
}
#[derive(Clone, Debug)]
/// Holds the state of a single iterator within a `MultiProduct`.
struct MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
iter: I,
iter_orig: I,
}
impl<I> MultiProductIter<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
fn new(iter: I) -> Self {
Self {
iter: iter.clone(),
iter_orig: iter,
}
}
}
impl<I> Iterator for MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
// This fuses the iterator.
let inner = self.0.as_mut()?;
match &mut inner.cur {
Populated(values) => {
debug_assert!(!inner.iters.is_empty());
// Find (from the right) a non-finished iterator and
// reset the finished ones encountered.
for (iter, item) in inner.iters.iter_mut().zip(values.iter_mut()).rev() {
if let Some(new) = iter.iter.next() {
*item = new;
return Some(values.clone());
} else {
iter.iter = iter.iter_orig.clone();
// `cur` is populated so the untouched `iter_orig` can not be empty.
*item = iter.iter.next().unwrap();
}
}
self.0 = ProductEnded;
None
}
// Only the first time.
NotYetPopulated => {
let next: Option<Vec<_>> = inner.iters.iter_mut().map(|i| i.iter.next()).collect();
if next.is_none() || inner.iters.is_empty() {
// This cartesian product had at most one item to generate and now ends.
self.0 = ProductEnded;
} else {
inner.cur.clone_from(&next);
}
next
}
}
}
fn count(self) -> usize {
match self.0 {
ProductEnded => 0,
// The iterator is fresh so the count is the product of the length of each iterator:
// - If one of them is empty, stop counting.
// - Less `count()` calls than the general case.
ProductInProgress(MultiProductInner {
iters,
cur: NotYetPopulated,
}) => iters
.into_iter()
.map(|iter| iter.iter_orig.count())
.try_fold(1, |product, count| {
if count == 0 {
None
} else {
Some(product * count)
}
})
.unwrap_or_default(),
// The general case.
ProductInProgress(MultiProductInner {
iters,
cur: Populated(_),
}) => iters.into_iter().fold(0, |mut acc, iter| {
if acc != 0 {
acc *= iter.iter_orig.count();
}
acc + iter.iter.count()
}),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
match &self.0 {
ProductEnded => (0, Some(0)),
ProductInProgress(MultiProductInner {
iters,
cur: NotYetPopulated,
}) => iters
.iter()
.map(|iter| iter.iter_orig.size_hint())
.fold((1, Some(1)), size_hint::mul),
ProductInProgress(MultiProductInner {
iters,
cur: Populated(_),
}) => {
if let [first, tail @ ..] = &iters[..] {
tail.iter().fold(first.iter.size_hint(), |mut sh, iter| {
sh = size_hint::mul(sh, iter.iter_orig.size_hint());
size_hint::add(sh, iter.iter.size_hint())
})
} else {
// Since it is populated, this cartesian product has started so `iters` is not empty.
unreachable!()
}
}
}
}
fn last(self) -> Option<Self::Item> {
let MultiProductInner { iters, cur } = self.0?;
// Collect the last item of each iterator of the product.
if let Populated(values) = cur {
let mut count = iters.len();
let last = iters
.into_iter()
.zip(values)
.map(|(i, value)| {
i.iter.last().unwrap_or_else(|| {
// The iterator is empty, use its current `value`.
count -= 1;
value
})
})
.collect();
if count == 0 {
// `values` was the last item.
None
} else {
Some(last)
}
} else {
iters.into_iter().map(|i| i.iter.last()).collect()
}
}
}
impl<I> std::iter::FusedIterator for MultiProduct<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
}

308
vendor/itertools/src/combinations.rs vendored Normal file
View File

@@ -0,0 +1,308 @@
use core::array;
use core::borrow::BorrowMut;
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;
use crate::adaptors::checked_binomial;
/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations)
pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>;
/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations)
pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>;
/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I>
where
I::Item: Clone,
{
Combinations::new(iter, (0..k).collect())
}
/// Create a new `ArrayCombinations` from a clonable iterator.
pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K>
where
I::Item: Clone,
{
ArrayCombinations::new(iter, array::from_fn(|i| i))
}
/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct CombinationsGeneric<I: Iterator, Idx> {
indices: Idx,
pool: LazyBuffer<I>,
first: bool,
}
/// A type holding indices of elements in a pool or buffer of items from an inner iterator
/// and used to pick out different combinations in a generic way.
pub trait PoolIndex<T>: BorrowMut<[usize]> {
type Item;
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item
where
T: Clone;
fn len(&self) -> usize {
self.borrow().len()
}
}
impl<T> PoolIndex<T> for Vec<usize> {
type Item = Vec<T>;
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T>
where
T: Clone,
{
pool.get_at(self)
}
}
impl<T, const K: usize> PoolIndex<T> for [usize; K] {
type Item = [T; K];
fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K]
where
T: Clone,
{
pool.get_array(*self)
}
}
impl<I, Idx> Clone for CombinationsGeneric<I, Idx>
where
I: Iterator + Clone,
I::Item: Clone,
Idx: Clone,
{
clone_fields!(indices, pool, first);
}
impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
Idx: fmt::Debug,
{
debug_fmt_fields!(Combinations, indices, pool, first);
}
impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> {
/// Constructor with arguments the inner iterator and the initial state for the indices.
fn new(iter: I, indices: Idx) -> Self {
Self {
indices,
pool: LazyBuffer::new(iter),
first: true,
}
}
/// Returns the length of a combination produced by this iterator.
#[inline]
pub fn k(&self) -> usize {
self.indices.len()
}
/// Returns the (current) length of the pool from which combination elements are
/// selected. This value can change between invocations of [`next`](Combinations::next).
#[inline]
pub fn n(&self) -> usize {
self.pool.len()
}
/// Returns a reference to the source pool.
#[inline]
pub(crate) fn src(&self) -> &LazyBuffer<I> {
&self.pool
}
/// Return the length of the inner iterator and the count of remaining combinations.
pub(crate) fn n_and_count(self) -> (usize, usize) {
let Self {
indices,
pool,
first,
} = self;
let n = pool.count();
(n, remaining_for(n, first, indices.borrow()).unwrap())
}
/// Initialises the iterator by filling a buffer with elements from the
/// iterator. Returns true if there are no combinations, false otherwise.
fn init(&mut self) -> bool {
self.pool.prefill(self.k());
let done = self.k() > self.n();
if !done {
self.first = false;
}
done
}
/// Increments indices representing the combination to advance to the next
/// (in lexicographic order by increasing sequence) combination. For example
/// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
///
/// Returns true if we've run out of combinations, false otherwise.
fn increment_indices(&mut self) -> bool {
// Borrow once instead of noise each time it's indexed
let indices = self.indices.borrow_mut();
if indices.is_empty() {
return true; // Done
}
// Scan from the end, looking for an index to increment
let mut i: usize = indices.len() - 1;
// Check if we need to consume more from the iterator
if indices[i] == self.pool.len() - 1 {
self.pool.get_next(); // may change pool size
}
while indices[i] == i + self.pool.len() - indices.len() {
if i > 0 {
i -= 1;
} else {
// Reached the last combination
return true;
}
}
// Increment index, and reset the ones to its right
indices[i] += 1;
for j in i + 1..indices.len() {
indices[j] = indices[j - 1] + 1;
}
// If we've made it this far, we haven't run out of combos
false
}
/// Returns the n-th item or the number of successful steps.
pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
where
I: Iterator,
I::Item: Clone,
{
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return Err(0);
}
for i in 0..n {
if self.increment_indices() {
return Err(i + 1);
}
}
Ok(self.indices.extract_item(&self.pool))
}
}
impl<I, Idx> Iterator for CombinationsGeneric<I, Idx>
where
I: Iterator,
I::Item: Clone,
Idx: PoolIndex<I::Item>,
{
type Item = Idx::Item;
fn next(&mut self) -> Option<Self::Item> {
let done = if self.first {
self.init()
} else {
self.increment_indices()
};
if done {
return None;
}
Some(self.indices.extract_item(&self.pool))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
self.try_nth(n).ok()
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (mut low, mut upp) = self.pool.size_hint();
low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX);
upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow()));
(low, upp)
}
#[inline]
fn count(self) -> usize {
self.n_and_count().1
}
}
impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx>
where
I: Iterator,
I::Item: Clone,
Idx: PoolIndex<I::Item>,
{
}
impl<I: Iterator> Combinations<I> {
/// Resets this `Combinations` back to an initial state for combinations of length
/// `k` over the same pool data source. If `k` is larger than the current length
/// of the data pool an attempt is made to prefill the pool so that it holds `k`
/// elements.
pub(crate) fn reset(&mut self, k: usize) {
self.first = true;
if k < self.indices.len() {
self.indices.truncate(k);
for i in 0..k {
self.indices[i] = i;
}
} else {
for i in 0..self.indices.len() {
self.indices[i] = i;
}
self.indices.extend(self.indices.len()..k);
self.pool.prefill(k);
}
}
}
/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
let k = indices.len();
if n < k {
Some(0)
} else if first {
checked_binomial(n, k)
} else {
// https://en.wikipedia.org/wiki/Combinatorial_number_system
// http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf
// The combinations generated after the current one can be counted by counting as follows:
// - The subsequent combinations that differ in indices[0]:
// If subsequent combinations differ in indices[0], then their value for indices[0]
// must be at least 1 greater than the current indices[0].
// As indices is strictly monotonically sorted, this means we can effectively choose k values
// from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
// - The subsequent combinations with same indices[0], but differing indices[1]:
// Here we can choose k - 1 values from (n - 1 - indices[1]) values,
// leading to binomial(n - 1 - indices[1], k - 1) possibilities.
// - (...)
// - The subsequent combinations with same indices[0..=i], but differing indices[i]:
// Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
// Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
// Below, `n0` resembles indices[i].
indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
})
}
}

View File

@@ -0,0 +1,188 @@
use alloc::boxed::Box;
use alloc::vec::Vec;
use std::fmt;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use crate::adaptors::checked_binomial;
/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
///
/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
/// for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
indices: Box<[usize]>,
pool: LazyBuffer<I>,
first: bool,
}
impl<I> fmt::Debug for CombinationsWithReplacement<I>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug + Clone,
{
debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
}
/// Create a new `CombinationsWithReplacement` from a clonable iterator.
pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
let indices = alloc::vec![0; k].into_boxed_slice();
let pool: LazyBuffer<I> = LazyBuffer::new(iter);
CombinationsWithReplacement {
indices,
pool,
first: true,
}
}
impl<I> CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
/// Increments indices representing the combination to advance to the next
/// (in lexicographic order by increasing sequence) combination.
///
/// Returns true if we've run out of combinations, false otherwise.
fn increment_indices(&mut self) -> bool {
// Check if we need to consume more from the iterator
// This will run while we increment our first index digit
self.pool.get_next();
// Work out where we need to update our indices
let mut increment = None;
for (i, indices_int) in self.indices.iter().enumerate().rev() {
if *indices_int < self.pool.len() - 1 {
increment = Some((i, indices_int + 1));
break;
}
}
match increment {
// If we can update the indices further
Some((increment_from, increment_value)) => {
// We need to update the rightmost non-max value
// and all those to the right
self.indices[increment_from..].fill(increment_value);
false
}
// Otherwise, we're done
None => true,
}
}
}
impl<I> Iterator for CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if self.first {
// In empty edge cases, stop iterating immediately
if !(self.indices.is_empty() || self.pool.get_next()) {
return None;
}
self.first = false;
} else if self.increment_indices() {
return None;
}
Some(self.pool.get_at(&self.indices))
}
fn nth(&mut self, n: usize) -> Option<Self::Item> {
if self.first {
// In empty edge cases, stop iterating immediately
if !(self.indices.is_empty() || self.pool.get_next()) {
return None;
}
self.first = false;
} else if self.increment_indices() {
return None;
}
for _ in 0..n {
if self.increment_indices() {
return None;
}
}
Some(self.pool.get_at(&self.indices))
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (mut low, mut upp) = self.pool.size_hint();
low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
(low, upp)
}
fn count(self) -> usize {
let Self {
indices,
pool,
first,
} = self;
let n = pool.count();
remaining_for(n, first, &indices).unwrap()
}
}
impl<I> FusedIterator for CombinationsWithReplacement<I>
where
I: Iterator,
I::Item: Clone,
{
}
/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
// With a "stars and bars" representation, choose k values with replacement from n values is
// like choosing k out of k + n 1 positions (hence binomial(k + n - 1, k) possibilities)
// to place k stars and therefore n - 1 bars.
// Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
let count = |n: usize, k: usize| {
let positions = if n == 0 {
k.saturating_sub(1)
} else {
(n - 1).checked_add(k)?
};
checked_binomial(positions, k)
};
let k = indices.len();
if first {
count(n, k)
} else {
// The algorithm is similar to the one for combinations *without replacement*,
// except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
// The combinations generated after the current one can be counted by counting as follows:
// - The subsequent combinations that differ in indices[0]:
// If subsequent combinations differ in indices[0], then their value for indices[0]
// must be at least 1 greater than the current indices[0].
// As indices is monotonically sorted, this means we can effectively choose k values with
// replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
// - The subsequent combinations with same indices[0], but differing indices[1]:
// Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
// leading to count(n - 1 - indices[1], k - 1) possibilities.
// - (...)
// - The subsequent combinations with same indices[0..=i], but differing indices[i]:
// Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
// Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
// Below, `n0` resembles indices[i].
indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
sum.checked_add(count(n - 1 - *n0, k - i)?)
})
}
}

27
vendor/itertools/src/concat_impl.rs vendored Normal file
View File

@@ -0,0 +1,27 @@
/// Combine all an iterator's elements into one element by using [`Extend`].
///
/// [`IntoIterator`]-enabled version of [`Itertools::concat`](crate::Itertools::concat).
///
/// This combinator will extend the first item with each of the rest of the
/// items of the iterator. If the iterator is empty, the default value of
/// `I::Item` is returned.
///
/// ```rust
/// use itertools::concat;
///
/// let input = vec![vec![1], vec![2, 3], vec![4, 5, 6]];
/// assert_eq!(concat(input), vec![1, 2, 3, 4, 5, 6]);
/// ```
pub fn concat<I>(iterable: I) -> I::Item
where
I: IntoIterator,
I::Item: Extend<<<I as IntoIterator>::Item as IntoIterator>::Item> + IntoIterator + Default,
{
iterable
.into_iter()
.reduce(|mut a, b| {
a.extend(b);
a
})
.unwrap_or_default()
}

View File

@@ -0,0 +1,39 @@
use crate::adaptors::map::{MapSpecialCase, MapSpecialCaseFn};
macro_rules! impl_cons_iter(
($_A:ident, $_B:ident, ) => (); // stop
($A:ident, $($B:ident,)*) => (
impl_cons_iter!($($B,)*);
#[allow(non_snake_case)]
impl<$($B),*, X> MapSpecialCaseFn<(($($B,)*), X)> for ConsTuplesFn {
type Out = ($($B,)* X, );
fn call(&mut self, (($($B,)*), X): (($($B,)*), X)) -> Self::Out {
($($B,)* X, )
}
}
);
);
impl_cons_iter!(A, B, C, D, E, F, G, H, I, J, K, L,);
#[derive(Debug, Clone)]
pub struct ConsTuplesFn;
/// An iterator that maps an iterator of tuples like
/// `((A, B), C)` to an iterator of `(A, B, C)`.
///
/// Used by the `iproduct!()` macro.
pub type ConsTuples<I> = MapSpecialCase<I, ConsTuplesFn>;
/// Create an iterator that maps for example iterators of
/// `((A, B), C)` to `(A, B, C)`.
pub fn cons_tuples<I>(iterable: I) -> ConsTuples<I::IntoIter>
where
I: IntoIterator,
{
ConsTuples {
iter: iterable.into_iter(),
f: ConsTuplesFn,
}
}

104
vendor/itertools/src/diff.rs vendored Normal file
View File

@@ -0,0 +1,104 @@
//! "Diff"ing iterators for caching elements to sequential collections without requiring the new
//! elements' iterator to be `Clone`.
//!
//! [`Diff`] (produced by the [`diff_with`] function)
//! describes the difference between two non-`Clone` iterators `I` and `J` after breaking ASAP from
//! a lock-step comparison.
use std::fmt;
use crate::free::put_back;
use crate::structs::PutBack;
/// A type returned by the [`diff_with`] function.
///
/// `Diff` represents the way in which the elements yielded by the iterator `I` differ to some
/// iterator `J`.
pub enum Diff<I, J>
where
I: Iterator,
J: Iterator,
{
/// The index of the first non-matching element along with both iterator's remaining elements
/// starting with the first mis-match.
FirstMismatch(usize, PutBack<I>, PutBack<J>),
/// The total number of elements that were in `J` along with the remaining elements of `I`.
Shorter(usize, PutBack<I>),
/// The total number of elements that were in `I` along with the remaining elements of `J`.
Longer(usize, PutBack<J>),
}
impl<I, J> fmt::Debug for Diff<I, J>
where
I: Iterator,
J: Iterator,
PutBack<I>: fmt::Debug,
PutBack<J>: fmt::Debug,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::FirstMismatch(idx, i, j) => f
.debug_tuple("FirstMismatch")
.field(idx)
.field(i)
.field(j)
.finish(),
Self::Shorter(idx, i) => f.debug_tuple("Shorter").field(idx).field(i).finish(),
Self::Longer(idx, j) => f.debug_tuple("Longer").field(idx).field(j).finish(),
}
}
}
impl<I, J> Clone for Diff<I, J>
where
I: Iterator,
J: Iterator,
PutBack<I>: Clone,
PutBack<J>: Clone,
{
fn clone(&self) -> Self {
match self {
Self::FirstMismatch(idx, i, j) => Self::FirstMismatch(*idx, i.clone(), j.clone()),
Self::Shorter(idx, i) => Self::Shorter(*idx, i.clone()),
Self::Longer(idx, j) => Self::Longer(*idx, j.clone()),
}
}
}
/// Compares every element yielded by both `i` and `j` with the given function in lock-step and
/// returns a [`Diff`] which describes how `j` differs from `i`.
///
/// If the number of elements yielded by `j` is less than the number of elements yielded by `i`,
/// the number of `j` elements yielded will be returned along with `i`'s remaining elements as
/// `Diff::Shorter`.
///
/// If the two elements of a step differ, the index of those elements along with the remaining
/// elements of both `i` and `j` are returned as `Diff::FirstMismatch`.
///
/// If `i` becomes exhausted before `j` becomes exhausted, the number of elements in `i` along with
/// the remaining `j` elements will be returned as `Diff::Longer`.
pub fn diff_with<I, J, F>(i: I, j: J, mut is_equal: F) -> Option<Diff<I::IntoIter, J::IntoIter>>
where
I: IntoIterator,
J: IntoIterator,
F: FnMut(&I::Item, &J::Item) -> bool,
{
let mut i = i.into_iter();
let mut j = j.into_iter();
let mut idx = 0;
while let Some(i_elem) = i.next() {
match j.next() {
None => return Some(Diff::Shorter(idx, put_back(i).with_value(i_elem))),
Some(j_elem) => {
if !is_equal(&i_elem, &j_elem) {
let remaining_i = put_back(i).with_value(i_elem);
let remaining_j = put_back(j).with_value(j_elem);
return Some(Diff::FirstMismatch(idx, remaining_i, remaining_j));
}
}
}
idx += 1;
}
j.next()
.map(|j_elem| Diff::Longer(idx, put_back(j).with_value(j_elem)))
}

216
vendor/itertools/src/duplicates_impl.rs vendored Normal file
View File

@@ -0,0 +1,216 @@
use std::hash::Hash;
mod private {
use std::collections::HashMap;
use std::fmt;
use std::hash::Hash;
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct DuplicatesBy<I: Iterator, Key, F> {
pub(crate) iter: I,
pub(crate) meta: Meta<Key, F>,
}
impl<I, V, F> fmt::Debug for DuplicatesBy<I, V, F>
where
I: Iterator + fmt::Debug,
V: fmt::Debug + Hash + Eq,
{
debug_fmt_fields!(DuplicatesBy, iter, meta.used);
}
impl<I: Iterator, Key: Eq + Hash, F> DuplicatesBy<I, Key, F> {
pub(crate) fn new(iter: I, key_method: F) -> Self {
Self {
iter,
meta: Meta {
used: HashMap::new(),
pending: 0,
key_method,
},
}
}
}
#[derive(Clone)]
pub struct Meta<Key, F> {
used: HashMap<Key, bool>,
pending: usize,
key_method: F,
}
impl<Key, F> Meta<Key, F>
where
Key: Eq + Hash,
{
/// Takes an item and returns it back to the caller if it's the second time we see it.
/// Otherwise the item is consumed and None is returned
#[inline(always)]
fn filter<I>(&mut self, item: I) -> Option<I>
where
F: KeyMethod<Key, I>,
{
let kv = self.key_method.make(item);
match self.used.get_mut(kv.key_ref()) {
None => {
self.used.insert(kv.key(), false);
self.pending += 1;
None
}
Some(true) => None,
Some(produced) => {
*produced = true;
self.pending -= 1;
Some(kv.value())
}
}
}
}
impl<I, Key, F> Iterator for DuplicatesBy<I, Key, F>
where
I: Iterator,
Key: Eq + Hash,
F: KeyMethod<Key, I::Item>,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let Self { iter, meta } = self;
iter.find_map(|v| meta.filter(v))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (_, hi) = self.iter.size_hint();
let hi = hi.map(|hi| {
if hi <= self.meta.pending {
// fewer or equally many iter-remaining elements than pending elements
// => at most, each iter-remaining element is matched
hi
} else {
// fewer pending elements than iter-remaining elements
// => at most:
// * each pending element is matched
// * the other iter-remaining elements come in pairs
self.meta.pending + (hi - self.meta.pending) / 2
}
});
// The lower bound is always 0 since we might only get unique items from now on
(0, hi)
}
}
impl<I, Key, F> DoubleEndedIterator for DuplicatesBy<I, Key, F>
where
I: DoubleEndedIterator,
Key: Eq + Hash,
F: KeyMethod<Key, I::Item>,
{
fn next_back(&mut self) -> Option<Self::Item> {
let Self { iter, meta } = self;
iter.rev().find_map(|v| meta.filter(v))
}
}
/// A keying method for use with `DuplicatesBy`
pub trait KeyMethod<K, V> {
type Container: KeyXorValue<K, V>;
fn make(&mut self, value: V) -> Self::Container;
}
/// Apply the identity function to elements before checking them for equality.
#[derive(Debug, Clone)]
pub struct ById;
impl<V> KeyMethod<V, V> for ById {
type Container = JustValue<V>;
fn make(&mut self, v: V) -> Self::Container {
JustValue(v)
}
}
/// Apply a user-supplied function to elements before checking them for equality.
#[derive(Clone)]
pub struct ByFn<F>(pub(crate) F);
impl<F> fmt::Debug for ByFn<F> {
debug_fmt_fields!(ByFn,);
}
impl<K, V, F> KeyMethod<K, V> for ByFn<F>
where
F: FnMut(&V) -> K,
{
type Container = KeyValue<K, V>;
fn make(&mut self, v: V) -> Self::Container {
KeyValue((self.0)(&v), v)
}
}
// Implementors of this trait can hold onto a key and a value but only give access to one of them
// at a time. This allows the key and the value to be the same value internally
pub trait KeyXorValue<K, V> {
fn key_ref(&self) -> &K;
fn key(self) -> K;
fn value(self) -> V;
}
#[derive(Debug)]
pub struct KeyValue<K, V>(K, V);
impl<K, V> KeyXorValue<K, V> for KeyValue<K, V> {
fn key_ref(&self) -> &K {
&self.0
}
fn key(self) -> K {
self.0
}
fn value(self) -> V {
self.1
}
}
#[derive(Debug)]
pub struct JustValue<V>(V);
impl<V> KeyXorValue<V, V> for JustValue<V> {
fn key_ref(&self) -> &V {
&self.0
}
fn key(self) -> V {
self.0
}
fn value(self) -> V {
self.0
}
}
}
/// An iterator adapter to filter for duplicate elements.
///
/// See [`.duplicates_by()`](crate::Itertools::duplicates_by) for more information.
pub type DuplicatesBy<I, V, F> = private::DuplicatesBy<I, V, private::ByFn<F>>;
/// Create a new `DuplicatesBy` iterator.
pub fn duplicates_by<I, Key, F>(iter: I, f: F) -> DuplicatesBy<I, Key, F>
where
Key: Eq + Hash,
F: FnMut(&I::Item) -> Key,
I: Iterator,
{
DuplicatesBy::new(iter, private::ByFn(f))
}
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.duplicates()`](crate::Itertools::duplicates) for more information.
pub type Duplicates<I> = private::DuplicatesBy<I, <I as Iterator>::Item, private::ById>;
/// Create a new `Duplicates` iterator.
pub fn duplicates<I>(iter: I) -> Duplicates<I>
where
I: Iterator,
I::Item: Eq + Hash,
{
Duplicates::new(iter, private::ById)
}

514
vendor/itertools/src/either_or_both.rs vendored Normal file
View File

@@ -0,0 +1,514 @@
use core::ops::{Deref, DerefMut};
use crate::EitherOrBoth::*;
use either::Either;
/// Value that either holds a single A or B, or both.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum EitherOrBoth<A, B = A> {
/// Both values are present.
Both(A, B),
/// Only the left value of type `A` is present.
Left(A),
/// Only the right value of type `B` is present.
Right(B),
}
impl<A, B> EitherOrBoth<A, B> {
/// If `Left`, or `Both`, return true. Otherwise, return false.
pub fn has_left(&self) -> bool {
self.as_ref().left().is_some()
}
/// If `Right`, or `Both`, return true, otherwise, return false.
pub fn has_right(&self) -> bool {
self.as_ref().right().is_some()
}
/// If `Left`, return true. Otherwise, return false.
/// Exclusive version of [`has_left`](EitherOrBoth::has_left).
pub fn is_left(&self) -> bool {
matches!(self, Left(_))
}
/// If `Right`, return true. Otherwise, return false.
/// Exclusive version of [`has_right`](EitherOrBoth::has_right).
pub fn is_right(&self) -> bool {
matches!(self, Right(_))
}
/// If `Both`, return true. Otherwise, return false.
pub fn is_both(&self) -> bool {
self.as_ref().both().is_some()
}
/// If `Left`, or `Both`, return `Some` with the left value. Otherwise, return `None`.
pub fn left(self) -> Option<A> {
match self {
Left(left) | Both(left, _) => Some(left),
_ => None,
}
}
/// If `Right`, or `Both`, return `Some` with the right value. Otherwise, return `None`.
pub fn right(self) -> Option<B> {
match self {
Right(right) | Both(_, right) => Some(right),
_ => None,
}
}
/// Return tuple of options corresponding to the left and right value respectively
///
/// If `Left` return `(Some(..), None)`, if `Right` return `(None,Some(..))`, else return
/// `(Some(..),Some(..))`
pub fn left_and_right(self) -> (Option<A>, Option<B>) {
self.map_any(Some, Some).or_default()
}
/// If `Left`, return `Some` with the left value. If `Right` or `Both`, return `None`.
///
/// # Examples
///
/// ```
/// // On the `Left` variant.
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
/// let x: EitherOrBoth<_, ()> = Left("bonjour");
/// assert_eq!(x.just_left(), Some("bonjour"));
///
/// // On the `Right` variant.
/// let x: EitherOrBoth<(), _> = Right("hola");
/// assert_eq!(x.just_left(), None);
///
/// // On the `Both` variant.
/// let x = Both("bonjour", "hola");
/// assert_eq!(x.just_left(), None);
/// ```
pub fn just_left(self) -> Option<A> {
match self {
Left(left) => Some(left),
_ => None,
}
}
/// If `Right`, return `Some` with the right value. If `Left` or `Both`, return `None`.
///
/// # Examples
///
/// ```
/// // On the `Left` variant.
/// # use itertools::{EitherOrBoth::{Left, Right, Both}, EitherOrBoth};
/// let x: EitherOrBoth<_, ()> = Left("auf wiedersehen");
/// assert_eq!(x.just_left(), Some("auf wiedersehen"));
///
/// // On the `Right` variant.
/// let x: EitherOrBoth<(), _> = Right("adios");
/// assert_eq!(x.just_left(), None);
///
/// // On the `Both` variant.
/// let x = Both("auf wiedersehen", "adios");
/// assert_eq!(x.just_left(), None);
/// ```
pub fn just_right(self) -> Option<B> {
match self {
Right(right) => Some(right),
_ => None,
}
}
/// If `Both`, return `Some` containing the left and right values. Otherwise, return `None`.
pub fn both(self) -> Option<(A, B)> {
match self {
Both(a, b) => Some((a, b)),
_ => None,
}
}
/// If `Left` or `Both`, return the left value. Otherwise, convert the right value and return it.
pub fn into_left(self) -> A
where
B: Into<A>,
{
match self {
Left(a) | Both(a, _) => a,
Right(b) => b.into(),
}
}
/// If `Right` or `Both`, return the right value. Otherwise, convert the left value and return it.
pub fn into_right(self) -> B
where
A: Into<B>,
{
match self {
Right(b) | Both(_, b) => b,
Left(a) => a.into(),
}
}
/// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&A, &B>`.
pub fn as_ref(&self) -> EitherOrBoth<&A, &B> {
match *self {
Left(ref left) => Left(left),
Right(ref right) => Right(right),
Both(ref left, ref right) => Both(left, right),
}
}
/// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut A, &mut B>`.
pub fn as_mut(&mut self) -> EitherOrBoth<&mut A, &mut B> {
match *self {
Left(ref mut left) => Left(left),
Right(ref mut right) => Right(right),
Both(ref mut left, ref mut right) => Both(left, right),
}
}
/// Converts from `&EitherOrBoth<A, B>` to `EitherOrBoth<&_, &_>` using the [`Deref`] trait.
pub fn as_deref(&self) -> EitherOrBoth<&A::Target, &B::Target>
where
A: Deref,
B: Deref,
{
match *self {
Left(ref left) => Left(left),
Right(ref right) => Right(right),
Both(ref left, ref right) => Both(left, right),
}
}
/// Converts from `&mut EitherOrBoth<A, B>` to `EitherOrBoth<&mut _, &mut _>` using the [`DerefMut`] trait.
pub fn as_deref_mut(&mut self) -> EitherOrBoth<&mut A::Target, &mut B::Target>
where
A: DerefMut,
B: DerefMut,
{
match *self {
Left(ref mut left) => Left(left),
Right(ref mut right) => Right(right),
Both(ref mut left, ref mut right) => Both(left, right),
}
}
/// Convert `EitherOrBoth<A, B>` to `EitherOrBoth<B, A>`.
pub fn flip(self) -> EitherOrBoth<B, A> {
match self {
Left(a) => Right(a),
Right(b) => Left(b),
Both(a, b) => Both(b, a),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, b)` variants. If it is
/// present rewrapping the result in `self`'s original variant.
pub fn map_left<F, M>(self, f: F) -> EitherOrBoth<M, B>
where
F: FnOnce(A) -> M,
{
match self {
Both(a, b) => Both(f(a), b),
Left(a) => Left(f(a)),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b` in `Right(b)` or `Both(a, b)` variants.
/// If it is present rewrapping the result in `self`'s original variant.
pub fn map_right<F, M>(self, f: F) -> EitherOrBoth<A, M>
where
F: FnOnce(B) -> M,
{
match self {
Left(a) => Left(a),
Right(b) => Right(f(b)),
Both(a, b) => Both(a, f(b)),
}
}
/// Apply the functions `f` and `g` on the value `a` and `b` respectively;
/// found in `Left(a)`, `Right(b)`, or `Both(a, b)` variants.
/// The Result is rewrapped `self`'s original variant.
pub fn map_any<F, L, G, R>(self, f: F, g: G) -> EitherOrBoth<L, R>
where
F: FnOnce(A) -> L,
G: FnOnce(B) -> R,
{
match self {
Left(a) => Left(f(a)),
Right(b) => Right(g(b)),
Both(a, b) => Both(f(a), g(b)),
}
}
/// Apply the function `f` on the value `a` in `Left(a)` or `Both(a, _)` variants if it is
/// present.
pub fn left_and_then<F, L>(self, f: F) -> EitherOrBoth<L, B>
where
F: FnOnce(A) -> EitherOrBoth<L, B>,
{
match self {
Left(a) | Both(a, _) => f(a),
Right(b) => Right(b),
}
}
/// Apply the function `f` on the value `b`
/// in `Right(b)` or `Both(_, b)` variants if it is present.
pub fn right_and_then<F, R>(self, f: F) -> EitherOrBoth<A, R>
where
F: FnOnce(B) -> EitherOrBoth<A, R>,
{
match self {
Left(a) => Left(a),
Right(b) | Both(_, b) => f(b),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and the supplied
/// value for the other. The first (`l`) argument is used for a missing `Left`
/// value. The second (`r`) argument is used for a missing `Right` value.
///
/// Arguments passed to `or` are eagerly evaluated; if you are passing
/// the result of a function call, it is recommended to use [`or_else`],
/// which is lazily evaluated.
///
/// [`or_else`]: EitherOrBoth::or_else
///
/// # Examples
///
/// ```
/// # use itertools::EitherOrBoth;
/// assert_eq!(EitherOrBoth::Both("tree", 1).or("stone", 5), ("tree", 1));
/// assert_eq!(EitherOrBoth::Left("tree").or("stone", 5), ("tree", 5));
/// assert_eq!(EitherOrBoth::Right(1).or("stone", 5), ("stone", 1));
/// ```
pub fn or(self, l: A, r: B) -> (A, B) {
match self {
Left(inner_l) => (inner_l, r),
Right(inner_r) => (l, inner_r),
Both(inner_l, inner_r) => (inner_l, inner_r),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and the [`default`](Default::default)
/// for the other.
pub fn or_default(self) -> (A, B)
where
A: Default,
B: Default,
{
match self {
Left(l) => (l, B::default()),
Right(r) => (A::default(), r),
Both(l, r) => (l, r),
}
}
/// Returns a tuple consisting of the `l` and `r` in `Both(l, r)`, if present.
/// Otherwise, returns the wrapped value for the present element, and computes the
/// missing value with the supplied closure. The first argument (`l`) is used for a
/// missing `Left` value. The second argument (`r`) is used for a missing `Right` value.
///
/// # Examples
///
/// ```
/// # use itertools::EitherOrBoth;
/// let k = 10;
/// assert_eq!(EitherOrBoth::Both("tree", 1).or_else(|| "stone", || 2 * k), ("tree", 1));
/// assert_eq!(EitherOrBoth::Left("tree").or_else(|| "stone", || 2 * k), ("tree", 20));
/// assert_eq!(EitherOrBoth::Right(1).or_else(|| "stone", || 2 * k), ("stone", 1));
/// ```
pub fn or_else<L: FnOnce() -> A, R: FnOnce() -> B>(self, l: L, r: R) -> (A, B) {
match self {
Left(inner_l) => (inner_l, r()),
Right(inner_r) => (l(), inner_r),
Both(inner_l, inner_r) => (inner_l, inner_r),
}
}
/// Returns a mutable reference to the left value. If the left value is not present,
/// it is replaced with `val`.
pub fn left_or_insert(&mut self, val: A) -> &mut A {
self.left_or_insert_with(|| val)
}
/// Returns a mutable reference to the right value. If the right value is not present,
/// it is replaced with `val`.
pub fn right_or_insert(&mut self, val: B) -> &mut B {
self.right_or_insert_with(|| val)
}
/// If the left value is not present, replace it the value computed by the closure `f`.
/// Returns a mutable reference to the now-present left value.
pub fn left_or_insert_with<F>(&mut self, f: F) -> &mut A
where
F: FnOnce() -> A,
{
match self {
Left(left) | Both(left, _) => left,
Right(_) => self.insert_left(f()),
}
}
/// If the right value is not present, replace it the value computed by the closure `f`.
/// Returns a mutable reference to the now-present right value.
pub fn right_or_insert_with<F>(&mut self, f: F) -> &mut B
where
F: FnOnce() -> B,
{
match self {
Right(right) | Both(_, right) => right,
Left(_) => self.insert_right(f()),
}
}
/// Sets the `left` value of this instance, and returns a mutable reference to it.
/// Does not affect the `right` value.
///
/// # Examples
/// ```
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Right, Both}};
///
/// // Overwriting a pre-existing value.
/// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
/// assert_eq!(*either.insert_left(69), 69);
///
/// // Inserting a second value.
/// let mut either = Right("no");
/// assert_eq!(*either.insert_left("yes"), "yes");
/// assert_eq!(either, Both("yes", "no"));
/// ```
pub fn insert_left(&mut self, val: A) -> &mut A {
match self {
Left(left) | Both(left, _) => {
*left = val;
left
}
Right(right) => {
// This is like a map in place operation. We move out of the reference,
// change the value, and then move back into the reference.
unsafe {
// SAFETY: We know this pointer is valid for reading since we got it from a reference.
let right = std::ptr::read(right as *mut _);
// SAFETY: Again, we know the pointer is valid since we got it from a reference.
std::ptr::write(self as *mut _, Both(val, right));
}
if let Both(left, _) = self {
left
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
}
/// Sets the `right` value of this instance, and returns a mutable reference to it.
/// Does not affect the `left` value.
///
/// # Examples
/// ```
/// # use itertools::{EitherOrBoth, EitherOrBoth::{Left, Both}};
/// // Overwriting a pre-existing value.
/// let mut either: EitherOrBoth<_, ()> = Left(0_u32);
/// assert_eq!(*either.insert_left(69), 69);
///
/// // Inserting a second value.
/// let mut either = Left("what's");
/// assert_eq!(*either.insert_right(9 + 10), 21 - 2);
/// assert_eq!(either, Both("what's", 9+10));
/// ```
pub fn insert_right(&mut self, val: B) -> &mut B {
match self {
Right(right) | Both(_, right) => {
*right = val;
right
}
Left(left) => {
// This is like a map in place operation. We move out of the reference,
// change the value, and then move back into the reference.
unsafe {
// SAFETY: We know this pointer is valid for reading since we got it from a reference.
let left = std::ptr::read(left as *mut _);
// SAFETY: Again, we know the pointer is valid since we got it from a reference.
std::ptr::write(self as *mut _, Both(left, val));
}
if let Both(_, right) = self {
right
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
}
/// Set `self` to `Both(..)`, containing the specified left and right values,
/// and returns a mutable reference to those values.
pub fn insert_both(&mut self, left: A, right: B) -> (&mut A, &mut B) {
*self = Both(left, right);
if let Both(left, right) = self {
(left, right)
} else {
// SAFETY: The above pattern will always match, since we just
// set `self` equal to `Both`.
unsafe { std::hint::unreachable_unchecked() }
}
}
}
impl<T> EitherOrBoth<T, T> {
/// Return either value of left, right, or apply a function `f` to both values if both are present.
/// The input function has to return the same type as both Right and Left carry.
///
/// This function can be used to preferrably extract the left resp. right value,
/// but fall back to the other (i.e. right resp. left) if the preferred one is not present.
///
/// # Examples
/// ```
/// # use itertools::EitherOrBoth;
/// assert_eq!(EitherOrBoth::Both(3, 7).reduce(u32::max), 7);
/// assert_eq!(EitherOrBoth::Left(3).reduce(u32::max), 3);
/// assert_eq!(EitherOrBoth::Right(7).reduce(u32::max), 7);
///
/// // Extract the left value if present, fall back to the right otherwise.
/// assert_eq!(EitherOrBoth::Left("left").reduce(|l, _r| l), "left");
/// assert_eq!(EitherOrBoth::Right("right").reduce(|l, _r| l), "right");
/// assert_eq!(EitherOrBoth::Both("left", "right").reduce(|l, _r| l), "left");
/// ```
pub fn reduce<F>(self, f: F) -> T
where
F: FnOnce(T, T) -> T,
{
match self {
Left(a) => a,
Right(b) => b,
Both(a, b) => f(a, b),
}
}
}
impl<A, B> From<EitherOrBoth<A, B>> for Option<Either<A, B>> {
fn from(value: EitherOrBoth<A, B>) -> Self {
match value {
Left(l) => Some(Either::Left(l)),
Right(r) => Some(Either::Right(r)),
Both(..) => None,
}
}
}
impl<A, B> From<Either<A, B>> for EitherOrBoth<A, B> {
fn from(either: Either<A, B>) -> Self {
match either {
Either::Left(l) => Left(l),
Either::Right(l) => Right(l),
}
}
}

125
vendor/itertools/src/exactly_one_err.rs vendored Normal file
View File

@@ -0,0 +1,125 @@
#[cfg(feature = "use_std")]
use std::error::Error;
use std::fmt::{Debug, Display, Formatter, Result as FmtResult};
use std::iter::ExactSizeIterator;
use either::Either;
use crate::size_hint;
/// Iterator returned for the error case of `Itertools::exactly_one()`
/// This iterator yields exactly the same elements as the input iterator.
///
/// During the execution of `exactly_one` the iterator must be mutated. This wrapper
/// effectively "restores" the state of the input iterator when it's handed back.
///
/// This is very similar to `PutBackN` except this iterator only supports 0-2 elements and does not
/// use a `Vec`.
#[derive(Clone)]
pub struct ExactlyOneError<I>
where
I: Iterator,
{
first_two: Option<Either<[I::Item; 2], I::Item>>,
inner: I,
}
impl<I> ExactlyOneError<I>
where
I: Iterator,
{
/// Creates a new `ExactlyOneErr` iterator.
pub(crate) fn new(first_two: Option<Either<[I::Item; 2], I::Item>>, inner: I) -> Self {
Self { first_two, inner }
}
fn additional_len(&self) -> usize {
match self.first_two {
Some(Either::Left(_)) => 2,
Some(Either::Right(_)) => 1,
None => 0,
}
}
}
impl<I> Iterator for ExactlyOneError<I>
where
I: Iterator,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
match self.first_two.take() {
Some(Either::Left([first, second])) => {
self.first_two = Some(Either::Right(second));
Some(first)
}
Some(Either::Right(second)) => Some(second),
None => self.inner.next(),
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.inner.size_hint(), self.additional_len())
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
match self.first_two {
Some(Either::Left([first, second])) => {
init = f(init, first);
init = f(init, second);
}
Some(Either::Right(second)) => init = f(init, second),
None => {}
}
self.inner.fold(init, f)
}
}
impl<I> ExactSizeIterator for ExactlyOneError<I> where I: ExactSizeIterator {}
impl<I> Display for ExactlyOneError<I>
where
I: Iterator,
{
fn fmt(&self, f: &mut Formatter) -> FmtResult {
let additional = self.additional_len();
if additional > 0 {
write!(f, "got at least 2 elements when exactly one was expected")
} else {
write!(f, "got zero elements when exactly one was expected")
}
}
}
impl<I> Debug for ExactlyOneError<I>
where
I: Iterator + Debug,
I::Item: Debug,
{
fn fmt(&self, f: &mut Formatter) -> FmtResult {
let mut dbg = f.debug_struct("ExactlyOneError");
match &self.first_two {
Some(Either::Left([first, second])) => {
dbg.field("first", first).field("second", second);
}
Some(Either::Right(second)) => {
dbg.field("second", second);
}
None => {}
}
dbg.field("inner", &self.inner).finish()
}
}
#[cfg(feature = "use_std")]
impl<I> Error for ExactlyOneError<I>
where
I: Iterator + Debug,
I::Item: Debug,
{
}

49
vendor/itertools/src/extrema_set.rs vendored Normal file
View File

@@ -0,0 +1,49 @@
use alloc::{vec, vec::Vec};
use std::cmp::Ordering;
/// Implementation guts for `min_set`, `min_set_by`, and `min_set_by_key`.
pub fn min_set_impl<I, K, F, Compare>(
mut it: I,
mut key_for: F,
mut compare: Compare,
) -> Vec<I::Item>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
Compare: FnMut(&I::Item, &I::Item, &K, &K) -> Ordering,
{
match it.next() {
None => Vec::new(),
Some(element) => {
let mut current_key = key_for(&element);
let mut result = vec![element];
it.for_each(|element| {
let key = key_for(&element);
match compare(&element, &result[0], &key, &current_key) {
Ordering::Less => {
result.clear();
result.push(element);
current_key = key;
}
Ordering::Equal => {
result.push(element);
}
Ordering::Greater => {}
}
});
result
}
}
}
/// Implementation guts for `ax_set`, `max_set_by`, and `max_set_by_key`.
pub fn max_set_impl<I, K, F, Compare>(it: I, key_for: F, mut compare: Compare) -> Vec<I::Item>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
Compare: FnMut(&I::Item, &I::Item, &K, &K) -> Ordering,
{
min_set_impl(it, key_for, |it1, it2, key1, key2| {
compare(it2, it1, key2, key1)
})
}

205
vendor/itertools/src/flatten_ok.rs vendored Normal file
View File

@@ -0,0 +1,205 @@
use crate::size_hint;
use std::{
fmt,
iter::{DoubleEndedIterator, FusedIterator},
};
pub fn flatten_ok<I, T, E>(iter: I) -> FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
FlattenOk {
iter,
inner_front: None,
inner_back: None,
}
}
/// An iterator adaptor that flattens `Result::Ok` values and
/// allows `Result::Err` values through unchanged.
///
/// See [`.flatten_ok()`](crate::Itertools::flatten_ok) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
iter: I,
inner_front: Option<T::IntoIter>,
inner_back: Option<T::IntoIter>,
}
impl<I, T, E> Iterator for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>>,
T: IntoIterator,
{
type Item = Result<T::Item, E>;
fn next(&mut self) -> Option<Self::Item> {
loop {
// Handle the front inner iterator.
if let Some(inner) = &mut self.inner_front {
if let Some(item) = inner.next() {
return Some(Ok(item));
}
// This is necessary for the iterator to implement `FusedIterator`
// with only the original iterator being fused.
self.inner_front = None;
}
match self.iter.next() {
Some(Ok(ok)) => self.inner_front = Some(ok.into_iter()),
Some(Err(e)) => return Some(Err(e)),
None => {
// Handle the back inner iterator.
if let Some(inner) = &mut self.inner_back {
if let Some(item) = inner.next() {
return Some(Ok(item));
}
// This is necessary for the iterator to implement `FusedIterator`
// with only the original iterator being fused.
self.inner_back = None;
} else {
return None;
}
}
}
}
}
fn fold<B, F>(self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
// Front
let mut acc = match self.inner_front {
Some(x) => x.fold(init, |a, o| f(a, Ok(o))),
None => init,
};
acc = self.iter.fold(acc, |acc, x| match x {
Ok(it) => it.into_iter().fold(acc, |a, o| f(a, Ok(o))),
Err(e) => f(acc, Err(e)),
});
// Back
match self.inner_back {
Some(x) => x.fold(acc, |a, o| f(a, Ok(o))),
None => acc,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let inner_hint = |inner: &Option<T::IntoIter>| {
inner
.as_ref()
.map(Iterator::size_hint)
.unwrap_or((0, Some(0)))
};
let inner_front = inner_hint(&self.inner_front);
let inner_back = inner_hint(&self.inner_back);
// The outer iterator `Ok` case could be (0, None) as we don't know its size_hint yet.
let outer = match self.iter.size_hint() {
(0, Some(0)) => (0, Some(0)),
_ => (0, None),
};
size_hint::add(size_hint::add(inner_front, inner_back), outer)
}
}
impl<I, T, E> DoubleEndedIterator for FlattenOk<I, T, E>
where
I: DoubleEndedIterator<Item = Result<T, E>>,
T: IntoIterator,
T::IntoIter: DoubleEndedIterator,
{
fn next_back(&mut self) -> Option<Self::Item> {
loop {
// Handle the back inner iterator.
if let Some(inner) = &mut self.inner_back {
if let Some(item) = inner.next_back() {
return Some(Ok(item));
}
// This is necessary for the iterator to implement `FusedIterator`
// with only the original iterator being fused.
self.inner_back = None;
}
match self.iter.next_back() {
Some(Ok(ok)) => self.inner_back = Some(ok.into_iter()),
Some(Err(e)) => return Some(Err(e)),
None => {
// Handle the front inner iterator.
if let Some(inner) = &mut self.inner_front {
if let Some(item) = inner.next_back() {
return Some(Ok(item));
}
// This is necessary for the iterator to implement `FusedIterator`
// with only the original iterator being fused.
self.inner_front = None;
} else {
return None;
}
}
}
}
}
fn rfold<B, F>(self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
// Back
let mut acc = match self.inner_back {
Some(x) => x.rfold(init, |a, o| f(a, Ok(o))),
None => init,
};
acc = self.iter.rfold(acc, |acc, x| match x {
Ok(it) => it.into_iter().rfold(acc, |a, o| f(a, Ok(o))),
Err(e) => f(acc, Err(e)),
});
// Front
match self.inner_front {
Some(x) => x.rfold(acc, |a, o| f(a, Ok(o))),
None => acc,
}
}
}
impl<I, T, E> Clone for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>> + Clone,
T: IntoIterator,
T::IntoIter: Clone,
{
clone_fields!(iter, inner_front, inner_back);
}
impl<I, T, E> fmt::Debug for FlattenOk<I, T, E>
where
I: Iterator<Item = Result<T, E>> + fmt::Debug,
T: IntoIterator,
T::IntoIter: fmt::Debug,
{
debug_fmt_fields!(FlattenOk, iter, inner_front, inner_back);
}
/// Only the iterator being flattened needs to implement [`FusedIterator`].
impl<I, T, E> FusedIterator for FlattenOk<I, T, E>
where
I: FusedIterator<Item = Result<T, E>>,
T: IntoIterator,
{
}

178
vendor/itertools/src/format.rs vendored Normal file
View File

@@ -0,0 +1,178 @@
use std::cell::Cell;
use std::fmt;
/// Format all iterator elements lazily, separated by `sep`.
///
/// The format value can only be formatted once, after that the iterator is
/// exhausted.
///
/// See [`.format_with()`](crate::Itertools::format_with) for more information.
pub struct FormatWith<'a, I, F> {
sep: &'a str,
/// `FormatWith` uses interior mutability because `Display::fmt` takes `&self`.
inner: Cell<Option<(I, F)>>,
}
/// Format all iterator elements lazily, separated by `sep`.
///
/// The format value can only be formatted once, after that the iterator is
/// exhausted.
///
/// See [`.format()`](crate::Itertools::format)
/// for more information.
pub struct Format<'a, I> {
sep: &'a str,
/// `Format` uses interior mutability because `Display::fmt` takes `&self`.
inner: Cell<Option<I>>,
}
pub fn new_format<I, F>(iter: I, separator: &str, f: F) -> FormatWith<'_, I, F>
where
I: Iterator,
F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
{
FormatWith {
sep: separator,
inner: Cell::new(Some((iter, f))),
}
}
pub fn new_format_default<I>(iter: I, separator: &str) -> Format<'_, I>
where
I: Iterator,
{
Format {
sep: separator,
inner: Cell::new(Some(iter)),
}
}
impl<I, F> fmt::Display for FormatWith<'_, I, F>
where
I: Iterator,
F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (mut iter, mut format) = match self.inner.take() {
Some(t) => t,
None => panic!("FormatWith: was already formatted once"),
};
if let Some(fst) = iter.next() {
format(fst, &mut |disp: &dyn fmt::Display| disp.fmt(f))?;
iter.try_for_each(|elt| {
if !self.sep.is_empty() {
f.write_str(self.sep)?;
}
format(elt, &mut |disp: &dyn fmt::Display| disp.fmt(f))
})?;
}
Ok(())
}
}
impl<I, F> fmt::Debug for FormatWith<'_, I, F>
where
I: Iterator,
F: FnMut(I::Item, &mut dyn FnMut(&dyn fmt::Display) -> fmt::Result) -> fmt::Result,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl<I> Format<'_, I>
where
I: Iterator,
{
fn format(
&self,
f: &mut fmt::Formatter,
cb: fn(&I::Item, &mut fmt::Formatter) -> fmt::Result,
) -> fmt::Result {
let mut iter = match self.inner.take() {
Some(t) => t,
None => panic!("Format: was already formatted once"),
};
if let Some(fst) = iter.next() {
cb(&fst, f)?;
iter.try_for_each(|elt| {
if !self.sep.is_empty() {
f.write_str(self.sep)?;
}
cb(&elt, f)
})?;
}
Ok(())
}
}
macro_rules! impl_format {
($($fmt_trait:ident)*) => {
$(
impl<'a, I> fmt::$fmt_trait for Format<'a, I>
where I: Iterator,
I::Item: fmt::$fmt_trait,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.format(f, fmt::$fmt_trait::fmt)
}
}
)*
}
}
impl_format! {Display Debug UpperExp LowerExp UpperHex LowerHex Octal Binary Pointer}
impl<I, F> Clone for FormatWith<'_, I, F>
where
(I, F): Clone,
{
fn clone(&self) -> Self {
struct PutBackOnDrop<'r, 'a, I, F> {
into: &'r FormatWith<'a, I, F>,
inner: Option<(I, F)>,
}
// This ensures we preserve the state of the original `FormatWith` if `Clone` panics
impl<I, F> Drop for PutBackOnDrop<'_, '_, I, F> {
fn drop(&mut self) {
self.into.inner.set(self.inner.take())
}
}
let pbod = PutBackOnDrop {
inner: self.inner.take(),
into: self,
};
Self {
inner: Cell::new(pbod.inner.clone()),
sep: self.sep,
}
}
}
impl<I> Clone for Format<'_, I>
where
I: Clone,
{
fn clone(&self) -> Self {
struct PutBackOnDrop<'r, 'a, I> {
into: &'r Format<'a, I>,
inner: Option<I>,
}
// This ensures we preserve the state of the original `FormatWith` if `Clone` panics
impl<I> Drop for PutBackOnDrop<'_, '_, I> {
fn drop(&mut self) {
self.into.inner.set(self.inner.take())
}
}
let pbod = PutBackOnDrop {
inner: self.inner.take(),
into: self,
};
Self {
inner: Cell::new(pbod.inner.clone()),
sep: self.sep,
}
}
}

319
vendor/itertools/src/free.rs vendored Normal file
View File

@@ -0,0 +1,319 @@
//! Free functions that create iterator adaptors or call iterator methods.
//!
//! The benefit of free functions is that they accept any [`IntoIterator`] as
//! argument, so the resulting code may be easier to read.
#[cfg(feature = "use_alloc")]
use std::fmt::Display;
use std::iter::{self, Zip};
#[cfg(feature = "use_alloc")]
type VecIntoIter<T> = alloc::vec::IntoIter<T>;
#[cfg(feature = "use_alloc")]
use alloc::string::String;
use crate::intersperse::{Intersperse, IntersperseWith};
use crate::Itertools;
pub use crate::adaptors::{interleave, put_back};
#[cfg(feature = "use_alloc")]
pub use crate::kmerge_impl::kmerge;
pub use crate::merge_join::{merge, merge_join_by};
#[cfg(feature = "use_alloc")]
pub use crate::multipeek_impl::multipeek;
#[cfg(feature = "use_alloc")]
pub use crate::peek_nth::peek_nth;
#[cfg(feature = "use_alloc")]
pub use crate::put_back_n_impl::put_back_n;
#[cfg(feature = "use_alloc")]
pub use crate::rciter_impl::rciter;
pub use crate::zip_eq_impl::zip_eq;
/// Iterate `iterable` with a particular value inserted between each element.
///
/// [`IntoIterator`] enabled version of [`Iterator::intersperse`].
///
/// ```
/// use itertools::intersperse;
///
/// itertools::assert_equal(intersperse(0..3, 8), vec![0, 8, 1, 8, 2]);
/// ```
pub fn intersperse<I>(iterable: I, element: I::Item) -> Intersperse<I::IntoIter>
where
I: IntoIterator,
<I as IntoIterator>::Item: Clone,
{
Itertools::intersperse(iterable.into_iter(), element)
}
/// Iterate `iterable` with a particular value created by a function inserted
/// between each element.
///
/// [`IntoIterator`] enabled version of [`Iterator::intersperse_with`].
///
/// ```
/// use itertools::intersperse_with;
///
/// let mut i = 10;
/// itertools::assert_equal(intersperse_with(0..3, || { i -= 1; i }), vec![0, 9, 1, 8, 2]);
/// assert_eq!(i, 8);
/// ```
pub fn intersperse_with<I, F>(iterable: I, element: F) -> IntersperseWith<I::IntoIter, F>
where
I: IntoIterator,
F: FnMut() -> I::Item,
{
Itertools::intersperse_with(iterable.into_iter(), element)
}
/// Iterate `iterable` with a running index.
///
/// [`IntoIterator`] enabled version of [`Iterator::enumerate`].
///
/// ```
/// use itertools::enumerate;
///
/// for (i, elt) in enumerate(&[1, 2, 3]) {
/// /* loop body */
/// # let _ = (i, elt);
/// }
/// ```
pub fn enumerate<I>(iterable: I) -> iter::Enumerate<I::IntoIter>
where
I: IntoIterator,
{
iterable.into_iter().enumerate()
}
/// Iterate `iterable` in reverse.
///
/// [`IntoIterator`] enabled version of [`Iterator::rev`].
///
/// ```
/// use itertools::rev;
///
/// for elt in rev(&[1, 2, 3]) {
/// /* loop body */
/// # let _ = elt;
/// }
/// ```
pub fn rev<I>(iterable: I) -> iter::Rev<I::IntoIter>
where
I: IntoIterator,
I::IntoIter: DoubleEndedIterator,
{
iterable.into_iter().rev()
}
/// Converts the arguments to iterators and zips them.
///
/// [`IntoIterator`] enabled version of [`Iterator::zip`].
///
/// ## Example
///
/// ```
/// use itertools::zip;
///
/// let mut result: Vec<(i32, char)> = Vec::new();
///
/// for (a, b) in zip(&[1, 2, 3, 4, 5], &['a', 'b', 'c']) {
/// result.push((*a, *b));
/// }
/// assert_eq!(result, vec![(1, 'a'),(2, 'b'),(3, 'c')]);
/// ```
#[deprecated(
note = "Use [std::iter::zip](https://doc.rust-lang.org/std/iter/fn.zip.html) instead",
since = "0.10.4"
)]
pub fn zip<I, J>(i: I, j: J) -> Zip<I::IntoIter, J::IntoIter>
where
I: IntoIterator,
J: IntoIterator,
{
i.into_iter().zip(j)
}
/// Takes two iterables and creates a new iterator over both in sequence.
///
/// [`IntoIterator`] enabled version of [`Iterator::chain`].
///
/// ## Example
/// ```
/// use itertools::chain;
///
/// let mut result:Vec<i32> = Vec::new();
///
/// for element in chain(&[1, 2, 3], &[4]) {
/// result.push(*element);
/// }
/// assert_eq!(result, vec![1, 2, 3, 4]);
/// ```
pub fn chain<I, J>(
i: I,
j: J,
) -> iter::Chain<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
where
I: IntoIterator,
J: IntoIterator<Item = I::Item>,
{
i.into_iter().chain(j)
}
/// Create an iterator that clones each element from `&T` to `T`.
///
/// [`IntoIterator`] enabled version of [`Iterator::cloned`].
///
/// ```
/// use itertools::cloned;
///
/// assert_eq!(cloned(b"abc").next(), Some(b'a'));
/// ```
pub fn cloned<'a, I, T>(iterable: I) -> iter::Cloned<I::IntoIter>
where
I: IntoIterator<Item = &'a T>,
T: Clone + 'a,
{
iterable.into_iter().cloned()
}
/// Perform a fold operation over the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::fold`].
///
/// ```
/// use itertools::fold;
///
/// assert_eq!(fold(&[1., 2., 3.], 0., |a, &b| f32::max(a, b)), 3.);
/// ```
pub fn fold<I, B, F>(iterable: I, init: B, f: F) -> B
where
I: IntoIterator,
F: FnMut(B, I::Item) -> B,
{
iterable.into_iter().fold(init, f)
}
/// Test whether the predicate holds for all elements in the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::all`].
///
/// ```
/// use itertools::all;
///
/// assert!(all(&[1, 2, 3], |elt| *elt > 0));
/// ```
pub fn all<I, F>(iterable: I, f: F) -> bool
where
I: IntoIterator,
F: FnMut(I::Item) -> bool,
{
iterable.into_iter().all(f)
}
/// Test whether the predicate holds for any elements in the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::any`].
///
/// ```
/// use itertools::any;
///
/// assert!(any(&[0, -1, 2], |elt| *elt > 0));
/// ```
pub fn any<I, F>(iterable: I, f: F) -> bool
where
I: IntoIterator,
F: FnMut(I::Item) -> bool,
{
iterable.into_iter().any(f)
}
/// Return the maximum value of the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::max`].
///
/// ```
/// use itertools::max;
///
/// assert_eq!(max(0..10), Some(9));
/// ```
pub fn max<I>(iterable: I) -> Option<I::Item>
where
I: IntoIterator,
I::Item: Ord,
{
iterable.into_iter().max()
}
/// Return the minimum value of the iterable.
///
/// [`IntoIterator`] enabled version of [`Iterator::min`].
///
/// ```
/// use itertools::min;
///
/// assert_eq!(min(0..10), Some(0));
/// ```
pub fn min<I>(iterable: I) -> Option<I::Item>
where
I: IntoIterator,
I::Item: Ord,
{
iterable.into_iter().min()
}
/// Combine all iterator elements into one `String`, separated by `sep`.
///
/// [`IntoIterator`] enabled version of [`Itertools::join`].
///
/// ```
/// use itertools::join;
///
/// assert_eq!(join(&[1, 2, 3], ", "), "1, 2, 3");
/// ```
#[cfg(feature = "use_alloc")]
pub fn join<I>(iterable: I, sep: &str) -> String
where
I: IntoIterator,
I::Item: Display,
{
iterable.into_iter().join(sep)
}
/// Sort all iterator elements into a new iterator in ascending order.
///
/// [`IntoIterator`] enabled version of [`Itertools::sorted`].
///
/// ```
/// use itertools::sorted;
/// use itertools::assert_equal;
///
/// assert_equal(sorted("rust".chars()), "rstu".chars());
/// ```
#[cfg(feature = "use_alloc")]
pub fn sorted<I>(iterable: I) -> VecIntoIter<I::Item>
where
I: IntoIterator,
I::Item: Ord,
{
iterable.into_iter().sorted()
}
/// Sort all iterator elements into a new iterator in ascending order.
/// This sort is unstable (i.e., may reorder equal elements).
///
/// [`IntoIterator`] enabled version of [`Itertools::sorted_unstable`].
///
/// ```
/// use itertools::sorted_unstable;
/// use itertools::assert_equal;
///
/// assert_equal(sorted_unstable("rust".chars()), "rstu".chars());
/// ```
#[cfg(feature = "use_alloc")]
pub fn sorted_unstable<I>(iterable: I) -> VecIntoIter<I::Item>
where
I: IntoIterator,
I::Item: Ord,
{
iterable.into_iter().sorted_unstable()
}

32
vendor/itertools/src/group_map.rs vendored Normal file
View File

@@ -0,0 +1,32 @@
#![cfg(feature = "use_std")]
use std::collections::HashMap;
use std::hash::Hash;
use std::iter::Iterator;
/// Return a `HashMap` of keys mapped to a list of their corresponding values.
///
/// See [`.into_group_map()`](crate::Itertools::into_group_map)
/// for more information.
pub fn into_group_map<I, K, V>(iter: I) -> HashMap<K, Vec<V>>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
{
let mut lookup = HashMap::new();
iter.for_each(|(key, val)| {
lookup.entry(key).or_insert_with(Vec::new).push(val);
});
lookup
}
pub fn into_group_map_by<I, K, V, F>(iter: I, mut f: F) -> HashMap<K, Vec<V>>
where
I: Iterator<Item = V>,
K: Hash + Eq,
F: FnMut(&V) -> K,
{
into_group_map(iter.map(|v| (f(&v), v)))
}

613
vendor/itertools/src/groupbylazy.rs vendored Normal file
View File

@@ -0,0 +1,613 @@
use alloc::vec::{self, Vec};
use std::cell::{Cell, RefCell};
/// A trait to unify `FnMut` for `ChunkBy` with the chunk key in `IntoChunks`
trait KeyFunction<A> {
type Key;
fn call_mut(&mut self, arg: A) -> Self::Key;
}
impl<A, K, F> KeyFunction<A> for F
where
F: FnMut(A) -> K + ?Sized,
{
type Key = K;
#[inline]
fn call_mut(&mut self, arg: A) -> Self::Key {
(*self)(arg)
}
}
/// `ChunkIndex` acts like the grouping key function for `IntoChunks`
#[derive(Debug, Clone)]
struct ChunkIndex {
size: usize,
index: usize,
key: usize,
}
impl ChunkIndex {
#[inline(always)]
fn new(size: usize) -> Self {
Self {
size,
index: 0,
key: 0,
}
}
}
impl<A> KeyFunction<A> for ChunkIndex {
type Key = usize;
#[inline(always)]
fn call_mut(&mut self, _arg: A) -> Self::Key {
if self.index == self.size {
self.key += 1;
self.index = 0;
}
self.index += 1;
self.key
}
}
#[derive(Clone)]
struct GroupInner<K, I, F>
where
I: Iterator,
{
key: F,
iter: I,
current_key: Option<K>,
current_elt: Option<I::Item>,
/// flag set if iterator is exhausted
done: bool,
/// Index of group we are currently buffering or visiting
top_group: usize,
/// Least index for which we still have elements buffered
oldest_buffered_group: usize,
/// Group index for `buffer[0]` -- the slots
/// `bottom_group..oldest_buffered_group` are unused and will be erased when
/// that range is large enough.
bottom_group: usize,
/// Buffered groups, from `bottom_group` (index 0) to `top_group`.
buffer: Vec<vec::IntoIter<I::Item>>,
/// index of last group iter that was dropped,
/// `usize::MAX` initially when no group was dropped
dropped_group: usize,
}
impl<K, I, F> GroupInner<K, I, F>
where
I: Iterator,
F: for<'a> KeyFunction<&'a I::Item, Key = K>,
K: PartialEq,
{
/// `client`: Index of group that requests next element
#[inline(always)]
fn step(&mut self, client: usize) -> Option<I::Item> {
/*
println!("client={}, bottom_group={}, oldest_buffered_group={}, top_group={}, buffers=[{}]",
client, self.bottom_group, self.oldest_buffered_group,
self.top_group,
self.buffer.iter().map(|elt| elt.len()).format(", "));
*/
if client < self.oldest_buffered_group {
None
} else if client < self.top_group
|| (client == self.top_group && self.buffer.len() > self.top_group - self.bottom_group)
{
self.lookup_buffer(client)
} else if self.done {
None
} else if self.top_group == client {
self.step_current()
} else {
self.step_buffering(client)
}
}
#[inline(never)]
fn lookup_buffer(&mut self, client: usize) -> Option<I::Item> {
// if `bufidx` doesn't exist in self.buffer, it might be empty
let bufidx = client - self.bottom_group;
if client < self.oldest_buffered_group {
return None;
}
let elt = self.buffer.get_mut(bufidx).and_then(|queue| queue.next());
if elt.is_none() && client == self.oldest_buffered_group {
// FIXME: VecDeque is unfortunately not zero allocation when empty,
// so we do this job manually.
// `bottom_group..oldest_buffered_group` is unused, and if it's large enough, erase it.
self.oldest_buffered_group += 1;
// skip forward further empty queues too
while self
.buffer
.get(self.oldest_buffered_group - self.bottom_group)
.map_or(false, |buf| buf.len() == 0)
{
self.oldest_buffered_group += 1;
}
let nclear = self.oldest_buffered_group - self.bottom_group;
if nclear > 0 && nclear >= self.buffer.len() / 2 {
let mut i = 0;
self.buffer.retain(|buf| {
i += 1;
debug_assert!(buf.len() == 0 || i > nclear);
i > nclear
});
self.bottom_group = self.oldest_buffered_group;
}
}
elt
}
/// Take the next element from the iterator, and set the done
/// flag if exhausted. Must not be called after done.
#[inline(always)]
fn next_element(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
match self.iter.next() {
None => {
self.done = true;
None
}
otherwise => otherwise,
}
}
#[inline(never)]
fn step_buffering(&mut self, client: usize) -> Option<I::Item> {
// requested a later group -- walk through the current group up to
// the requested group index, and buffer the elements (unless
// the group is marked as dropped).
// Because the `Groups` iterator is always the first to request
// each group index, client is the next index efter top_group.
debug_assert!(self.top_group + 1 == client);
let mut group = Vec::new();
if let Some(elt) = self.current_elt.take() {
if self.top_group != self.dropped_group {
group.push(elt);
}
}
let mut first_elt = None; // first element of the next group
while let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => {
if old_key != key {
self.current_key = Some(key);
first_elt = Some(elt);
break;
}
}
}
self.current_key = Some(key);
if self.top_group != self.dropped_group {
group.push(elt);
}
}
if self.top_group != self.dropped_group {
self.push_next_group(group);
}
if first_elt.is_some() {
self.top_group += 1;
debug_assert!(self.top_group == client);
}
first_elt
}
fn push_next_group(&mut self, group: Vec<I::Item>) {
// When we add a new buffered group, fill up slots between oldest_buffered_group and top_group
while self.top_group - self.bottom_group > self.buffer.len() {
if self.buffer.is_empty() {
self.bottom_group += 1;
self.oldest_buffered_group += 1;
} else {
self.buffer.push(Vec::new().into_iter());
}
}
self.buffer.push(group.into_iter());
debug_assert!(self.top_group + 1 - self.bottom_group == self.buffer.len());
}
/// This is the immediate case, where we use no buffering
#[inline]
fn step_current(&mut self) -> Option<I::Item> {
debug_assert!(!self.done);
if let elt @ Some(..) = self.current_elt.take() {
return elt;
}
match self.next_element() {
None => None,
Some(elt) => {
let key = self.key.call_mut(&elt);
match self.current_key.take() {
None => {}
Some(old_key) => {
if old_key != key {
self.current_key = Some(key);
self.current_elt = Some(elt);
self.top_group += 1;
return None;
}
}
}
self.current_key = Some(key);
Some(elt)
}
}
}
/// Request the just started groups' key.
///
/// `client`: Index of group
///
/// **Panics** if no group key is available.
fn group_key(&mut self, client: usize) -> K {
// This can only be called after we have just returned the first
// element of a group.
// Perform this by simply buffering one more element, grabbing the
// next key.
debug_assert!(!self.done);
debug_assert!(client == self.top_group);
debug_assert!(self.current_key.is_some());
debug_assert!(self.current_elt.is_none());
let old_key = self.current_key.take().unwrap();
if let Some(elt) = self.next_element() {
let key = self.key.call_mut(&elt);
if old_key != key {
self.top_group += 1;
}
self.current_key = Some(key);
self.current_elt = Some(elt);
}
old_key
}
}
impl<K, I, F> GroupInner<K, I, F>
where
I: Iterator,
{
/// Called when a group is dropped
fn drop_group(&mut self, client: usize) {
// It's only useful to track the maximal index
if self.dropped_group == !0 || client > self.dropped_group {
self.dropped_group = client;
}
}
}
#[deprecated(note = "Use `ChunkBy` instead", since = "0.13.0")]
/// See [`ChunkBy`](crate::structs::ChunkBy).
pub type GroupBy<K, I, F> = ChunkBy<K, I, F>;
/// `ChunkBy` is the storage for the lazy grouping operation.
///
/// If the groups are consumed in their original order, or if each
/// group is dropped without keeping it around, then `ChunkBy` uses
/// no allocations. It needs allocations only if several group iterators
/// are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the group iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// See [`.chunk_by()`](crate::Itertools::chunk_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct ChunkBy<K, I, F>
where
I: Iterator,
{
inner: RefCell<GroupInner<K, I, F>>,
// the group iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
/// Create a new
pub fn new<K, J, F>(iter: J, f: F) -> ChunkBy<K, J::IntoIter, F>
where
J: IntoIterator,
F: FnMut(&J::Item) -> K,
{
ChunkBy {
inner: RefCell::new(GroupInner {
key: f,
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
impl<K, I, F> ChunkBy<K, I, F>
where
I: Iterator,
{
/// `client`: Index of group that requests next element
fn step(&self, client: usize) -> Option<I::Item>
where
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
self.inner.borrow_mut().step(client)
}
/// `client`: Index of group
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client);
}
}
impl<'a, K, I, F> IntoIterator for &'a ChunkBy<K, I, F>
where
I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
type Item = (K, Group<'a, K, I, F>);
type IntoIter = Groups<'a, K, I, F>;
fn into_iter(self) -> Self::IntoIter {
Groups { parent: self }
}
}
/// An iterator that yields the Group iterators.
///
/// Iterator element type is `(K, Group)`:
/// the group's key `K` and the group's iterator.
///
/// See [`.chunk_by()`](crate::Itertools::chunk_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Groups<'a, K, I, F>
where
I: Iterator + 'a,
I::Item: 'a,
K: 'a,
F: 'a,
{
parent: &'a ChunkBy<K, I, F>,
}
impl<'a, K, I, F> Iterator for Groups<'a, K, I, F>
where
I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
type Item = (K, Group<'a, K, I, F>);
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| {
let key = inner.group_key(index);
(
key,
Group {
parent: self.parent,
index,
first: Some(elt),
},
)
})
}
}
/// An iterator for the elements in a single group.
///
/// Iterator element type is `I::Item`.
pub struct Group<'a, K, I, F>
where
I: Iterator + 'a,
I::Item: 'a,
K: 'a,
F: 'a,
{
parent: &'a ChunkBy<K, I, F>,
index: usize,
first: Option<I::Item>,
}
impl<'a, K, I, F> Drop for Group<'a, K, I, F>
where
I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, K, I, F> Iterator for Group<'a, K, I, F>
where
I: Iterator,
I::Item: 'a,
F: FnMut(&I::Item) -> K,
K: PartialEq,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}
///// IntoChunks /////
/// Create a new
pub fn new_chunks<J>(iter: J, size: usize) -> IntoChunks<J::IntoIter>
where
J: IntoIterator,
{
IntoChunks {
inner: RefCell::new(GroupInner {
key: ChunkIndex::new(size),
iter: iter.into_iter(),
current_key: None,
current_elt: None,
done: false,
top_group: 0,
oldest_buffered_group: 0,
bottom_group: 0,
buffer: Vec::new(),
dropped_group: !0,
}),
index: Cell::new(0),
}
}
/// `ChunkLazy` is the storage for a lazy chunking operation.
///
/// `IntoChunks` behaves just like `ChunkBy`: it is iterable, and
/// it only buffers if several chunk iterators are alive at the same time.
///
/// This type implements [`IntoIterator`] (it is **not** an iterator
/// itself), because the chunk iterators need to borrow from this
/// value. It should be stored in a local variable or temporary and
/// iterated.
///
/// Iterator element type is `Chunk`, each chunk's iterator.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct IntoChunks<I>
where
I: Iterator,
{
inner: RefCell<GroupInner<usize, I, ChunkIndex>>,
// the chunk iterator's current index. Keep this in the main value
// so that simultaneous iterators all use the same state.
index: Cell<usize>,
}
impl<I> Clone for IntoChunks<I>
where
I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(inner, index);
}
impl<I> IntoChunks<I>
where
I: Iterator,
{
/// `client`: Index of chunk that requests next element
fn step(&self, client: usize) -> Option<I::Item> {
self.inner.borrow_mut().step(client)
}
/// `client`: Index of chunk
fn drop_group(&self, client: usize) {
self.inner.borrow_mut().drop_group(client);
}
}
impl<'a, I> IntoIterator for &'a IntoChunks<I>
where
I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
type IntoIter = Chunks<'a, I>;
fn into_iter(self) -> Self::IntoIter {
Chunks { parent: self }
}
}
/// An iterator that yields the Chunk iterators.
///
/// Iterator element type is `Chunk`.
///
/// See [`.chunks()`](crate::Itertools::chunks) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone)]
pub struct Chunks<'a, I>
where
I: Iterator + 'a,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
}
impl<'a, I> Iterator for Chunks<'a, I>
where
I: Iterator,
I::Item: 'a,
{
type Item = Chunk<'a, I>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let index = self.parent.index.get();
self.parent.index.set(index + 1);
let inner = &mut *self.parent.inner.borrow_mut();
inner.step(index).map(|elt| Chunk {
parent: self.parent,
index,
first: Some(elt),
})
}
}
/// An iterator for the elements in a single chunk.
///
/// Iterator element type is `I::Item`.
pub struct Chunk<'a, I>
where
I: Iterator + 'a,
I::Item: 'a,
{
parent: &'a IntoChunks<I>,
index: usize,
first: Option<I::Item>,
}
impl<'a, I> Drop for Chunk<'a, I>
where
I: Iterator,
I::Item: 'a,
{
fn drop(&mut self) {
self.parent.drop_group(self.index);
}
}
impl<'a, I> Iterator for Chunk<'a, I>
where
I: Iterator,
I::Item: 'a,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if let elt @ Some(..) = self.first.take() {
return elt;
}
self.parent.step(self.index)
}
}

612
vendor/itertools/src/grouping_map.rs vendored Normal file
View File

@@ -0,0 +1,612 @@
use crate::{
adaptors::map::{MapSpecialCase, MapSpecialCaseFn},
MinMaxResult,
};
use std::cmp::Ordering;
use std::collections::HashMap;
use std::hash::Hash;
use std::iter::Iterator;
use std::ops::{Add, Mul};
/// A wrapper to allow for an easy [`into_grouping_map_by`](crate::Itertools::into_grouping_map_by)
pub type MapForGrouping<I, F> = MapSpecialCase<I, GroupingMapFn<F>>;
#[derive(Clone)]
pub struct GroupingMapFn<F>(F);
impl<F> std::fmt::Debug for GroupingMapFn<F> {
debug_fmt_fields!(GroupingMapFn,);
}
impl<V, K, F: FnMut(&V) -> K> MapSpecialCaseFn<V> for GroupingMapFn<F> {
type Out = (K, V);
fn call(&mut self, v: V) -> Self::Out {
((self.0)(&v), v)
}
}
pub(crate) fn new_map_for_grouping<K, I: Iterator, F: FnMut(&I::Item) -> K>(
iter: I,
key_mapper: F,
) -> MapForGrouping<I, F> {
MapSpecialCase {
iter,
f: GroupingMapFn(key_mapper),
}
}
/// Creates a new `GroupingMap` from `iter`
pub fn new<I, K, V>(iter: I) -> GroupingMap<I>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
{
GroupingMap { iter }
}
/// `GroupingMapBy` is an intermediate struct for efficient group-and-fold operations.
///
/// See [`GroupingMap`] for more informations.
pub type GroupingMapBy<I, F> = GroupingMap<MapForGrouping<I, F>>;
/// `GroupingMap` is an intermediate struct for efficient group-and-fold operations.
/// It groups elements by their key and at the same time fold each group
/// using some aggregating operation.
///
/// No method on this struct performs temporary allocations.
#[derive(Clone, Debug)]
#[must_use = "GroupingMap is lazy and do nothing unless consumed"]
pub struct GroupingMap<I> {
iter: I,
}
impl<I, K, V> GroupingMap<I>
where
I: Iterator<Item = (K, V)>,
K: Hash + Eq,
{
/// This is the generic way to perform any operation on a `GroupingMap`.
/// It's suggested to use this method only to implement custom operations
/// when the already provided ones are not enough.
///
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in an `HashMap`.
///
/// The `operation` function is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group if there is currently one;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being aggregated;
///
/// If `operation` returns `Some(element)` then the accumulator is updated with `element`,
/// otherwise the previous accumulation is discarded.
///
/// Return a `HashMap` associating the key of each group with the result of aggregation of
/// that group's elements. If the aggregation of the last element of a group discards the
/// accumulator then there won't be an entry associated to that group's key.
///
/// ```
/// use itertools::Itertools;
///
/// let data = vec![2, 8, 5, 7, 9, 0, 4, 10];
/// let lookup = data.into_iter()
/// .into_grouping_map_by(|&n| n % 4)
/// .aggregate(|acc, _key, val| {
/// if val == 0 || val == 10 {
/// None
/// } else {
/// Some(acc.unwrap_or(0) + val)
/// }
/// });
///
/// assert_eq!(lookup[&0], 4); // 0 resets the accumulator so only 4 is summed
/// assert_eq!(lookup[&1], 5 + 9);
/// assert_eq!(lookup.get(&2), None); // 10 resets the accumulator and nothing is summed afterward
/// assert_eq!(lookup[&3], 7);
/// assert_eq!(lookup.len(), 3); // The final keys are only 0, 1 and 2
/// ```
pub fn aggregate<FO, R>(self, mut operation: FO) -> HashMap<K, R>
where
FO: FnMut(Option<R>, &K, V) -> Option<R>,
{
let mut destination_map = HashMap::new();
self.iter.for_each(|(key, val)| {
let acc = destination_map.remove(&key);
if let Some(op_res) = operation(acc, &key, val) {
destination_map.insert(key, op_res);
}
});
destination_map
}
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in a new map.
///
/// `init` is called to obtain the initial value of each accumulator.
///
/// `operation` is a function that is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being accumulated.
///
/// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// #[derive(Debug, Default)]
/// struct Accumulator {
/// acc: usize,
/// }
///
/// let lookup = (1..=7)
/// .into_grouping_map_by(|&n| n % 3)
/// .fold_with(|_key, _val| Default::default(), |Accumulator { acc }, _key, val| {
/// let acc = acc + val;
/// Accumulator { acc }
/// });
///
/// assert_eq!(lookup[&0].acc, 3 + 6);
/// assert_eq!(lookup[&1].acc, 1 + 4 + 7);
/// assert_eq!(lookup[&2].acc, 2 + 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn fold_with<FI, FO, R>(self, mut init: FI, mut operation: FO) -> HashMap<K, R>
where
FI: FnMut(&K, &V) -> R,
FO: FnMut(R, &K, V) -> R,
{
self.aggregate(|acc, key, val| {
let acc = acc.unwrap_or_else(|| init(key, &val));
Some(operation(acc, key, val))
})
}
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in a new map.
///
/// `init` is the value from which will be cloned the initial value of each accumulator.
///
/// `operation` is a function that is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being accumulated.
///
/// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = (1..=7)
/// .into_grouping_map_by(|&n| n % 3)
/// .fold(0, |acc, _key, val| acc + val);
///
/// assert_eq!(lookup[&0], 3 + 6);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 2 + 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn fold<FO, R>(self, init: R, operation: FO) -> HashMap<K, R>
where
R: Clone,
FO: FnMut(R, &K, V) -> R,
{
self.fold_with(|_, _| init.clone(), operation)
}
/// Groups elements from the `GroupingMap` source by key and applies `operation` to the elements
/// of each group sequentially, passing the previously accumulated value, a reference to the key
/// and the current element as arguments, and stores the results in a new map.
///
/// This is similar to [`fold`] but the initial value of the accumulator is the first element of the group.
///
/// `operation` is a function that is invoked on each element with the following parameters:
/// - the current value of the accumulator of the group;
/// - a reference to the key of the group this element belongs to;
/// - the element from the source being accumulated.
///
/// Return a `HashMap` associating the key of each group with the result of folding that group's elements.
///
/// [`fold`]: GroupingMap::fold
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = (1..=7)
/// .into_grouping_map_by(|&n| n % 3)
/// .reduce(|acc, _key, val| acc + val);
///
/// assert_eq!(lookup[&0], 3 + 6);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 2 + 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn reduce<FO>(self, mut operation: FO) -> HashMap<K, V>
where
FO: FnMut(V, &K, V) -> V,
{
self.aggregate(|acc, key, val| {
Some(match acc {
Some(acc) => operation(acc, key, val),
None => val,
})
})
}
/// See [`.reduce()`](GroupingMap::reduce).
#[deprecated(note = "Use .reduce() instead", since = "0.13.0")]
pub fn fold_first<FO>(self, operation: FO) -> HashMap<K, V>
where
FO: FnMut(V, &K, V) -> V,
{
self.reduce(operation)
}
/// Groups elements from the `GroupingMap` source by key and collects the elements of each group in
/// an instance of `C`. The iteration order is preserved when inserting elements.
///
/// Return a `HashMap` associating the key of each group with the collection containing that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use std::collections::HashSet;
///
/// let lookup = vec![0, 1, 2, 3, 4, 5, 6, 2, 3, 6].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .collect::<HashSet<_>>();
///
/// assert_eq!(lookup[&0], vec![0, 3, 6].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup[&1], vec![1, 4].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup[&2], vec![2, 5].into_iter().collect::<HashSet<_>>());
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn collect<C>(self) -> HashMap<K, C>
where
C: Default + Extend<V>,
{
let mut destination_map = HashMap::new();
self.iter.for_each(|(key, val)| {
destination_map
.entry(key)
.or_insert_with(C::default)
.extend(Some(val));
});
destination_map
}
/// Groups elements from the `GroupingMap` source by key and finds the maximum of each group.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max();
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max(self) -> HashMap<K, V>
where
V: Ord,
{
self.max_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and finds the maximum of each group
/// with respect to the specified comparison function.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 1);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max_by<F>(self, mut compare: F) -> HashMap<K, V>
where
F: FnMut(&K, &V, &V) -> Ordering,
{
self.reduce(|acc, key, val| match compare(key, &acc, &val) {
Ordering::Less | Ordering::Equal => val,
Ordering::Greater => acc,
})
}
/// Groups elements from the `GroupingMap` source by key and finds the element of each group
/// that gives the maximum from the specified function.
///
/// If several elements are equally maximum, the last element is picked.
///
/// Returns a `HashMap` associating the key of each group with the maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .max_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn max_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
where
F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.max_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
}
/// Groups elements from the `GroupingMap` source by key and finds the minimum of each group.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min();
///
/// assert_eq!(lookup[&0], 3);
/// assert_eq!(lookup[&1], 1);
/// assert_eq!(lookup[&2], 5);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min(self) -> HashMap<K, V>
where
V: Ord,
{
self.min_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and finds the minimum of each group
/// with respect to the specified comparison function.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 7);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min_by<F>(self, mut compare: F) -> HashMap<K, V>
where
F: FnMut(&K, &V, &V) -> Ordering,
{
self.reduce(|acc, key, val| match compare(key, &acc, &val) {
Ordering::Less | Ordering::Equal => acc,
Ordering::Greater => val,
})
}
/// Groups elements from the `GroupingMap` source by key and finds the element of each group
/// that gives the minimum from the specified function.
///
/// If several elements are equally minimum, the first element is picked.
///
/// Returns a `HashMap` associating the key of each group with the minimum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .min_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], 12);
/// assert_eq!(lookup[&1], 4);
/// assert_eq!(lookup[&2], 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn min_by_key<F, CK>(self, mut f: F) -> HashMap<K, V>
where
F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.min_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
}
/// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
/// each group.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// See [`Itertools::minmax`](crate::Itertools::minmax) for the non-grouping version.
///
/// Differences from the non grouping version:
/// - It never produces a `MinMaxResult::NoElements`
/// - It doesn't have any speedup
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax();
///
/// assert_eq!(lookup[&0], MinMax(3, 12));
/// assert_eq!(lookup[&1], MinMax(1, 7));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax(self) -> HashMap<K, MinMaxResult<V>>
where
V: Ord,
{
self.minmax_by(|_, v1, v2| V::cmp(v1, v2))
}
/// Groups elements from the `GroupingMap` source by key and find the maximum and minimum of
/// each group with respect to the specified comparison function.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// It has the same differences from the non-grouping version as `minmax`.
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax_by(|_key, x, y| y.cmp(x));
///
/// assert_eq!(lookup[&0], MinMax(12, 3));
/// assert_eq!(lookup[&1], MinMax(7, 1));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax_by<F>(self, mut compare: F) -> HashMap<K, MinMaxResult<V>>
where
F: FnMut(&K, &V, &V) -> Ordering,
{
self.aggregate(|acc, key, val| {
Some(match acc {
Some(MinMaxResult::OneElement(e)) => {
if compare(key, &val, &e) == Ordering::Less {
MinMaxResult::MinMax(val, e)
} else {
MinMaxResult::MinMax(e, val)
}
}
Some(MinMaxResult::MinMax(min, max)) => {
if compare(key, &val, &min) == Ordering::Less {
MinMaxResult::MinMax(val, max)
} else if compare(key, &val, &max) != Ordering::Less {
MinMaxResult::MinMax(min, val)
} else {
MinMaxResult::MinMax(min, max)
}
}
None => MinMaxResult::OneElement(val),
Some(MinMaxResult::NoElements) => unreachable!(),
})
})
}
/// Groups elements from the `GroupingMap` source by key and find the elements of each group
/// that gives the minimum and maximum from the specified function.
///
/// If several elements are equally maximum, the last element is picked.
/// If several elements are equally minimum, the first element is picked.
///
/// It has the same differences from the non-grouping version as `minmax`.
///
/// Returns a `HashMap` associating the key of each group with the minimum and maximum of that group's elements.
///
/// ```
/// use itertools::Itertools;
/// use itertools::MinMaxResult::{OneElement, MinMax};
///
/// let lookup = vec![1, 3, 4, 5, 7, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .minmax_by_key(|_key, &val| val % 4);
///
/// assert_eq!(lookup[&0], MinMax(12, 3));
/// assert_eq!(lookup[&1], MinMax(4, 7));
/// assert_eq!(lookup[&2], OneElement(5));
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn minmax_by_key<F, CK>(self, mut f: F) -> HashMap<K, MinMaxResult<V>>
where
F: FnMut(&K, &V) -> CK,
CK: Ord,
{
self.minmax_by(|key, v1, v2| f(key, v1).cmp(&f(key, v2)))
}
/// Groups elements from the `GroupingMap` source by key and sums them.
///
/// This is just a shorthand for `self.reduce(|acc, _, val| acc + val)`.
/// It is more limited than `Iterator::sum` since it doesn't use the `Sum` trait.
///
/// Returns a `HashMap` associating the key of each group with the sum of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .sum();
///
/// assert_eq!(lookup[&0], 3 + 9 + 12);
/// assert_eq!(lookup[&1], 1 + 4 + 7);
/// assert_eq!(lookup[&2], 5 + 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn sum(self) -> HashMap<K, V>
where
V: Add<V, Output = V>,
{
self.reduce(|acc, _, val| acc + val)
}
/// Groups elements from the `GroupingMap` source by key and multiply them.
///
/// This is just a shorthand for `self.reduce(|acc, _, val| acc * val)`.
/// It is more limited than `Iterator::product` since it doesn't use the `Product` trait.
///
/// Returns a `HashMap` associating the key of each group with the product of that group's elements.
///
/// ```
/// use itertools::Itertools;
///
/// let lookup = vec![1, 3, 4, 5, 7, 8, 9, 12].into_iter()
/// .into_grouping_map_by(|&n| n % 3)
/// .product();
///
/// assert_eq!(lookup[&0], 3 * 9 * 12);
/// assert_eq!(lookup[&1], 1 * 4 * 7);
/// assert_eq!(lookup[&2], 5 * 8);
/// assert_eq!(lookup.len(), 3);
/// ```
pub fn product(self) -> HashMap<K, V>
where
V: Mul<V, Output = V>,
{
self.reduce(|acc, _, val| acc * val)
}
}

34
vendor/itertools/src/impl_macros.rs vendored Normal file
View File

@@ -0,0 +1,34 @@
//!
//! Implementation's internal macros
macro_rules! debug_fmt_fields {
($tyname:ident, $($($field:tt/*TODO ideally we would accept ident or tuple element here*/).+),*) => {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
f.debug_struct(stringify!($tyname))
$(
.field(stringify!($($field).+), &self.$($field).+)
)*
.finish()
}
}
}
macro_rules! clone_fields {
($($field:ident),*) => {
#[inline] // TODO is this sensible?
fn clone(&self) -> Self {
Self {
$($field: self.$field.clone(),)*
}
}
}
}
macro_rules! ignore_ident{
($id:ident, $($t:tt)*) => {$($t)*};
}
macro_rules! count_ident {
() => {0};
($i0:ident $($i:ident)*) => {1 + count_ident!($($i)*)};
}

142
vendor/itertools/src/intersperse.rs vendored Normal file
View File

@@ -0,0 +1,142 @@
use super::size_hint;
use std::iter::{Fuse, FusedIterator};
pub trait IntersperseElement<Item> {
fn generate(&mut self) -> Item;
}
#[derive(Debug, Clone)]
pub struct IntersperseElementSimple<Item>(Item);
impl<Item: Clone> IntersperseElement<Item> for IntersperseElementSimple<Item> {
fn generate(&mut self) -> Item {
self.0.clone()
}
}
/// An iterator adaptor to insert a particular value
/// between each element of the adapted iterator.
///
/// Iterator element type is `I::Item`
///
/// This iterator is *fused*.
///
/// See [`.intersperse()`](crate::Itertools::intersperse) for more information.
pub type Intersperse<I> = IntersperseWith<I, IntersperseElementSimple<<I as Iterator>::Item>>;
/// Create a new Intersperse iterator
pub fn intersperse<I>(iter: I, elt: I::Item) -> Intersperse<I>
where
I: Iterator,
{
intersperse_with(iter, IntersperseElementSimple(elt))
}
impl<Item, F: FnMut() -> Item> IntersperseElement<Item> for F {
fn generate(&mut self) -> Item {
self()
}
}
/// An iterator adaptor to insert a particular value created by a function
/// between each element of the adapted iterator.
///
/// Iterator element type is `I::Item`
///
/// This iterator is *fused*.
///
/// See [`.intersperse_with()`](crate::Itertools::intersperse_with) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct IntersperseWith<I, ElemF>
where
I: Iterator,
{
element: ElemF,
iter: Fuse<I>,
/// `peek` is None while no item have been taken out of `iter` (at definition).
/// Then `peek` will alternatively be `Some(None)` and `Some(Some(item))`,
/// where `None` indicates it's time to generate from `element` (unless `iter` is empty).
peek: Option<Option<I::Item>>,
}
/// Create a new `IntersperseWith` iterator
pub fn intersperse_with<I, ElemF>(iter: I, elt: ElemF) -> IntersperseWith<I, ElemF>
where
I: Iterator,
{
IntersperseWith {
peek: None,
iter: iter.fuse(),
element: elt,
}
}
impl<I, ElemF> Iterator for IntersperseWith<I, ElemF>
where
I: Iterator,
ElemF: IntersperseElement<I::Item>,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let Self {
element,
iter,
peek,
} = self;
match peek {
Some(item @ Some(_)) => item.take(),
Some(None) => match iter.next() {
new @ Some(_) => {
*peek = Some(new);
Some(element.generate())
}
None => None,
},
None => {
*peek = Some(None);
iter.next()
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let mut sh = self.iter.size_hint();
sh = size_hint::add(sh, sh);
match self.peek {
Some(Some(_)) => size_hint::add_scalar(sh, 1),
Some(None) => sh,
None => size_hint::sub_scalar(sh, 1),
}
}
fn fold<B, F>(self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let Self {
mut element,
mut iter,
peek,
} = self;
let mut accum = init;
if let Some(x) = peek.unwrap_or_else(|| iter.next()) {
accum = f(accum, x);
}
iter.fold(accum, |accum, x| {
let accum = f(accum, element.generate());
f(accum, x)
})
}
}
impl<I, ElemF> FusedIterator for IntersperseWith<I, ElemF>
where
I: Iterator,
ElemF: IntersperseElement<I::Item>,
{
}

116
vendor/itertools/src/iter_index.rs vendored Normal file
View File

@@ -0,0 +1,116 @@
use core::iter::{Skip, Take};
use core::ops::{Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive};
#[cfg(doc)]
use crate::Itertools;
mod private_iter_index {
use core::ops;
pub trait Sealed {}
impl Sealed for ops::Range<usize> {}
impl Sealed for ops::RangeInclusive<usize> {}
impl Sealed for ops::RangeTo<usize> {}
impl Sealed for ops::RangeToInclusive<usize> {}
impl Sealed for ops::RangeFrom<usize> {}
impl Sealed for ops::RangeFull {}
}
/// Used by [`Itertools::get`] to know which iterator
/// to turn different ranges into.
pub trait IteratorIndex<I>: private_iter_index::Sealed
where
I: Iterator,
{
/// The type returned for this type of index.
type Output: Iterator<Item = I::Item>;
/// Returns an adapted iterator for the current index.
///
/// Prefer calling [`Itertools::get`] instead
/// of calling this directly.
fn index(self, from: I) -> Self::Output;
}
impl<I> IteratorIndex<I> for Range<usize>
where
I: Iterator,
{
type Output = Skip<Take<I>>;
fn index(self, iter: I) -> Self::Output {
iter.take(self.end).skip(self.start)
}
}
impl<I> IteratorIndex<I> for RangeInclusive<usize>
where
I: Iterator,
{
type Output = Take<Skip<I>>;
fn index(self, iter: I) -> Self::Output {
// end - start + 1 without overflowing if possible
let length = if *self.end() == usize::MAX {
assert_ne!(*self.start(), 0);
self.end() - self.start() + 1
} else {
(self.end() + 1).saturating_sub(*self.start())
};
iter.skip(*self.start()).take(length)
}
}
impl<I> IteratorIndex<I> for RangeTo<usize>
where
I: Iterator,
{
type Output = Take<I>;
fn index(self, iter: I) -> Self::Output {
iter.take(self.end)
}
}
impl<I> IteratorIndex<I> for RangeToInclusive<usize>
where
I: Iterator,
{
type Output = Take<I>;
fn index(self, iter: I) -> Self::Output {
assert_ne!(self.end, usize::MAX);
iter.take(self.end + 1)
}
}
impl<I> IteratorIndex<I> for RangeFrom<usize>
where
I: Iterator,
{
type Output = Skip<I>;
fn index(self, iter: I) -> Self::Output {
iter.skip(self.start)
}
}
impl<I> IteratorIndex<I> for RangeFull
where
I: Iterator,
{
type Output = I;
fn index(self, iter: I) -> Self::Output {
iter
}
}
pub fn get<I, R>(iter: I, index: R) -> R::Output
where
I: IntoIterator,
R: IteratorIndex<I::IntoIter>,
{
index.index(iter.into_iter())
}

138
vendor/itertools/src/k_smallest.rs vendored Normal file
View File

@@ -0,0 +1,138 @@
use alloc::vec::Vec;
use core::cmp::Ordering;
/// Consumes a given iterator, returning the minimum elements in **ascending** order.
pub(crate) fn k_smallest_general<I, F>(iter: I, k: usize, mut comparator: F) -> Vec<I::Item>
where
I: Iterator,
F: FnMut(&I::Item, &I::Item) -> Ordering,
{
/// Sift the element currently at `origin` away from the root until it is properly ordered.
///
/// This will leave **larger** elements closer to the root of the heap.
fn sift_down<T, F>(heap: &mut [T], is_less_than: &mut F, mut origin: usize)
where
F: FnMut(&T, &T) -> bool,
{
#[inline]
fn children_of(n: usize) -> (usize, usize) {
(2 * n + 1, 2 * n + 2)
}
while origin < heap.len() {
let (left_idx, right_idx) = children_of(origin);
if left_idx >= heap.len() {
return;
}
let replacement_idx =
if right_idx < heap.len() && is_less_than(&heap[left_idx], &heap[right_idx]) {
right_idx
} else {
left_idx
};
if is_less_than(&heap[origin], &heap[replacement_idx]) {
heap.swap(origin, replacement_idx);
origin = replacement_idx;
} else {
return;
}
}
}
if k == 0 {
iter.last();
return Vec::new();
}
if k == 1 {
return iter.min_by(comparator).into_iter().collect();
}
let mut iter = iter.fuse();
let mut storage: Vec<I::Item> = iter.by_ref().take(k).collect();
let mut is_less_than = move |a: &_, b: &_| comparator(a, b) == Ordering::Less;
// Rearrange the storage into a valid heap by reordering from the second-bottom-most layer up to the root.
// Slightly faster than ordering on each insert, but only by a factor of lg(k).
// The resulting heap has the **largest** item on top.
for i in (0..=(storage.len() / 2)).rev() {
sift_down(&mut storage, &mut is_less_than, i);
}
iter.for_each(|val| {
debug_assert_eq!(storage.len(), k);
if is_less_than(&val, &storage[0]) {
// Treating this as an push-and-pop saves having to write a sift-up implementation.
// https://en.wikipedia.org/wiki/Binary_heap#Insert_then_extract
storage[0] = val;
// We retain the smallest items we've seen so far, but ordered largest first so we can drop the largest efficiently.
sift_down(&mut storage, &mut is_less_than, 0);
}
});
// Ultimately the items need to be in least-first, strict order, but the heap is currently largest-first.
// To achieve this, repeatedly,
// 1) "pop" the largest item off the heap into the tail slot of the underlying storage,
// 2) shrink the logical size of the heap by 1,
// 3) restore the heap property over the remaining items.
let mut heap = &mut storage[..];
while heap.len() > 1 {
let last_idx = heap.len() - 1;
heap.swap(0, last_idx);
// Sifting over a truncated slice means that the sifting will not disturb already popped elements.
heap = &mut heap[..last_idx];
sift_down(heap, &mut is_less_than, 0);
}
storage
}
pub(crate) fn k_smallest_relaxed_general<I, F>(iter: I, k: usize, mut comparator: F) -> Vec<I::Item>
where
I: Iterator,
F: FnMut(&I::Item, &I::Item) -> Ordering,
{
if k == 0 {
iter.last();
return Vec::new();
}
let mut iter = iter.fuse();
let mut buf = iter.by_ref().take(2 * k).collect::<Vec<_>>();
if buf.len() < k {
buf.sort_unstable_by(&mut comparator);
return buf;
}
buf.select_nth_unstable_by(k - 1, &mut comparator);
buf.truncate(k);
iter.for_each(|val| {
if comparator(&val, &buf[k - 1]) != Ordering::Less {
return;
}
assert_ne!(buf.len(), buf.capacity());
buf.push(val);
if buf.len() == 2 * k {
buf.select_nth_unstable_by(k - 1, &mut comparator);
buf.truncate(k);
}
});
buf.sort_unstable_by(&mut comparator);
buf.truncate(k);
buf
}
#[inline]
pub(crate) fn key_to_cmp<T, K, F>(mut key: F) -> impl FnMut(&T, &T) -> Ordering
where
F: FnMut(&T) -> K,
K: Ord,
{
move |a, b| key(a).cmp(&key(b))
}

239
vendor/itertools/src/kmerge_impl.rs vendored Normal file
View File

@@ -0,0 +1,239 @@
use crate::size_hint;
use alloc::vec::Vec;
use std::fmt;
use std::iter::FusedIterator;
use std::mem::replace;
/// Head element and Tail iterator pair
///
/// `PartialEq`, `Eq`, `PartialOrd` and `Ord` are implemented by comparing sequences based on
/// first items (which are guaranteed to exist).
///
/// The meanings of `PartialOrd` and `Ord` are reversed so as to turn the heap used in
/// `KMerge` into a min-heap.
#[derive(Debug)]
struct HeadTail<I>
where
I: Iterator,
{
head: I::Item,
tail: I,
}
impl<I> HeadTail<I>
where
I: Iterator,
{
/// Constructs a `HeadTail` from an `Iterator`. Returns `None` if the `Iterator` is empty.
fn new(mut it: I) -> Option<Self> {
let head = it.next();
head.map(|h| Self { head: h, tail: it })
}
/// Get the next element and update `head`, returning the old head in `Some`.
///
/// Returns `None` when the tail is exhausted (only `head` then remains).
fn next(&mut self) -> Option<I::Item> {
if let Some(next) = self.tail.next() {
Some(replace(&mut self.head, next))
} else {
None
}
}
/// Hints at the size of the sequence, same as the `Iterator` method.
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.tail.size_hint(), 1)
}
}
impl<I> Clone for HeadTail<I>
where
I: Iterator + Clone,
I::Item: Clone,
{
clone_fields!(head, tail);
}
/// Make `data` a heap (min-heap w.r.t the sorting).
fn heapify<T, S>(data: &mut [T], mut less_than: S)
where
S: FnMut(&T, &T) -> bool,
{
for i in (0..data.len() / 2).rev() {
sift_down(data, i, &mut less_than);
}
}
/// Sift down element at `index` (`heap` is a min-heap wrt the ordering)
fn sift_down<T, S>(heap: &mut [T], index: usize, mut less_than: S)
where
S: FnMut(&T, &T) -> bool,
{
debug_assert!(index <= heap.len());
let mut pos = index;
let mut child = 2 * pos + 1;
// Require the right child to be present
// This allows to find the index of the smallest child without a branch
// that wouldn't be predicted if present
while child + 1 < heap.len() {
// pick the smaller of the two children
// use arithmetic to avoid an unpredictable branch
child += less_than(&heap[child + 1], &heap[child]) as usize;
// sift down is done if we are already in order
if !less_than(&heap[child], &heap[pos]) {
return;
}
heap.swap(pos, child);
pos = child;
child = 2 * pos + 1;
}
// Check if the last (left) child was an only child
// if it is then it has to be compared with the parent
if child + 1 == heap.len() && less_than(&heap[child], &heap[pos]) {
heap.swap(pos, child);
}
}
/// An iterator adaptor that merges an abitrary number of base iterators in ascending order.
/// If all base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge()`](crate::Itertools::kmerge) for more information.
pub type KMerge<I> = KMergeBy<I, KMergeByLt>;
pub trait KMergePredicate<T> {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool;
}
#[derive(Clone, Debug)]
pub struct KMergeByLt;
impl<T: PartialOrd> KMergePredicate<T> for KMergeByLt {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
a < b
}
}
impl<T, F: FnMut(&T, &T) -> bool> KMergePredicate<T> for F {
fn kmerge_pred(&mut self, a: &T, b: &T) -> bool {
self(a, b)
}
}
/// Create an iterator that merges elements of the contained iterators using
/// the ordering function.
///
/// [`IntoIterator`] enabled version of [`Itertools::kmerge`](crate::Itertools::kmerge).
///
/// ```
/// use itertools::kmerge;
///
/// for elt in kmerge(vec![vec![0, 2, 4], vec![1, 3, 5], vec![6, 7]]) {
/// /* loop body */
/// # let _ = elt;
/// }
/// ```
pub fn kmerge<I>(iterable: I) -> KMerge<<I::Item as IntoIterator>::IntoIter>
where
I: IntoIterator,
I::Item: IntoIterator,
<<I as IntoIterator>::Item as IntoIterator>::Item: PartialOrd,
{
kmerge_by(iterable, KMergeByLt)
}
/// An iterator adaptor that merges an abitrary number of base iterators
/// according to an ordering function.
///
/// Iterator element type is `I::Item`.
///
/// See [`.kmerge_by()`](crate::Itertools::kmerge_by) for more
/// information.
#[must_use = "this iterator adaptor is not lazy but does nearly nothing unless consumed"]
pub struct KMergeBy<I, F>
where
I: Iterator,
{
heap: Vec<HeadTail<I>>,
less_than: F,
}
impl<I, F> fmt::Debug for KMergeBy<I, F>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(KMergeBy, heap);
}
/// Create an iterator that merges elements of the contained iterators.
///
/// [`IntoIterator`] enabled version of [`Itertools::kmerge_by`](crate::Itertools::kmerge_by).
pub fn kmerge_by<I, F>(
iterable: I,
mut less_than: F,
) -> KMergeBy<<I::Item as IntoIterator>::IntoIter, F>
where
I: IntoIterator,
I::Item: IntoIterator,
F: KMergePredicate<<<I as IntoIterator>::Item as IntoIterator>::Item>,
{
let iter = iterable.into_iter();
let (lower, _) = iter.size_hint();
let mut heap: Vec<_> = Vec::with_capacity(lower);
heap.extend(iter.filter_map(|it| HeadTail::new(it.into_iter())));
heapify(&mut heap, |a, b| less_than.kmerge_pred(&a.head, &b.head));
KMergeBy { heap, less_than }
}
impl<I, F> Clone for KMergeBy<I, F>
where
I: Iterator + Clone,
I::Item: Clone,
F: Clone,
{
clone_fields!(heap, less_than);
}
impl<I, F> Iterator for KMergeBy<I, F>
where
I: Iterator,
F: KMergePredicate<I::Item>,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.heap.is_empty() {
return None;
}
let result = if let Some(next) = self.heap[0].next() {
next
} else {
self.heap.swap_remove(0).head
};
let less_than = &mut self.less_than;
sift_down(&mut self.heap, 0, |a, b| {
less_than.kmerge_pred(&a.head, &b.head)
});
Some(result)
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.heap
.iter()
.map(|i| i.size_hint())
.reduce(size_hint::add)
.unwrap_or((0, Some(0)))
}
}
impl<I, F> FusedIterator for KMergeBy<I, F>
where
I: Iterator,
F: KMergePredicate<I::Item>,
{
}

79
vendor/itertools/src/lazy_buffer.rs vendored Normal file
View File

@@ -0,0 +1,79 @@
use alloc::vec::Vec;
use std::iter::Fuse;
use std::ops::Index;
use crate::size_hint::{self, SizeHint};
#[derive(Debug, Clone)]
pub struct LazyBuffer<I: Iterator> {
it: Fuse<I>,
buffer: Vec<I::Item>,
}
impl<I> LazyBuffer<I>
where
I: Iterator,
{
pub fn new(it: I) -> Self {
Self {
it: it.fuse(),
buffer: Vec::new(),
}
}
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn size_hint(&self) -> SizeHint {
size_hint::add_scalar(self.it.size_hint(), self.len())
}
pub fn count(self) -> usize {
self.len() + self.it.count()
}
pub fn get_next(&mut self) -> bool {
if let Some(x) = self.it.next() {
self.buffer.push(x);
true
} else {
false
}
}
pub fn prefill(&mut self, len: usize) {
let buffer_len = self.buffer.len();
if len > buffer_len {
let delta = len - buffer_len;
self.buffer.extend(self.it.by_ref().take(delta));
}
}
}
impl<I> LazyBuffer<I>
where
I: Iterator,
I::Item: Clone,
{
pub fn get_at(&self, indices: &[usize]) -> Vec<I::Item> {
indices.iter().map(|i| self.buffer[*i].clone()).collect()
}
pub fn get_array<const K: usize>(&self, indices: [usize; K]) -> [I::Item; K] {
indices.map(|i| self.buffer[i].clone())
}
}
impl<I, J> Index<J> for LazyBuffer<I>
where
I: Iterator,
I::Item: Sized,
Vec<I::Item>: Index<J>,
{
type Output = <Vec<I::Item> as Index<J>>::Output;
fn index(&self, index: J) -> &Self::Output {
self.buffer.index(index)
}
}

4713
vendor/itertools/src/lib.rs vendored Normal file

File diff suppressed because it is too large Load Diff

348
vendor/itertools/src/merge_join.rs vendored Normal file
View File

@@ -0,0 +1,348 @@
use std::cmp::Ordering;
use std::fmt;
use std::iter::{Fuse, FusedIterator};
use std::marker::PhantomData;
use either::Either;
use super::adaptors::{put_back, PutBack};
use crate::either_or_both::EitherOrBoth;
use crate::size_hint::{self, SizeHint};
#[cfg(doc)]
use crate::Itertools;
#[derive(Clone, Debug)]
pub struct MergeLte;
/// An iterator adaptor that merges the two base iterators in ascending order.
/// If both base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.merge()`](crate::Itertools::merge_by) for more information.
pub type Merge<I, J> = MergeBy<I, J, MergeLte>;
/// Create an iterator that merges elements in `i` and `j`.
///
/// [`IntoIterator`] enabled version of [`Itertools::merge`](crate::Itertools::merge).
///
/// ```
/// use itertools::merge;
///
/// for elt in merge(&[1, 2, 3], &[2, 3, 4]) {
/// /* loop body */
/// # let _ = elt;
/// }
/// ```
pub fn merge<I, J>(
i: I,
j: J,
) -> Merge<<I as IntoIterator>::IntoIter, <J as IntoIterator>::IntoIter>
where
I: IntoIterator,
J: IntoIterator<Item = I::Item>,
I::Item: PartialOrd,
{
merge_by_new(i, j, MergeLte)
}
/// An iterator adaptor that merges the two base iterators in ascending order.
/// If both base iterators are sorted (ascending), the result is sorted.
///
/// Iterator element type is `I::Item`.
///
/// See [`.merge_by()`](crate::Itertools::merge_by) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MergeBy<I: Iterator, J: Iterator, F> {
left: PutBack<Fuse<I>>,
right: PutBack<Fuse<J>>,
cmp_fn: F,
}
/// Create a `MergeBy` iterator.
pub fn merge_by_new<I, J, F>(a: I, b: J, cmp: F) -> MergeBy<I::IntoIter, J::IntoIter, F>
where
I: IntoIterator,
J: IntoIterator<Item = I::Item>,
{
MergeBy {
left: put_back(a.into_iter().fuse()),
right: put_back(b.into_iter().fuse()),
cmp_fn: cmp,
}
}
/// Return an iterator adaptor that merge-joins items from the two base iterators in ascending order.
///
/// [`IntoIterator`] enabled version of [`Itertools::merge_join_by`].
pub fn merge_join_by<I, J, F, T>(
left: I,
right: J,
cmp_fn: F,
) -> MergeJoinBy<I::IntoIter, J::IntoIter, F>
where
I: IntoIterator,
J: IntoIterator,
F: FnMut(&I::Item, &J::Item) -> T,
{
MergeBy {
left: put_back(left.into_iter().fuse()),
right: put_back(right.into_iter().fuse()),
cmp_fn: MergeFuncLR(cmp_fn, PhantomData),
}
}
/// An iterator adaptor that merge-joins items from the two base iterators in ascending order.
///
/// See [`.merge_join_by()`](crate::Itertools::merge_join_by) for more information.
pub type MergeJoinBy<I, J, F> =
MergeBy<I, J, MergeFuncLR<F, <F as FuncLR<<I as Iterator>::Item, <J as Iterator>::Item>>::T>>;
#[derive(Clone, Debug)]
pub struct MergeFuncLR<F, T>(F, PhantomData<T>);
pub trait FuncLR<L, R> {
type T;
}
impl<L, R, T, F: FnMut(&L, &R) -> T> FuncLR<L, R> for F {
type T = T;
}
pub trait OrderingOrBool<L, R> {
type MergeResult;
fn left(left: L) -> Self::MergeResult;
fn right(right: R) -> Self::MergeResult;
// "merge" never returns (Some(...), Some(...), ...) so Option<Either<I::Item, J::Item>>
// is appealing but it is always followed by two put_backs, so we think the compiler is
// smart enough to optimize it. Or we could move put_backs into "merge".
fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult);
fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint;
}
impl<L, R, F: FnMut(&L, &R) -> Ordering> OrderingOrBool<L, R> for MergeFuncLR<F, Ordering> {
type MergeResult = EitherOrBoth<L, R>;
fn left(left: L) -> Self::MergeResult {
EitherOrBoth::Left(left)
}
fn right(right: R) -> Self::MergeResult {
EitherOrBoth::Right(right)
}
fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult) {
match self.0(&left, &right) {
Ordering::Equal => (None, EitherOrBoth::Both(left, right)),
Ordering::Less => (Some(Either::Right(right)), EitherOrBoth::Left(left)),
Ordering::Greater => (Some(Either::Left(left)), EitherOrBoth::Right(right)),
}
}
fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint {
let (a_lower, a_upper) = left;
let (b_lower, b_upper) = right;
let lower = ::std::cmp::max(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None,
};
(lower, upper)
}
}
impl<L, R, F: FnMut(&L, &R) -> bool> OrderingOrBool<L, R> for MergeFuncLR<F, bool> {
type MergeResult = Either<L, R>;
fn left(left: L) -> Self::MergeResult {
Either::Left(left)
}
fn right(right: R) -> Self::MergeResult {
Either::Right(right)
}
fn merge(&mut self, left: L, right: R) -> (Option<Either<L, R>>, Self::MergeResult) {
if self.0(&left, &right) {
(Some(Either::Right(right)), Either::Left(left))
} else {
(Some(Either::Left(left)), Either::Right(right))
}
}
fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint {
// Not ExactSizeIterator because size may be larger than usize
size_hint::add(left, right)
}
}
impl<T, F: FnMut(&T, &T) -> bool> OrderingOrBool<T, T> for F {
type MergeResult = T;
fn left(left: T) -> Self::MergeResult {
left
}
fn right(right: T) -> Self::MergeResult {
right
}
fn merge(&mut self, left: T, right: T) -> (Option<Either<T, T>>, Self::MergeResult) {
if self(&left, &right) {
(Some(Either::Right(right)), left)
} else {
(Some(Either::Left(left)), right)
}
}
fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint {
// Not ExactSizeIterator because size may be larger than usize
size_hint::add(left, right)
}
}
impl<T: PartialOrd> OrderingOrBool<T, T> for MergeLte {
type MergeResult = T;
fn left(left: T) -> Self::MergeResult {
left
}
fn right(right: T) -> Self::MergeResult {
right
}
fn merge(&mut self, left: T, right: T) -> (Option<Either<T, T>>, Self::MergeResult) {
if left <= right {
(Some(Either::Right(right)), left)
} else {
(Some(Either::Left(left)), right)
}
}
fn size_hint(left: SizeHint, right: SizeHint) -> SizeHint {
// Not ExactSizeIterator because size may be larger than usize
size_hint::add(left, right)
}
}
impl<I, J, F> Clone for MergeBy<I, J, F>
where
I: Iterator,
J: Iterator,
PutBack<Fuse<I>>: Clone,
PutBack<Fuse<J>>: Clone,
F: Clone,
{
clone_fields!(left, right, cmp_fn);
}
impl<I, J, F> fmt::Debug for MergeBy<I, J, F>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
J: Iterator + fmt::Debug,
J::Item: fmt::Debug,
{
debug_fmt_fields!(MergeBy, left, right);
}
impl<I, J, F> Iterator for MergeBy<I, J, F>
where
I: Iterator,
J: Iterator,
F: OrderingOrBool<I::Item, J::Item>,
{
type Item = F::MergeResult;
fn next(&mut self) -> Option<Self::Item> {
match (self.left.next(), self.right.next()) {
(None, None) => None,
(Some(left), None) => Some(F::left(left)),
(None, Some(right)) => Some(F::right(right)),
(Some(left), Some(right)) => {
let (not_next, next) = self.cmp_fn.merge(left, right);
match not_next {
Some(Either::Left(l)) => {
self.left.put_back(l);
}
Some(Either::Right(r)) => {
self.right.put_back(r);
}
None => (),
}
Some(next)
}
}
}
fn fold<B, G>(mut self, init: B, mut f: G) -> B
where
Self: Sized,
G: FnMut(B, Self::Item) -> B,
{
let mut acc = init;
let mut left = self.left.next();
let mut right = self.right.next();
loop {
match (left, right) {
(Some(l), Some(r)) => match self.cmp_fn.merge(l, r) {
(Some(Either::Right(r)), x) => {
acc = f(acc, x);
left = self.left.next();
right = Some(r);
}
(Some(Either::Left(l)), x) => {
acc = f(acc, x);
left = Some(l);
right = self.right.next();
}
(None, x) => {
acc = f(acc, x);
left = self.left.next();
right = self.right.next();
}
},
(Some(l), None) => {
self.left.put_back(l);
acc = self.left.fold(acc, |acc, x| f(acc, F::left(x)));
break;
}
(None, Some(r)) => {
self.right.put_back(r);
acc = self.right.fold(acc, |acc, x| f(acc, F::right(x)));
break;
}
(None, None) => {
break;
}
}
}
acc
}
fn size_hint(&self) -> SizeHint {
F::size_hint(self.left.size_hint(), self.right.size_hint())
}
fn nth(&mut self, mut n: usize) -> Option<Self::Item> {
loop {
if n == 0 {
break self.next();
}
n -= 1;
match (self.left.next(), self.right.next()) {
(None, None) => break None,
(Some(_left), None) => break self.left.nth(n).map(F::left),
(None, Some(_right)) => break self.right.nth(n).map(F::right),
(Some(left), Some(right)) => {
let (not_next, _) = self.cmp_fn.merge(left, right);
match not_next {
Some(Either::Left(l)) => {
self.left.put_back(l);
}
Some(Either::Right(r)) => {
self.right.put_back(r);
}
None => (),
}
}
}
}
}
}
impl<I, J, F> FusedIterator for MergeBy<I, J, F>
where
I: Iterator,
J: Iterator,
F: OrderingOrBool<I::Item, J::Item>,
{
}

116
vendor/itertools/src/minmax.rs vendored Normal file
View File

@@ -0,0 +1,116 @@
/// `MinMaxResult` is an enum returned by `minmax`.
///
/// See [`.minmax()`](crate::Itertools::minmax) for more detail.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum MinMaxResult<T> {
/// Empty iterator
NoElements,
/// Iterator with one element, so the minimum and maximum are the same
OneElement(T),
/// More than one element in the iterator, the first element is not larger
/// than the second
MinMax(T, T),
}
impl<T: Clone> MinMaxResult<T> {
/// `into_option` creates an `Option` of type `(T, T)`. The returned `Option`
/// has variant `None` if and only if the `MinMaxResult` has variant
/// `NoElements`. Otherwise `Some((x, y))` is returned where `x <= y`.
/// If the `MinMaxResult` has variant `OneElement(x)`, performing this
/// operation will make one clone of `x`.
///
/// # Examples
///
/// ```
/// use itertools::MinMaxResult::{self, NoElements, OneElement, MinMax};
///
/// let r: MinMaxResult<i32> = NoElements;
/// assert_eq!(r.into_option(), None);
///
/// let r = OneElement(1);
/// assert_eq!(r.into_option(), Some((1, 1)));
///
/// let r = MinMax(1, 2);
/// assert_eq!(r.into_option(), Some((1, 2)));
/// ```
pub fn into_option(self) -> Option<(T, T)> {
match self {
Self::NoElements => None,
Self::OneElement(x) => Some((x.clone(), x)),
Self::MinMax(x, y) => Some((x, y)),
}
}
}
/// Implementation guts for `minmax` and `minmax_by_key`.
pub fn minmax_impl<I, K, F, L>(mut it: I, mut key_for: F, mut lt: L) -> MinMaxResult<I::Item>
where
I: Iterator,
F: FnMut(&I::Item) -> K,
L: FnMut(&I::Item, &I::Item, &K, &K) -> bool,
{
let (mut min, mut max, mut min_key, mut max_key) = match it.next() {
None => return MinMaxResult::NoElements,
Some(x) => match it.next() {
None => return MinMaxResult::OneElement(x),
Some(y) => {
let xk = key_for(&x);
let yk = key_for(&y);
if !lt(&y, &x, &yk, &xk) {
(x, y, xk, yk)
} else {
(y, x, yk, xk)
}
}
},
};
loop {
// `first` and `second` are the two next elements we want to look
// at. We first compare `first` and `second` (#1). The smaller one
// is then compared to current minimum (#2). The larger one is
// compared to current maximum (#3). This way we do 3 comparisons
// for 2 elements.
let first = match it.next() {
None => break,
Some(x) => x,
};
let second = match it.next() {
None => {
let first_key = key_for(&first);
if lt(&first, &min, &first_key, &min_key) {
min = first;
} else if !lt(&first, &max, &first_key, &max_key) {
max = first;
}
break;
}
Some(x) => x,
};
let first_key = key_for(&first);
let second_key = key_for(&second);
if !lt(&second, &first, &second_key, &first_key) {
if lt(&first, &min, &first_key, &min_key) {
min = first;
min_key = first_key;
}
if !lt(&second, &max, &second_key, &max_key) {
max = second;
max_key = second_key;
}
} else {
if lt(&second, &min, &second_key, &min_key) {
min = second;
min_key = second_key;
}
if !lt(&first, &max, &first_key, &max_key) {
max = first;
max_key = first_key;
}
}
}
MinMaxResult::MinMax(min, max)
}

116
vendor/itertools/src/multipeek_impl.rs vendored Normal file
View File

@@ -0,0 +1,116 @@
use crate::size_hint;
#[cfg(doc)]
use crate::Itertools;
use crate::PeekingNext;
use alloc::collections::VecDeque;
use std::iter::Fuse;
/// See [`multipeek()`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct MultiPeek<I>
where
I: Iterator,
{
iter: Fuse<I>,
buf: VecDeque<I::Item>,
index: usize,
}
/// An iterator adaptor that allows the user to peek at multiple `.next()`
/// values without advancing the base iterator.
///
/// [`IntoIterator`] enabled version of [`Itertools::multipeek`].
pub fn multipeek<I>(iterable: I) -> MultiPeek<I::IntoIter>
where
I: IntoIterator,
{
MultiPeek {
iter: iterable.into_iter().fuse(),
buf: VecDeque::new(),
index: 0,
}
}
impl<I> MultiPeek<I>
where
I: Iterator,
{
/// Reset the peeking “cursor”
pub fn reset_peek(&mut self) {
self.index = 0;
}
}
impl<I: Iterator> MultiPeek<I> {
/// Works exactly like `.next()` with the only difference that it doesn't
/// advance itself. `.peek()` can be called multiple times, to peek
/// further ahead.
/// When `.next()` is called, reset the peeking “cursor”.
pub fn peek(&mut self) -> Option<&I::Item> {
let ret = if self.index < self.buf.len() {
Some(&self.buf[self.index])
} else {
match self.iter.next() {
Some(x) => {
self.buf.push_back(x);
Some(&self.buf[self.index])
}
None => return None,
}
};
self.index += 1;
ret
}
}
impl<I> PeekingNext for MultiPeek<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
if self.buf.is_empty() {
if let Some(r) = self.peek() {
if !accept(r) {
return None;
}
}
} else if let Some(r) = self.buf.front() {
if !accept(r) {
return None;
}
}
self.next()
}
}
impl<I> Iterator for MultiPeek<I>
where
I: Iterator,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.index = 0;
self.buf.pop_front().or_else(|| self.iter.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
init = self.buf.into_iter().fold(init, &mut f);
self.iter.fold(init, f)
}
}
// Same size
impl<I> ExactSizeIterator for MultiPeek<I> where I: ExactSizeIterator {}

269
vendor/itertools/src/next_array.rs vendored Normal file
View File

@@ -0,0 +1,269 @@
use core::mem::{self, MaybeUninit};
/// An array of at most `N` elements.
struct ArrayBuilder<T, const N: usize> {
/// The (possibly uninitialized) elements of the `ArrayBuilder`.
///
/// # Safety
///
/// The elements of `arr[..len]` are valid `T`s.
arr: [MaybeUninit<T>; N],
/// The number of leading elements of `arr` that are valid `T`s, len <= N.
len: usize,
}
impl<T, const N: usize> ArrayBuilder<T, N> {
/// Initializes a new, empty `ArrayBuilder`.
pub fn new() -> Self {
// SAFETY: The safety invariant of `arr` trivially holds for `len = 0`.
Self {
arr: [(); N].map(|_| MaybeUninit::uninit()),
len: 0,
}
}
/// Pushes `value` onto the end of the array.
///
/// # Panics
///
/// This panics if `self.len >= N`.
#[inline(always)]
pub fn push(&mut self, value: T) {
// PANICS: This will panic if `self.len >= N`.
let place = &mut self.arr[self.len];
// SAFETY: The safety invariant of `self.arr` applies to elements at
// indices `0..self.len` — not to the element at `self.len`. Writing to
// the element at index `self.len` therefore does not violate the safety
// invariant of `self.arr`. Even if this line panics, we have not
// created any intermediate invalid state.
*place = MaybeUninit::new(value);
// Lemma: `self.len < N`. By invariant, `self.len <= N`. Above, we index
// into `self.arr`, which has size `N`, at index `self.len`. If `self.len == N`
// at that point, that index would be out-of-bounds, and the index
// operation would panic. Thus, `self.len != N`, and since `self.len <= N`,
// that means that `self.len < N`.
//
// PANICS: Since `self.len < N`, and since `N <= usize::MAX`,
// `self.len + 1 <= usize::MAX`, and so `self.len += 1` will not
// overflow. Overflow is the only panic condition of `+=`.
//
// SAFETY:
// - We are required to uphold the invariant that `self.len <= N`.
// Since, by the preceding lemma, `self.len < N` at this point in the
// code, `self.len += 1` results in `self.len <= N`.
// - We are required to uphold the invariant that `self.arr[..self.len]`
// are valid instances of `T`. Since this invariant already held when
// this method was called, and since we only increment `self.len`
// by 1 here, we only need to prove that the element at
// `self.arr[self.len]` (using the value of `self.len` before incrementing)
// is valid. Above, we construct `place` to point to `self.arr[self.len]`,
// and then initialize `*place` to `MaybeUninit::new(value)`, which is
// a valid `T` by construction.
self.len += 1;
}
/// Consumes the elements in the `ArrayBuilder` and returns them as an array
/// `[T; N]`.
///
/// If `self.len() < N`, this returns `None`.
pub fn take(&mut self) -> Option<[T; N]> {
if self.len == N {
// SAFETY: Decreasing the value of `self.len` cannot violate the
// safety invariant on `self.arr`.
self.len = 0;
// SAFETY: Since `self.len` is 0, `self.arr` may safely contain
// uninitialized elements.
let arr = mem::replace(&mut self.arr, [(); N].map(|_| MaybeUninit::uninit()));
Some(arr.map(|v| {
// SAFETY: We know that all elements of `arr` are valid because
// we checked that `len == N`.
unsafe { v.assume_init() }
}))
} else {
None
}
}
}
impl<T, const N: usize> AsMut<[T]> for ArrayBuilder<T, N> {
fn as_mut(&mut self) -> &mut [T] {
let valid = &mut self.arr[..self.len];
// SAFETY: By invariant on `self.arr`, the elements of `self.arr` at
// indices `0..self.len` are in a valid state. Since `valid` references
// only these elements, the safety precondition of
// `slice_assume_init_mut` is satisfied.
unsafe { slice_assume_init_mut(valid) }
}
}
impl<T, const N: usize> Drop for ArrayBuilder<T, N> {
// We provide a non-trivial `Drop` impl, because the trivial impl would be a
// no-op; `MaybeUninit<T>` has no innate awareness of its own validity, and
// so it can only forget its contents. By leveraging the safety invariant of
// `self.arr`, we do know which elements of `self.arr` are valid, and can
// selectively run their destructors.
fn drop(&mut self) {
// SAFETY:
// - by invariant on `&mut [T]`, `self.as_mut()` is:
// - valid for reads and writes
// - properly aligned
// - non-null
// - the dropped `T` are valid for dropping; they do not have any
// additional library invariants that we've violated
// - no other pointers to `valid` exist (since we're in the context of
// `drop`)
unsafe { core::ptr::drop_in_place(self.as_mut()) }
}
}
/// Assuming all the elements are initialized, get a mutable slice to them.
///
/// # Safety
///
/// The caller guarantees that the elements `T` referenced by `slice` are in a
/// valid state.
unsafe fn slice_assume_init_mut<T>(slice: &mut [MaybeUninit<T>]) -> &mut [T] {
// SAFETY: Casting `&mut [MaybeUninit<T>]` to `&mut [T]` is sound, because
// `MaybeUninit<T>` is guaranteed to have the same size, alignment and ABI
// as `T`, and because the caller has guaranteed that `slice` is in the
// valid state.
unsafe { &mut *(slice as *mut [MaybeUninit<T>] as *mut [T]) }
}
/// Equivalent to `it.next_array()`.
pub(crate) fn next_array<I, const N: usize>(it: &mut I) -> Option<[I::Item; N]>
where
I: Iterator,
{
let mut builder = ArrayBuilder::new();
for _ in 0..N {
builder.push(it.next()?);
}
builder.take()
}
#[cfg(test)]
mod test {
use super::ArrayBuilder;
#[test]
fn zero_len_take() {
let mut builder = ArrayBuilder::<(), 0>::new();
let taken = builder.take();
assert_eq!(taken, Some([(); 0]));
}
#[test]
#[should_panic]
fn zero_len_push() {
let mut builder = ArrayBuilder::<(), 0>::new();
builder.push(());
}
#[test]
fn push_4() {
let mut builder = ArrayBuilder::<(), 4>::new();
assert_eq!(builder.take(), None);
builder.push(());
assert_eq!(builder.take(), None);
builder.push(());
assert_eq!(builder.take(), None);
builder.push(());
assert_eq!(builder.take(), None);
builder.push(());
assert_eq!(builder.take(), Some([(); 4]));
}
#[test]
fn tracked_drop() {
use std::panic::{catch_unwind, AssertUnwindSafe};
use std::sync::atomic::{AtomicU16, Ordering};
static DROPPED: AtomicU16 = AtomicU16::new(0);
#[derive(Debug, PartialEq)]
struct TrackedDrop;
impl Drop for TrackedDrop {
fn drop(&mut self) {
DROPPED.fetch_add(1, Ordering::Relaxed);
}
}
{
let builder = ArrayBuilder::<TrackedDrop, 0>::new();
assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
drop(builder);
assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
}
{
let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
builder.push(TrackedDrop);
assert_eq!(builder.take(), None);
assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
drop(builder);
assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 1);
}
{
let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
builder.push(TrackedDrop);
builder.push(TrackedDrop);
assert!(matches!(builder.take(), Some(_)));
assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 2);
drop(builder);
assert_eq!(DROPPED.load(Ordering::Relaxed), 0);
}
{
let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
builder.push(TrackedDrop);
builder.push(TrackedDrop);
assert!(catch_unwind(AssertUnwindSafe(|| {
builder.push(TrackedDrop);
}))
.is_err());
assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
drop(builder);
assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 3);
}
{
let mut builder = ArrayBuilder::<TrackedDrop, 2>::new();
builder.push(TrackedDrop);
builder.push(TrackedDrop);
assert!(catch_unwind(AssertUnwindSafe(|| {
builder.push(TrackedDrop);
}))
.is_err());
assert_eq!(DROPPED.load(Ordering::Relaxed), 1);
assert!(matches!(builder.take(), Some(_)));
assert_eq!(DROPPED.load(Ordering::Relaxed), 3);
builder.push(TrackedDrop);
builder.push(TrackedDrop);
assert!(matches!(builder.take(), Some(_)));
assert_eq!(DROPPED.swap(0, Ordering::Relaxed), 5);
}
}
}

124
vendor/itertools/src/pad_tail.rs vendored Normal file
View File

@@ -0,0 +1,124 @@
use crate::size_hint;
use std::iter::{Fuse, FusedIterator};
/// An iterator adaptor that pads a sequence to a minimum length by filling
/// missing elements using a closure.
///
/// Iterator element type is `I::Item`.
///
/// See [`.pad_using()`](crate::Itertools::pad_using) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PadUsing<I, F> {
iter: Fuse<I>,
min: usize,
pos: usize,
filler: F,
}
impl<I, F> std::fmt::Debug for PadUsing<I, F>
where
I: std::fmt::Debug,
{
debug_fmt_fields!(PadUsing, iter, min, pos);
}
/// Create a new `PadUsing` iterator.
pub fn pad_using<I, F>(iter: I, min: usize, filler: F) -> PadUsing<I, F>
where
I: Iterator,
F: FnMut(usize) -> I::Item,
{
PadUsing {
iter: iter.fuse(),
min,
pos: 0,
filler,
}
}
impl<I, F> Iterator for PadUsing<I, F>
where
I: Iterator,
F: FnMut(usize) -> I::Item,
{
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
match self.iter.next() {
None => {
if self.pos < self.min {
let e = Some((self.filler)(self.pos));
self.pos += 1;
e
} else {
None
}
}
e => {
self.pos += 1;
e
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let tail = self.min.saturating_sub(self.pos);
size_hint::max(self.iter.size_hint(), (tail, Some(tail)))
}
fn fold<B, G>(self, mut init: B, mut f: G) -> B
where
G: FnMut(B, Self::Item) -> B,
{
let mut pos = self.pos;
init = self.iter.fold(init, |acc, item| {
pos += 1;
f(acc, item)
});
(pos..self.min).map(self.filler).fold(init, f)
}
}
impl<I, F> DoubleEndedIterator for PadUsing<I, F>
where
I: DoubleEndedIterator + ExactSizeIterator,
F: FnMut(usize) -> I::Item,
{
fn next_back(&mut self) -> Option<Self::Item> {
if self.min == 0 {
self.iter.next_back()
} else if self.iter.len() >= self.min {
self.min -= 1;
self.iter.next_back()
} else {
self.min -= 1;
Some((self.filler)(self.min))
}
}
fn rfold<B, G>(self, mut init: B, mut f: G) -> B
where
G: FnMut(B, Self::Item) -> B,
{
init = (self.iter.len()..self.min)
.map(self.filler)
.rfold(init, &mut f);
self.iter.rfold(init, f)
}
}
impl<I, F> ExactSizeIterator for PadUsing<I, F>
where
I: ExactSizeIterator,
F: FnMut(usize) -> I::Item,
{
}
impl<I, F> FusedIterator for PadUsing<I, F>
where
I: FusedIterator,
F: FnMut(usize) -> I::Item,
{
}

178
vendor/itertools/src/peek_nth.rs vendored Normal file
View File

@@ -0,0 +1,178 @@
use crate::size_hint;
use crate::PeekingNext;
use alloc::collections::VecDeque;
use std::iter::Fuse;
/// See [`peek_nth()`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PeekNth<I>
where
I: Iterator,
{
iter: Fuse<I>,
buf: VecDeque<I::Item>,
}
/// A drop-in replacement for [`std::iter::Peekable`] which adds a `peek_nth`
/// method allowing the user to `peek` at a value several iterations forward
/// without advancing the base iterator.
///
/// This differs from `multipeek` in that subsequent calls to `peek` or
/// `peek_nth` will always return the same value until `next` is called
/// (making `reset_peek` unnecessary).
pub fn peek_nth<I>(iterable: I) -> PeekNth<I::IntoIter>
where
I: IntoIterator,
{
PeekNth {
iter: iterable.into_iter().fuse(),
buf: VecDeque::new(),
}
}
impl<I> PeekNth<I>
where
I: Iterator,
{
/// Works exactly like the `peek` method in [`std::iter::Peekable`].
pub fn peek(&mut self) -> Option<&I::Item> {
self.peek_nth(0)
}
/// Works exactly like the `peek_mut` method in [`std::iter::Peekable`].
pub fn peek_mut(&mut self) -> Option<&mut I::Item> {
self.peek_nth_mut(0)
}
/// Returns a reference to the `nth` value without advancing the iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use itertools::peek_nth;
///
/// let xs = vec![1, 2, 3];
/// let mut iter = peek_nth(xs.into_iter());
///
/// assert_eq!(iter.peek_nth(0), Some(&1));
/// assert_eq!(iter.next(), Some(1));
///
/// // The iterator does not advance even if we call `peek_nth` multiple times
/// assert_eq!(iter.peek_nth(0), Some(&2));
/// assert_eq!(iter.peek_nth(1), Some(&3));
/// assert_eq!(iter.next(), Some(2));
///
/// // Calling `peek_nth` past the end of the iterator will return `None`
/// assert_eq!(iter.peek_nth(1), None);
/// ```
pub fn peek_nth(&mut self, n: usize) -> Option<&I::Item> {
let unbuffered_items = (n + 1).saturating_sub(self.buf.len());
self.buf.extend(self.iter.by_ref().take(unbuffered_items));
self.buf.get(n)
}
/// Returns a mutable reference to the `nth` value without advancing the iterator.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use itertools::peek_nth;
///
/// let xs = vec![1, 2, 3, 4, 5];
/// let mut iter = peek_nth(xs.into_iter());
///
/// assert_eq!(iter.peek_nth_mut(0), Some(&mut 1));
/// assert_eq!(iter.next(), Some(1));
///
/// // The iterator does not advance even if we call `peek_nth_mut` multiple times
/// assert_eq!(iter.peek_nth_mut(0), Some(&mut 2));
/// assert_eq!(iter.peek_nth_mut(1), Some(&mut 3));
/// assert_eq!(iter.next(), Some(2));
///
/// // Peek into the iterator and set the value behind the mutable reference.
/// if let Some(p) = iter.peek_nth_mut(1) {
/// assert_eq!(*p, 4);
/// *p = 9;
/// }
///
/// // The value we put in reappears as the iterator continues.
/// assert_eq!(iter.next(), Some(3));
/// assert_eq!(iter.next(), Some(9));
///
/// // Calling `peek_nth_mut` past the end of the iterator will return `None`
/// assert_eq!(iter.peek_nth_mut(1), None);
/// ```
pub fn peek_nth_mut(&mut self, n: usize) -> Option<&mut I::Item> {
let unbuffered_items = (n + 1).saturating_sub(self.buf.len());
self.buf.extend(self.iter.by_ref().take(unbuffered_items));
self.buf.get_mut(n)
}
/// Works exactly like the `next_if` method in [`std::iter::Peekable`].
pub fn next_if(&mut self, func: impl FnOnce(&I::Item) -> bool) -> Option<I::Item> {
match self.next() {
Some(item) if func(&item) => Some(item),
Some(item) => {
self.buf.push_front(item);
None
}
_ => None,
}
}
/// Works exactly like the `next_if_eq` method in [`std::iter::Peekable`].
pub fn next_if_eq<T>(&mut self, expected: &T) -> Option<I::Item>
where
T: ?Sized,
I::Item: PartialEq<T>,
{
self.next_if(|next| next == expected)
}
}
impl<I> Iterator for PeekNth<I>
where
I: Iterator,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.buf.pop_front().or_else(|| self.iter.next())
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.buf.len())
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
init = self.buf.into_iter().fold(init, &mut f);
self.iter.fold(init, f)
}
}
impl<I> ExactSizeIterator for PeekNth<I> where I: ExactSizeIterator {}
impl<I> PeekingNext for PeekNth<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
self.peek().filter(|item| accept(item))?;
self.next()
}
}

View File

@@ -0,0 +1,201 @@
use crate::PutBack;
#[cfg(feature = "use_alloc")]
use crate::PutBackN;
use crate::RepeatN;
use std::iter::Peekable;
/// An iterator that allows peeking at an element before deciding to accept it.
///
/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while)
/// for more information.
///
/// This is implemented by peeking adaptors like peekable and put back,
/// but also by a few iterators that can be peeked natively, like the slices
/// by reference iterator ([`std::slice::Iter`]).
pub trait PeekingNext: Iterator {
/// Pass a reference to the next iterator element to the closure `accept`;
/// if `accept` returns `true`, return it as the next element,
/// else `None`.
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
Self: Sized,
F: FnOnce(&Self::Item) -> bool;
}
impl<I> PeekingNext for &mut I
where
I: PeekingNext,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
(*self).peeking_next(accept)
}
}
impl<I> PeekingNext for Peekable<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
if let Some(r) = self.peek() {
if !accept(r) {
return None;
}
}
self.next()
}
}
impl<I> PeekingNext for PutBack<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
if let Some(r) = self.next() {
if !accept(&r) {
self.put_back(r);
return None;
}
Some(r)
} else {
None
}
}
}
#[cfg(feature = "use_alloc")]
impl<I> PeekingNext for PutBackN<I>
where
I: Iterator,
{
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
if let Some(r) = self.next() {
if !accept(&r) {
self.put_back(r);
return None;
}
Some(r)
} else {
None
}
}
}
impl<T: Clone> PeekingNext for RepeatN<T> {
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where
F: FnOnce(&Self::Item) -> bool,
{
let r = self.elt.as_ref()?;
if !accept(r) {
return None;
}
self.next()
}
}
/// An iterator adaptor that takes items while a closure returns `true`.
///
/// See [`.peeking_take_while()`](crate::Itertools::peeking_take_while)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PeekingTakeWhile<'a, I, F>
where
I: Iterator + 'a,
{
iter: &'a mut I,
f: F,
}
impl<'a, I, F> std::fmt::Debug for PeekingTakeWhile<'a, I, F>
where
I: Iterator + std::fmt::Debug + 'a,
{
debug_fmt_fields!(PeekingTakeWhile, iter);
}
/// Create a `PeekingTakeWhile`
pub fn peeking_take_while<I, F>(iter: &mut I, f: F) -> PeekingTakeWhile<I, F>
where
I: Iterator,
{
PeekingTakeWhile { iter, f }
}
impl<I, F> Iterator for PeekingTakeWhile<'_, I, F>
where
I: PeekingNext,
F: FnMut(&I::Item) -> bool,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.iter.peeking_next(&mut self.f)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
}
impl<I, F> PeekingNext for PeekingTakeWhile<'_, I, F>
where
I: PeekingNext,
F: FnMut(&I::Item) -> bool,
{
fn peeking_next<G>(&mut self, g: G) -> Option<Self::Item>
where
G: FnOnce(&Self::Item) -> bool,
{
let f = &mut self.f;
self.iter.peeking_next(|r| f(r) && g(r))
}
}
// Some iterators are so lightweight we can simply clone them to save their
// state and use that for peeking.
macro_rules! peeking_next_by_clone {
([$($typarm:tt)*] $type_:ty) => {
impl<$($typarm)*> PeekingNext for $type_ {
fn peeking_next<F>(&mut self, accept: F) -> Option<Self::Item>
where F: FnOnce(&Self::Item) -> bool
{
let saved_state = self.clone();
if let Some(r) = self.next() {
if !accept(&r) {
*self = saved_state;
} else {
return Some(r)
}
}
None
}
}
}
}
peeking_next_by_clone! { ['a, T] ::std::slice::Iter<'a, T> }
peeking_next_by_clone! { ['a] ::std::str::Chars<'a> }
peeking_next_by_clone! { ['a] ::std::str::CharIndices<'a> }
peeking_next_by_clone! { ['a] ::std::str::Bytes<'a> }
peeking_next_by_clone! { ['a, T] ::std::option::Iter<'a, T> }
peeking_next_by_clone! { ['a, T] ::std::result::Iter<'a, T> }
peeking_next_by_clone! { [T] ::std::iter::Empty<T> }
#[cfg(feature = "use_alloc")]
peeking_next_by_clone! { ['a, T] alloc::collections::linked_list::Iter<'a, T> }
#[cfg(feature = "use_alloc")]
peeking_next_by_clone! { ['a, T] alloc::collections::vec_deque::Iter<'a, T> }
// cloning a Rev has no extra overhead; peekable and put backs are never DEI.
peeking_next_by_clone! { [I: Clone + PeekingNext + DoubleEndedIterator]
::std::iter::Rev<I> }

186
vendor/itertools/src/permutations.rs vendored Normal file
View File

@@ -0,0 +1,186 @@
use alloc::boxed::Box;
use alloc::vec::Vec;
use std::fmt;
use std::iter::once;
use std::iter::FusedIterator;
use super::lazy_buffer::LazyBuffer;
use crate::size_hint::{self, SizeHint};
/// An iterator adaptor that iterates through all the `k`-permutations of the
/// elements from an iterator.
///
/// See [`.permutations()`](crate::Itertools::permutations) for
/// more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Permutations<I: Iterator> {
vals: LazyBuffer<I>,
state: PermutationState,
}
impl<I> Clone for Permutations<I>
where
I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(vals, state);
}
#[derive(Clone, Debug)]
enum PermutationState {
/// No permutation generated yet.
Start { k: usize },
/// Values from the iterator are not fully loaded yet so `n` is still unknown.
Buffered { k: usize, min_n: usize },
/// All values from the iterator are known so `n` is known.
Loaded {
indices: Box<[usize]>,
cycles: Box<[usize]>,
},
/// No permutation left to generate.
End,
}
impl<I> fmt::Debug for Permutations<I>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Permutations, vals, state);
}
pub fn permutations<I: Iterator>(iter: I, k: usize) -> Permutations<I> {
Permutations {
vals: LazyBuffer::new(iter),
state: PermutationState::Start { k },
}
}
impl<I> Iterator for Permutations<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
let Self { vals, state } = self;
match state {
PermutationState::Start { k: 0 } => {
*state = PermutationState::End;
Some(Vec::new())
}
&mut PermutationState::Start { k } => {
vals.prefill(k);
if vals.len() != k {
*state = PermutationState::End;
return None;
}
*state = PermutationState::Buffered { k, min_n: k };
Some(vals[0..k].to_vec())
}
PermutationState::Buffered { ref k, min_n } => {
if vals.get_next() {
let item = (0..*k - 1)
.chain(once(*min_n))
.map(|i| vals[i].clone())
.collect();
*min_n += 1;
Some(item)
} else {
let n = *min_n;
let prev_iteration_count = n - *k + 1;
let mut indices: Box<[_]> = (0..n).collect();
let mut cycles: Box<[_]> = (n - k..n).rev().collect();
// Advance the state to the correct point.
for _ in 0..prev_iteration_count {
if advance(&mut indices, &mut cycles) {
*state = PermutationState::End;
return None;
}
}
let item = vals.get_at(&indices[0..*k]);
*state = PermutationState::Loaded { indices, cycles };
Some(item)
}
}
PermutationState::Loaded { indices, cycles } => {
if advance(indices, cycles) {
*state = PermutationState::End;
return None;
}
let k = cycles.len();
Some(vals.get_at(&indices[0..k]))
}
PermutationState::End => None,
}
}
fn count(self) -> usize {
let Self { vals, state } = self;
let n = vals.count();
state.size_hint_for(n).1.unwrap()
}
fn size_hint(&self) -> SizeHint {
let (mut low, mut upp) = self.vals.size_hint();
low = self.state.size_hint_for(low).0;
upp = upp.and_then(|n| self.state.size_hint_for(n).1);
(low, upp)
}
}
impl<I> FusedIterator for Permutations<I>
where
I: Iterator,
I::Item: Clone,
{
}
fn advance(indices: &mut [usize], cycles: &mut [usize]) -> bool {
let n = indices.len();
let k = cycles.len();
// NOTE: if `cycles` are only zeros, then we reached the last permutation.
for i in (0..k).rev() {
if cycles[i] == 0 {
cycles[i] = n - i - 1;
indices[i..].rotate_left(1);
} else {
let swap_index = n - cycles[i];
indices.swap(i, swap_index);
cycles[i] -= 1;
return false;
}
}
true
}
impl PermutationState {
fn size_hint_for(&self, n: usize) -> SizeHint {
// At the beginning, there are `n!/(n-k)!` items to come.
let at_start = |n, k| {
debug_assert!(n >= k);
let total = (n - k + 1..=n).try_fold(1usize, |acc, i| acc.checked_mul(i));
(total.unwrap_or(usize::MAX), total)
};
match *self {
Self::Start { k } if n < k => (0, Some(0)),
Self::Start { k } => at_start(n, k),
Self::Buffered { k, min_n } => {
// Same as `Start` minus the previously generated items.
size_hint::sub_scalar(at_start(n, k), min_n - k + 1)
}
Self::Loaded {
ref indices,
ref cycles,
} => {
let count = cycles.iter().enumerate().try_fold(0usize, |acc, (i, &c)| {
acc.checked_mul(indices.len() - i)
.and_then(|count| count.checked_add(c))
});
(count.unwrap_or(usize::MAX), count)
}
Self::End => (0, Some(0)),
}
}
}

131
vendor/itertools/src/powerset.rs vendored Normal file
View File

@@ -0,0 +1,131 @@
use alloc::vec::Vec;
use std::fmt;
use std::iter::FusedIterator;
use super::combinations::{combinations, Combinations};
use crate::adaptors::checked_binomial;
use crate::size_hint::{self, SizeHint};
/// An iterator to iterate through the powerset of the elements from an iterator.
///
/// See [`.powerset()`](crate::Itertools::powerset) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Powerset<I: Iterator> {
combs: Combinations<I>,
}
impl<I> Clone for Powerset<I>
where
I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(combs);
}
impl<I> fmt::Debug for Powerset<I>
where
I: Iterator + fmt::Debug,
I::Item: fmt::Debug,
{
debug_fmt_fields!(Powerset, combs);
}
/// Create a new `Powerset` from a clonable iterator.
pub fn powerset<I>(src: I) -> Powerset<I>
where
I: Iterator,
I::Item: Clone,
{
Powerset {
combs: combinations(src, 0),
}
}
impl<I: Iterator> Powerset<I> {
/// Returns true if `k` has been incremented, false otherwise.
fn increment_k(&mut self) -> bool {
if self.combs.k() < self.combs.n() || self.combs.k() == 0 {
self.combs.reset(self.combs.k() + 1);
true
} else {
false
}
}
}
impl<I> Iterator for Powerset<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = Vec<I::Item>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(elt) = self.combs.next() {
Some(elt)
} else if self.increment_k() {
self.combs.next()
} else {
None
}
}
fn nth(&mut self, mut n: usize) -> Option<Self::Item> {
loop {
match self.combs.try_nth(n) {
Ok(item) => return Some(item),
Err(steps) => {
if !self.increment_k() {
return None;
}
n -= steps;
}
}
}
}
fn size_hint(&self) -> SizeHint {
let k = self.combs.k();
// Total bounds for source iterator.
let (n_min, n_max) = self.combs.src().size_hint();
let low = remaining_for(n_min, k).unwrap_or(usize::MAX);
let upp = n_max.and_then(|n| remaining_for(n, k));
size_hint::add(self.combs.size_hint(), (low, upp))
}
fn count(self) -> usize {
let k = self.combs.k();
let (n, combs_count) = self.combs.n_and_count();
combs_count + remaining_for(n, k).unwrap()
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
let mut it = self.combs;
if it.k() == 0 {
init = it.by_ref().fold(init, &mut f);
it.reset(1);
}
init = it.by_ref().fold(init, &mut f);
// n is now known for sure because k >= 1 and all k-combinations have been generated.
for k in it.k() + 1..=it.n() {
it.reset(k);
init = it.by_ref().fold(init, &mut f);
}
init
}
}
impl<I> FusedIterator for Powerset<I>
where
I: Iterator,
I::Item: Clone,
{
}
fn remaining_for(n: usize, k: usize) -> Option<usize> {
(k + 1..=n).try_fold(0usize, |sum, i| sum.checked_add(checked_binomial(n, i)?))
}

View File

@@ -0,0 +1,108 @@
#[cfg(doc)]
use crate::Itertools;
/// An iterator that produces only the `T` values as long as the
/// inner iterator produces `Ok(T)`.
///
/// Used by [`process_results`](crate::process_results), see its docs
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct ProcessResults<'a, I, E: 'a> {
error: &'a mut Result<(), E>,
iter: I,
}
impl<I, E> ProcessResults<'_, I, E> {
#[inline(always)]
fn next_body<T>(&mut self, item: Option<Result<T, E>>) -> Option<T> {
match item {
Some(Ok(x)) => Some(x),
Some(Err(e)) => {
*self.error = Err(e);
None
}
None => None,
}
}
}
impl<I, T, E> Iterator for ProcessResults<'_, I, E>
where
I: Iterator<Item = Result<T, E>>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
let item = self.iter.next();
self.next_body(item)
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, self.iter.size_hint().1)
}
fn fold<B, F>(mut self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let error = self.error;
self.iter
.try_fold(init, |acc, opt| match opt {
Ok(x) => Ok(f(acc, x)),
Err(e) => {
*error = Err(e);
Err(acc)
}
})
.unwrap_or_else(|e| e)
}
}
impl<I, T, E> DoubleEndedIterator for ProcessResults<'_, I, E>
where
I: Iterator<Item = Result<T, E>>,
I: DoubleEndedIterator,
{
fn next_back(&mut self) -> Option<Self::Item> {
let item = self.iter.next_back();
self.next_body(item)
}
fn rfold<B, F>(mut self, init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
let error = self.error;
self.iter
.try_rfold(init, |acc, opt| match opt {
Ok(x) => Ok(f(acc, x)),
Err(e) => {
*error = Err(e);
Err(acc)
}
})
.unwrap_or_else(|e| e)
}
}
/// “Lift” a function of the values of an iterator so that it can process
/// an iterator of `Result` values instead.
///
/// [`IntoIterator`] enabled version of [`Itertools::process_results`].
pub fn process_results<I, F, T, E, R>(iterable: I, processor: F) -> Result<R, E>
where
I: IntoIterator<Item = Result<T, E>>,
F: FnOnce(ProcessResults<I::IntoIter, E>) -> R,
{
let iter = iterable.into_iter();
let mut error = Ok(());
let result = processor(ProcessResults {
error: &mut error,
iter,
});
error.map(|_| result)
}

71
vendor/itertools/src/put_back_n_impl.rs vendored Normal file
View File

@@ -0,0 +1,71 @@
use alloc::vec::Vec;
use crate::size_hint;
/// An iterator adaptor that allows putting multiple
/// items in front of the iterator.
///
/// Iterator element type is `I::Item`.
#[derive(Debug, Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct PutBackN<I: Iterator> {
top: Vec<I::Item>,
iter: I,
}
/// Create an iterator where you can put back multiple values to the front
/// of the iteration.
///
/// Iterator element type is `I::Item`.
pub fn put_back_n<I>(iterable: I) -> PutBackN<I::IntoIter>
where
I: IntoIterator,
{
PutBackN {
top: Vec::new(),
iter: iterable.into_iter(),
}
}
impl<I: Iterator> PutBackN<I> {
/// Puts `x` in front of the iterator.
///
/// The values are yielded in order of the most recently put back
/// values first.
///
/// ```rust
/// use itertools::put_back_n;
///
/// let mut it = put_back_n(1..5);
/// it.next();
/// it.put_back(1);
/// it.put_back(0);
///
/// assert!(itertools::equal(it, 0..5));
/// ```
#[inline]
pub fn put_back(&mut self, x: I::Item) {
self.top.push(x);
}
}
impl<I: Iterator> Iterator for PutBackN<I> {
type Item = I::Item;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.top.pop().or_else(|| self.iter.next())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::add_scalar(self.iter.size_hint(), self.top.len())
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
init = self.top.into_iter().rfold(init, &mut f);
self.iter.fold(init, f)
}
}

102
vendor/itertools/src/rciter_impl.rs vendored Normal file
View File

@@ -0,0 +1,102 @@
use alloc::rc::Rc;
use std::cell::RefCell;
use std::iter::{FusedIterator, IntoIterator};
/// A wrapper for `Rc<RefCell<I>>`, that implements the `Iterator` trait.
#[derive(Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct RcIter<I> {
/// The boxed iterator.
pub rciter: Rc<RefCell<I>>,
}
/// Return an iterator inside a `Rc<RefCell<_>>` wrapper.
///
/// The returned `RcIter` can be cloned, and each clone will refer back to the
/// same original iterator.
///
/// `RcIter` allows doing interesting things like using `.zip()` on an iterator with
/// itself, at the cost of runtime borrow checking which may have a performance
/// penalty.
///
/// Iterator element type is `Self::Item`.
///
/// ```
/// use itertools::rciter;
/// use itertools::zip;
///
/// // In this example a range iterator is created and we iterate it using
/// // three separate handles (two of them given to zip).
/// // We also use the IntoIterator implementation for `&RcIter`.
///
/// let mut iter = rciter(0..9);
/// let mut z = zip(&iter, &iter);
///
/// assert_eq!(z.next(), Some((0, 1)));
/// assert_eq!(z.next(), Some((2, 3)));
/// assert_eq!(z.next(), Some((4, 5)));
/// assert_eq!(iter.next(), Some(6));
/// assert_eq!(z.next(), Some((7, 8)));
/// assert_eq!(z.next(), None);
/// ```
///
/// **Panics** in iterator methods if a borrow error is encountered in the
/// iterator methods. It can only happen if the `RcIter` is reentered in
/// `.next()`, i.e. if it somehow participates in an “iterator knot”
/// where it is an adaptor of itself.
pub fn rciter<I>(iterable: I) -> RcIter<I::IntoIter>
where
I: IntoIterator,
{
RcIter {
rciter: Rc::new(RefCell::new(iterable.into_iter())),
}
}
impl<I> Clone for RcIter<I> {
clone_fields!(rciter);
}
impl<A, I> Iterator for RcIter<I>
where
I: Iterator<Item = A>,
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
self.rciter.borrow_mut().next()
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// To work sanely with other API that assume they own an iterator,
// so it can't change in other places, we can't guarantee as much
// in our size_hint. Other clones may drain values under our feet.
(0, self.rciter.borrow().size_hint().1)
}
}
impl<I> DoubleEndedIterator for RcIter<I>
where
I: DoubleEndedIterator,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.rciter.borrow_mut().next_back()
}
}
/// Return an iterator from `&RcIter<I>` (by simply cloning it).
impl<I> IntoIterator for &RcIter<I>
where
I: Iterator,
{
type Item = I::Item;
type IntoIter = RcIter<I>;
fn into_iter(self) -> RcIter<I> {
self.clone()
}
}
impl<A, I> FusedIterator for RcIter<I> where I: FusedIterator<Item = A> {}

83
vendor/itertools/src/repeatn.rs vendored Normal file
View File

@@ -0,0 +1,83 @@
use std::iter::FusedIterator;
/// An iterator that produces *n* repetitions of an element.
///
/// See [`repeat_n()`](crate::repeat_n) for more information.
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct RepeatN<A> {
pub(crate) elt: Option<A>,
n: usize,
}
/// Create an iterator that produces `n` repetitions of `element`.
pub fn repeat_n<A>(element: A, n: usize) -> RepeatN<A>
where
A: Clone,
{
if n == 0 {
RepeatN { elt: None, n }
} else {
RepeatN {
elt: Some(element),
n,
}
}
}
impl<A> Iterator for RepeatN<A>
where
A: Clone,
{
type Item = A;
fn next(&mut self) -> Option<Self::Item> {
if self.n > 1 {
self.n -= 1;
self.elt.as_ref().cloned()
} else {
self.n = 0;
self.elt.take()
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.n, Some(self.n))
}
fn fold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
match self {
Self { elt: Some(elt), n } => {
debug_assert!(n > 0);
init = (1..n).map(|_| elt.clone()).fold(init, &mut f);
f(init, elt)
}
_ => init,
}
}
}
impl<A> DoubleEndedIterator for RepeatN<A>
where
A: Clone,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
self.next()
}
#[inline]
fn rfold<B, F>(self, init: B, f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
self.fold(init, f)
}
}
impl<A> ExactSizeIterator for RepeatN<A> where A: Clone {}
impl<A> FusedIterator for RepeatN<A> where A: Clone {}

94
vendor/itertools/src/size_hint.rs vendored Normal file
View File

@@ -0,0 +1,94 @@
//! Arithmetic on `Iterator.size_hint()` values.
//!
use std::cmp;
/// `SizeHint` is the return type of `Iterator::size_hint()`.
pub type SizeHint = (usize, Option<usize>);
/// Add `SizeHint` correctly.
#[inline]
pub fn add(a: SizeHint, b: SizeHint) -> SizeHint {
let min = a.0.saturating_add(b.0);
let max = match (a.1, b.1) {
(Some(x), Some(y)) => x.checked_add(y),
_ => None,
};
(min, max)
}
/// Add `x` correctly to a `SizeHint`.
#[inline]
pub fn add_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_add(x);
hi = hi.and_then(|elt| elt.checked_add(x));
(low, hi)
}
/// Subtract `x` correctly from a `SizeHint`.
#[inline]
pub fn sub_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_sub(x);
hi = hi.map(|elt| elt.saturating_sub(x));
(low, hi)
}
/// Multiply `SizeHint` correctly
#[inline]
pub fn mul(a: SizeHint, b: SizeHint) -> SizeHint {
let low = a.0.saturating_mul(b.0);
let hi = match (a.1, b.1) {
(Some(x), Some(y)) => x.checked_mul(y),
(Some(0), None) | (None, Some(0)) => Some(0),
_ => None,
};
(low, hi)
}
/// Multiply `x` correctly with a `SizeHint`.
#[inline]
pub fn mul_scalar(sh: SizeHint, x: usize) -> SizeHint {
let (mut low, mut hi) = sh;
low = low.saturating_mul(x);
hi = hi.and_then(|elt| elt.checked_mul(x));
(low, hi)
}
/// Return the maximum
#[inline]
pub fn max(a: SizeHint, b: SizeHint) -> SizeHint {
let (a_lower, a_upper) = a;
let (b_lower, b_upper) = b;
let lower = cmp::max(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(x), Some(y)) => Some(cmp::max(x, y)),
_ => None,
};
(lower, upper)
}
/// Return the minimum
#[inline]
pub fn min(a: SizeHint, b: SizeHint) -> SizeHint {
let (a_lower, a_upper) = a;
let (b_lower, b_upper) = b;
let lower = cmp::min(a_lower, b_lower);
let upper = match (a_upper, b_upper) {
(Some(u1), Some(u2)) => Some(cmp::min(u1, u2)),
_ => a_upper.or(b_upper),
};
(lower, upper)
}
#[test]
fn mul_size_hints() {
assert_eq!(mul((3, Some(4)), (3, Some(4))), (9, Some(16)));
assert_eq!(mul((3, Some(4)), (usize::MAX, None)), (usize::MAX, None));
assert_eq!(mul((3, None), (0, Some(0))), (0, Some(0)));
}

153
vendor/itertools/src/sources.rs vendored Normal file
View File

@@ -0,0 +1,153 @@
//! Iterators that are sources (produce elements from parameters,
//! not from another iterator).
#![allow(deprecated)]
use std::fmt;
use std::mem;
/// Creates a new unfold source with the specified closure as the "iterator
/// function" and an initial state to eventually pass to the closure
///
/// `unfold` is a general iterator builder: it has a mutable state value,
/// and a closure with access to the state that produces the next value.
///
/// This more or less equivalent to a regular struct with an [`Iterator`]
/// implementation, and is useful for one-off iterators.
///
/// ```
/// // an iterator that yields sequential Fibonacci numbers,
/// // and stops at the maximum representable value.
///
/// use itertools::unfold;
///
/// let mut fibonacci = unfold((1u32, 1u32), |(x1, x2)| {
/// // Attempt to get the next Fibonacci number
/// let next = x1.saturating_add(*x2);
///
/// // Shift left: ret <- x1 <- x2 <- next
/// let ret = *x1;
/// *x1 = *x2;
/// *x2 = next;
///
/// // If addition has saturated at the maximum, we are finished
/// if ret == *x1 && ret > 1 {
/// None
/// } else {
/// Some(ret)
/// }
/// });
///
/// itertools::assert_equal(fibonacci.by_ref().take(8),
/// vec![1, 1, 2, 3, 5, 8, 13, 21]);
/// assert_eq!(fibonacci.last(), Some(2_971_215_073))
/// ```
#[deprecated(
note = "Use [std::iter::from_fn](https://doc.rust-lang.org/std/iter/fn.from_fn.html) instead",
since = "0.13.0"
)]
pub fn unfold<A, St, F>(initial_state: St, f: F) -> Unfold<St, F>
where
F: FnMut(&mut St) -> Option<A>,
{
Unfold {
f,
state: initial_state,
}
}
impl<St, F> fmt::Debug for Unfold<St, F>
where
St: fmt::Debug,
{
debug_fmt_fields!(Unfold, state);
}
/// See [`unfold`](crate::unfold) for more information.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[deprecated(
note = "Use [std::iter::FromFn](https://doc.rust-lang.org/std/iter/struct.FromFn.html) instead",
since = "0.13.0"
)]
pub struct Unfold<St, F> {
f: F,
/// Internal state that will be passed to the closure on the next iteration
pub state: St,
}
impl<A, St, F> Iterator for Unfold<St, F>
where
F: FnMut(&mut St) -> Option<A>,
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
(self.f)(&mut self.state)
}
}
/// An iterator that infinitely applies function to value and yields results.
///
/// This `struct` is created by the [`iterate()`](crate::iterate) function.
/// See its documentation for more.
#[derive(Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
pub struct Iterate<St, F> {
state: St,
f: F,
}
impl<St, F> fmt::Debug for Iterate<St, F>
where
St: fmt::Debug,
{
debug_fmt_fields!(Iterate, state);
}
impl<St, F> Iterator for Iterate<St, F>
where
F: FnMut(&St) -> St,
{
type Item = St;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
let next_state = (self.f)(&self.state);
Some(mem::replace(&mut self.state, next_state))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(usize::MAX, None)
}
}
/// Creates a new iterator that infinitely applies function to value and yields results.
///
/// ```
/// use itertools::iterate;
///
/// itertools::assert_equal(iterate(1, |i| i % 3 + 1).take(5), vec![1, 2, 3, 1, 2]);
/// ```
///
/// **Panics** if compute the next value does.
///
/// ```should_panic
/// # use itertools::iterate;
/// let mut it = iterate(25u32, |x| x - 10).take_while(|&x| x > 10);
/// assert_eq!(it.next(), Some(25)); // `Iterate` holds 15.
/// assert_eq!(it.next(), Some(15)); // `Iterate` holds 5.
/// it.next(); // `5 - 10` overflows.
/// ```
///
/// You can alternatively use [`core::iter::successors`] as it better describes a finite iterator.
pub fn iterate<St, F>(initial_value: St, f: F) -> Iterate<St, F>
where
F: FnMut(&St) -> St,
{
Iterate {
state: initial_value,
f,
}
}

View File

@@ -0,0 +1,96 @@
use core::iter::FusedIterator;
use std::fmt;
/// An iterator adaptor that consumes elements while the given predicate is
/// `true`, including the element for which the predicate first returned
/// `false`.
///
/// See [`.take_while_inclusive()`](crate::Itertools::take_while_inclusive)
/// for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone)]
pub struct TakeWhileInclusive<I, F> {
iter: I,
predicate: F,
done: bool,
}
impl<I, F> TakeWhileInclusive<I, F>
where
I: Iterator,
F: FnMut(&I::Item) -> bool,
{
/// Create a new [`TakeWhileInclusive`] from an iterator and a predicate.
pub(crate) fn new(iter: I, predicate: F) -> Self {
Self {
iter,
predicate,
done: false,
}
}
}
impl<I, F> fmt::Debug for TakeWhileInclusive<I, F>
where
I: Iterator + fmt::Debug,
{
debug_fmt_fields!(TakeWhileInclusive, iter, done);
}
impl<I, F> Iterator for TakeWhileInclusive<I, F>
where
I: Iterator,
F: FnMut(&I::Item) -> bool,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
if self.done {
None
} else {
self.iter.next().map(|item| {
if !(self.predicate)(&item) {
self.done = true;
}
item
})
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
if self.done {
(0, Some(0))
} else {
(0, self.iter.size_hint().1)
}
}
fn fold<B, Fold>(mut self, init: B, mut f: Fold) -> B
where
Fold: FnMut(B, Self::Item) -> B,
{
if self.done {
init
} else {
let predicate = &mut self.predicate;
self.iter
.try_fold(init, |mut acc, item| {
let is_ok = predicate(&item);
acc = f(acc, item);
if is_ok {
Ok(acc)
} else {
Err(acc)
}
})
.unwrap_or_else(|err| err)
}
}
}
impl<I, F> FusedIterator for TakeWhileInclusive<I, F>
where
I: Iterator,
F: FnMut(&I::Item) -> bool,
{
}

93
vendor/itertools/src/tee.rs vendored Normal file
View File

@@ -0,0 +1,93 @@
use super::size_hint;
use alloc::collections::VecDeque;
use alloc::rc::Rc;
use std::cell::RefCell;
/// Common buffer object for the two tee halves
#[derive(Debug)]
struct TeeBuffer<A, I> {
backlog: VecDeque<A>,
iter: I,
/// The owner field indicates which id should read from the backlog
owner: bool,
}
/// One half of an iterator pair where both return the same elements.
///
/// See [`.tee()`](crate::Itertools::tee) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug)]
pub struct Tee<I>
where
I: Iterator,
{
rcbuffer: Rc<RefCell<TeeBuffer<I::Item, I>>>,
id: bool,
}
pub fn new<I>(iter: I) -> (Tee<I>, Tee<I>)
where
I: Iterator,
{
let buffer = TeeBuffer {
backlog: VecDeque::new(),
iter,
owner: false,
};
let t1 = Tee {
rcbuffer: Rc::new(RefCell::new(buffer)),
id: true,
};
let t2 = Tee {
rcbuffer: t1.rcbuffer.clone(),
id: false,
};
(t1, t2)
}
impl<I> Iterator for Tee<I>
where
I: Iterator,
I::Item: Clone,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
// .borrow_mut may fail here -- but only if the user has tied some kind of weird
// knot where the iterator refers back to itself.
let mut buffer = self.rcbuffer.borrow_mut();
if buffer.owner == self.id {
match buffer.backlog.pop_front() {
None => {}
some_elt => return some_elt,
}
}
match buffer.iter.next() {
None => None,
Some(elt) => {
buffer.backlog.push_back(elt.clone());
buffer.owner = !self.id;
Some(elt)
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let buffer = self.rcbuffer.borrow();
let sh = buffer.iter.size_hint();
if buffer.owner == self.id {
let log_len = buffer.backlog.len();
size_hint::add_scalar(sh, log_len)
} else {
sh
}
}
}
impl<I> ExactSizeIterator for Tee<I>
where
I: ExactSizeIterator,
I::Item: Clone,
{
}

401
vendor/itertools/src/tuple_impl.rs vendored Normal file
View File

@@ -0,0 +1,401 @@
//! Some iterator that produces tuples
use std::iter::Cycle;
use std::iter::Fuse;
use std::iter::FusedIterator;
use crate::size_hint;
// `HomogeneousTuple` is a public facade for `TupleCollect`, allowing
// tuple-related methods to be used by clients in generic contexts, while
// hiding the implementation details of `TupleCollect`.
// See https://github.com/rust-itertools/itertools/issues/387
/// Implemented for homogeneous tuples of size up to 12.
pub trait HomogeneousTuple: TupleCollect {}
impl<T: TupleCollect> HomogeneousTuple for T {}
/// An iterator over a incomplete tuple.
///
/// See [`.tuples()`](crate::Itertools::tuples) and
/// [`Tuples::into_buffer()`].
#[derive(Clone, Debug)]
pub struct TupleBuffer<T>
where
T: HomogeneousTuple,
{
cur: usize,
buf: T::Buffer,
}
impl<T> TupleBuffer<T>
where
T: HomogeneousTuple,
{
fn new(buf: T::Buffer) -> Self {
Self { cur: 0, buf }
}
}
impl<T> Iterator for TupleBuffer<T>
where
T: HomogeneousTuple,
{
type Item = T::Item;
fn next(&mut self) -> Option<Self::Item> {
let s = self.buf.as_mut();
if let Some(ref mut item) = s.get_mut(self.cur) {
self.cur += 1;
item.take()
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let buffer = &self.buf.as_ref()[self.cur..];
let len = if buffer.is_empty() {
0
} else {
buffer
.iter()
.position(|x| x.is_none())
.unwrap_or(buffer.len())
};
(len, Some(len))
}
}
impl<T> ExactSizeIterator for TupleBuffer<T> where T: HomogeneousTuple {}
/// An iterator that groups the items in tuples of a specific size.
///
/// See [`.tuples()`](crate::Itertools::tuples) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Tuples<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
{
iter: Fuse<I>,
buf: T::Buffer,
}
/// Create a new tuples iterator.
pub fn tuples<I, T>(iter: I) -> Tuples<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
{
Tuples {
iter: iter.fuse(),
buf: Default::default(),
}
}
impl<I, T> Iterator for Tuples<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
T::collect_from_iter(&mut self.iter, &mut self.buf)
}
fn size_hint(&self) -> (usize, Option<usize>) {
// The number of elts we've drawn from the underlying iterator, but have
// not yet produced as a tuple.
let buffered = T::buffer_len(&self.buf);
// To that, we must add the size estimates of the underlying iterator.
let (unbuffered_lo, unbuffered_hi) = self.iter.size_hint();
// The total low estimate is the sum of the already-buffered elements,
// plus the low estimate of remaining unbuffered elements, divided by
// the tuple size.
let total_lo = add_then_div(unbuffered_lo, buffered, T::num_items()).unwrap_or(usize::MAX);
// And likewise for the total high estimate, but using the high estimate
// of the remaining unbuffered elements.
let total_hi = unbuffered_hi.and_then(|hi| add_then_div(hi, buffered, T::num_items()));
(total_lo, total_hi)
}
}
/// `(n + a) / d` avoiding overflow when possible, returns `None` if it overflows.
fn add_then_div(n: usize, a: usize, d: usize) -> Option<usize> {
debug_assert_ne!(d, 0);
(n / d).checked_add(a / d)?.checked_add((n % d + a % d) / d)
}
impl<I, T> ExactSizeIterator for Tuples<I, T>
where
I: ExactSizeIterator<Item = T::Item>,
T: HomogeneousTuple,
{
}
impl<I, T> Tuples<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
{
/// Return a buffer with the produced items that was not enough to be grouped in a tuple.
///
/// ```
/// use itertools::Itertools;
///
/// let mut iter = (0..5).tuples();
/// assert_eq!(Some((0, 1, 2)), iter.next());
/// assert_eq!(None, iter.next());
/// itertools::assert_equal(vec![3, 4], iter.into_buffer());
/// ```
pub fn into_buffer(self) -> TupleBuffer<T> {
TupleBuffer::new(self.buf)
}
}
/// An iterator over all contiguous windows that produces tuples of a specific size.
///
/// See [`.tuple_windows()`](crate::Itertools::tuple_windows) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Clone, Debug)]
pub struct TupleWindows<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
{
iter: I,
last: Option<T>,
}
/// Create a new tuple windows iterator.
pub fn tuple_windows<I, T>(iter: I) -> TupleWindows<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple,
T::Item: Clone,
{
TupleWindows { last: None, iter }
}
impl<I, T> Iterator for TupleWindows<I, T>
where
I: Iterator<Item = T::Item>,
T: HomogeneousTuple + Clone,
T::Item: Clone,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if T::num_items() == 1 {
return T::collect_from_iter_no_buf(&mut self.iter);
}
if let Some(new) = self.iter.next() {
if let Some(ref mut last) = self.last {
last.left_shift_push(new);
Some(last.clone())
} else {
use std::iter::once;
let iter = once(new).chain(&mut self.iter);
self.last = T::collect_from_iter_no_buf(iter);
self.last.clone()
}
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let mut sh = self.iter.size_hint();
// Adjust the size hint at the beginning
// OR when `num_items == 1` (but it does not change the size hint).
if self.last.is_none() {
sh = size_hint::sub_scalar(sh, T::num_items() - 1);
}
sh
}
}
impl<I, T> ExactSizeIterator for TupleWindows<I, T>
where
I: ExactSizeIterator<Item = T::Item>,
T: HomogeneousTuple + Clone,
T::Item: Clone,
{
}
impl<I, T> FusedIterator for TupleWindows<I, T>
where
I: FusedIterator<Item = T::Item>,
T: HomogeneousTuple + Clone,
T::Item: Clone,
{
}
/// An iterator over all windows, wrapping back to the first elements when the
/// window would otherwise exceed the length of the iterator, producing tuples
/// of a specific size.
///
/// See [`.circular_tuple_windows()`](crate::Itertools::circular_tuple_windows) for more
/// information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug, Clone)]
pub struct CircularTupleWindows<I, T>
where
I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone,
{
iter: TupleWindows<Cycle<I>, T>,
len: usize,
}
pub fn circular_tuple_windows<I, T>(iter: I) -> CircularTupleWindows<I, T>
where
I: Iterator<Item = T::Item> + Clone + ExactSizeIterator,
T: TupleCollect + Clone,
T::Item: Clone,
{
let len = iter.len();
let iter = tuple_windows(iter.cycle());
CircularTupleWindows { iter, len }
}
impl<I, T> Iterator for CircularTupleWindows<I, T>
where
I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone,
T::Item: Clone,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
if self.len != 0 {
self.len -= 1;
self.iter.next()
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.len, Some(self.len))
}
}
impl<I, T> ExactSizeIterator for CircularTupleWindows<I, T>
where
I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone,
T::Item: Clone,
{
}
impl<I, T> FusedIterator for CircularTupleWindows<I, T>
where
I: Iterator<Item = T::Item> + Clone,
T: TupleCollect + Clone,
T::Item: Clone,
{
}
pub trait TupleCollect: Sized {
type Item;
type Buffer: Default + AsRef<[Option<Self::Item>]> + AsMut<[Option<Self::Item>]>;
fn buffer_len(buf: &Self::Buffer) -> usize {
let s = buf.as_ref();
s.iter().position(Option::is_none).unwrap_or(s.len())
}
fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
where
I: IntoIterator<Item = Self::Item>;
fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
where
I: IntoIterator<Item = Self::Item>;
fn num_items() -> usize;
fn left_shift_push(&mut self, item: Self::Item);
}
macro_rules! rev_for_each_ident{
($m:ident, ) => {};
($m:ident, $i0:ident, $($i:ident,)*) => {
rev_for_each_ident!($m, $($i,)*);
$m!($i0);
};
}
macro_rules! impl_tuple_collect {
($dummy:ident,) => {}; // stop
($dummy:ident, $($Y:ident,)*) => (
impl_tuple_collect!($($Y,)*);
impl<A> TupleCollect for ($(ignore_ident!($Y, A),)*) {
type Item = A;
type Buffer = [Option<A>; count_ident!($($Y)*) - 1];
#[allow(unused_assignments, unused_mut)]
fn collect_from_iter<I>(iter: I, buf: &mut Self::Buffer) -> Option<Self>
where I: IntoIterator<Item = A>
{
let mut iter = iter.into_iter();
$(
let mut $Y = None;
)*
loop {
$(
$Y = iter.next();
if $Y.is_none() {
break
}
)*
return Some(($($Y.unwrap()),*,))
}
let mut i = 0;
let mut s = buf.as_mut();
$(
if i < s.len() {
s[i] = $Y;
i += 1;
}
)*
return None;
}
fn collect_from_iter_no_buf<I>(iter: I) -> Option<Self>
where I: IntoIterator<Item = A>
{
let mut iter = iter.into_iter();
Some(($(
{ let $Y = iter.next()?; $Y },
)*))
}
fn num_items() -> usize {
count_ident!($($Y)*)
}
fn left_shift_push(&mut self, mut item: A) {
use std::mem::replace;
let &mut ($(ref mut $Y),*,) = self;
macro_rules! replace_item{($i:ident) => {
item = replace($i, item);
}}
rev_for_each_ident!(replace_item, $($Y,)*);
drop(item);
}
}
)
}
impl_tuple_collect!(dummy, a, b, c, d, e, f, g, h, i, j, k, l,);

188
vendor/itertools/src/unique_impl.rs vendored Normal file
View File

@@ -0,0 +1,188 @@
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt;
use std::hash::Hash;
use std::iter::FusedIterator;
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.unique_by()`](crate::Itertools::unique) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct UniqueBy<I: Iterator, V, F> {
iter: I,
// Use a Hashmap for the Entry API in order to prevent hashing twice.
// This can maybe be replaced with a HashSet once `get_or_insert_with`
// or a proper Entry API for Hashset is stable and meets this msrv
used: HashMap<V, ()>,
f: F,
}
impl<I, V, F> fmt::Debug for UniqueBy<I, V, F>
where
I: Iterator + fmt::Debug,
V: fmt::Debug + Hash + Eq,
{
debug_fmt_fields!(UniqueBy, iter, used);
}
/// Create a new `UniqueBy` iterator.
pub fn unique_by<I, V, F>(iter: I, f: F) -> UniqueBy<I, V, F>
where
V: Eq + Hash,
F: FnMut(&I::Item) -> V,
I: Iterator,
{
UniqueBy {
iter,
used: HashMap::new(),
f,
}
}
// count the number of new unique keys in iterable (`used` is the set already seen)
fn count_new_keys<I, K>(mut used: HashMap<K, ()>, iterable: I) -> usize
where
I: IntoIterator<Item = K>,
K: Hash + Eq,
{
let iter = iterable.into_iter();
let current_used = used.len();
used.extend(iter.map(|key| (key, ())));
used.len() - current_used
}
impl<I, V, F> Iterator for UniqueBy<I, V, F>
where
I: Iterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let Self { iter, used, f } = self;
iter.find(|v| used.insert(f(v), ()).is_none())
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.size_hint();
((low > 0 && self.used.is_empty()) as usize, hi)
}
fn count(self) -> usize {
let mut key_f = self.f;
count_new_keys(self.used, self.iter.map(move |elt| key_f(&elt)))
}
}
impl<I, V, F> DoubleEndedIterator for UniqueBy<I, V, F>
where
I: DoubleEndedIterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V,
{
fn next_back(&mut self) -> Option<Self::Item> {
let Self { iter, used, f } = self;
iter.rfind(|v| used.insert(f(v), ()).is_none())
}
}
impl<I, V, F> FusedIterator for UniqueBy<I, V, F>
where
I: FusedIterator,
V: Eq + Hash,
F: FnMut(&I::Item) -> V,
{
}
impl<I> Iterator for Unique<I>
where
I: Iterator,
I::Item: Eq + Hash + Clone,
{
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
let UniqueBy { iter, used, .. } = &mut self.iter;
iter.find_map(|v| {
if let Entry::Vacant(entry) = used.entry(v) {
let elt = entry.key().clone();
entry.insert(());
return Some(elt);
}
None
})
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (low, hi) = self.iter.iter.size_hint();
((low > 0 && self.iter.used.is_empty()) as usize, hi)
}
fn count(self) -> usize {
count_new_keys(self.iter.used, self.iter.iter)
}
}
impl<I> DoubleEndedIterator for Unique<I>
where
I: DoubleEndedIterator,
I::Item: Eq + Hash + Clone,
{
fn next_back(&mut self) -> Option<Self::Item> {
let UniqueBy { iter, used, .. } = &mut self.iter;
iter.rev().find_map(|v| {
if let Entry::Vacant(entry) = used.entry(v) {
let elt = entry.key().clone();
entry.insert(());
return Some(elt);
}
None
})
}
}
impl<I> FusedIterator for Unique<I>
where
I: FusedIterator,
I::Item: Eq + Hash + Clone,
{
}
/// An iterator adapter to filter out duplicate elements.
///
/// See [`.unique()`](crate::Itertools::unique) for more information.
#[derive(Clone)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Unique<I>
where
I: Iterator,
I::Item: Eq + Hash + Clone,
{
iter: UniqueBy<I, I::Item, ()>,
}
impl<I> fmt::Debug for Unique<I>
where
I: Iterator + fmt::Debug,
I::Item: Hash + Eq + fmt::Debug + Clone,
{
debug_fmt_fields!(Unique, iter);
}
pub fn unique<I>(iter: I) -> Unique<I>
where
I: Iterator,
I::Item: Eq + Hash + Clone,
{
Unique {
iter: UniqueBy {
iter,
used: HashMap::new(),
f: (),
},
}
}

80
vendor/itertools/src/unziptuple.rs vendored Normal file
View File

@@ -0,0 +1,80 @@
/// Converts an iterator of tuples into a tuple of containers.
///
/// `multiunzip()` consumes an entire iterator of n-ary tuples, producing `n` collections, one for each
/// column.
///
/// This function is, in some sense, the opposite of [`multizip`].
///
/// ```
/// use itertools::multiunzip;
///
/// let inputs = vec![(1, 2, 3), (4, 5, 6), (7, 8, 9)];
///
/// let (a, b, c): (Vec<_>, Vec<_>, Vec<_>) = multiunzip(inputs);
///
/// assert_eq!(a, vec![1, 4, 7]);
/// assert_eq!(b, vec![2, 5, 8]);
/// assert_eq!(c, vec![3, 6, 9]);
/// ```
///
/// [`multizip`]: crate::multizip
pub fn multiunzip<FromI, I>(i: I) -> FromI
where
I: IntoIterator,
I::IntoIter: MultiUnzip<FromI>,
{
i.into_iter().multiunzip()
}
/// An iterator that can be unzipped into multiple collections.
///
/// See [`.multiunzip()`](crate::Itertools::multiunzip) for more information.
pub trait MultiUnzip<FromI>: Iterator {
/// Unzip this iterator into multiple collections.
fn multiunzip(self) -> FromI;
}
macro_rules! impl_unzip_iter {
($($T:ident => $FromT:ident),*) => (
#[allow(non_snake_case)]
impl<IT: Iterator<Item = ($($T,)*)>, $($T, $FromT: Default + Extend<$T>),* > MultiUnzip<($($FromT,)*)> for IT {
fn multiunzip(self) -> ($($FromT,)*) {
// This implementation mirrors the logic of Iterator::unzip resp. Extend for (A, B) as close as possible.
// Unfortunately a lot of the used api there is still unstable (https://github.com/rust-lang/rust/issues/72631).
//
// Iterator::unzip: https://doc.rust-lang.org/src/core/iter/traits/iterator.rs.html#2825-2865
// Extend for (A, B): https://doc.rust-lang.org/src/core/iter/traits/collect.rs.html#370-411
let mut res = ($($FromT::default(),)*);
let ($($FromT,)*) = &mut res;
// Still unstable #72631
// let (lower_bound, _) = self.size_hint();
// if lower_bound > 0 {
// $($FromT.extend_reserve(lower_bound);)*
// }
self.fold((), |(), ($($T,)*)| {
// Still unstable #72631
// $( $FromT.extend_one($T); )*
$( $FromT.extend(std::iter::once($T)); )*
});
res
}
}
);
}
impl_unzip_iter!();
impl_unzip_iter!(A => FromA);
impl_unzip_iter!(A => FromA, B => FromB);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK);
impl_unzip_iter!(A => FromA, B => FromB, C => FromC, D => FromD, E => FromE, F => FromF, G => FromG, H => FromH, I => FromI, J => FromJ, K => FromK, L => FromL);

124
vendor/itertools/src/with_position.rs vendored Normal file
View File

@@ -0,0 +1,124 @@
use std::fmt;
use std::iter::{Fuse, FusedIterator, Peekable};
/// An iterator adaptor that wraps each element in an [`Position`].
///
/// Iterator element type is `(Position, I::Item)`.
///
/// See [`.with_position()`](crate::Itertools::with_position) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct WithPosition<I>
where
I: Iterator,
{
handled_first: bool,
peekable: Peekable<Fuse<I>>,
}
impl<I> fmt::Debug for WithPosition<I>
where
I: Iterator,
Peekable<Fuse<I>>: fmt::Debug,
{
debug_fmt_fields!(WithPosition, handled_first, peekable);
}
impl<I> Clone for WithPosition<I>
where
I: Clone + Iterator,
I::Item: Clone,
{
clone_fields!(handled_first, peekable);
}
/// Create a new `WithPosition` iterator.
pub fn with_position<I>(iter: I) -> WithPosition<I>
where
I: Iterator,
{
WithPosition {
handled_first: false,
peekable: iter.fuse().peekable(),
}
}
/// The first component of the value yielded by `WithPosition`.
/// Indicates the position of this element in the iterator results.
///
/// See [`.with_position()`](crate::Itertools::with_position) for more information.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Position {
/// This is the first element.
First,
/// This is neither the first nor the last element.
Middle,
/// This is the last element.
Last,
/// This is the only element.
Only,
}
impl<I: Iterator> Iterator for WithPosition<I> {
type Item = (Position, I::Item);
fn next(&mut self) -> Option<Self::Item> {
match self.peekable.next() {
Some(item) => {
if !self.handled_first {
// Haven't seen the first item yet, and there is one to give.
self.handled_first = true;
// Peek to see if this is also the last item,
// in which case tag it as `Only`.
match self.peekable.peek() {
Some(_) => Some((Position::First, item)),
None => Some((Position::Only, item)),
}
} else {
// Have seen the first item, and there's something left.
// Peek to see if this is the last item.
match self.peekable.peek() {
Some(_) => Some((Position::Middle, item)),
None => Some((Position::Last, item)),
}
}
}
// Iterator is finished.
None => None,
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.peekable.size_hint()
}
fn fold<B, F>(mut self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
if let Some(mut head) = self.peekable.next() {
if !self.handled_first {
// The current head is `First` or `Only`,
// it depends if there is another item or not.
match self.peekable.next() {
Some(second) => {
let first = std::mem::replace(&mut head, second);
init = f(init, (Position::First, first));
}
None => return f(init, (Position::Only, head)),
}
}
// Have seen the first item, and there's something left.
init = self.peekable.fold(init, |acc, mut item| {
std::mem::swap(&mut head, &mut item);
f(acc, (Position::Middle, item))
});
// The "head" is now the last item.
init = f(init, (Position::Last, head));
}
init
}
}
impl<I> ExactSizeIterator for WithPosition<I> where I: ExactSizeIterator {}
impl<I: Iterator> FusedIterator for WithPosition<I> {}

65
vendor/itertools/src/zip_eq_impl.rs vendored Normal file
View File

@@ -0,0 +1,65 @@
use super::size_hint;
/// An iterator which iterates two other iterators simultaneously
/// and panic if they have different lengths.
///
/// See [`.zip_eq()`](crate::Itertools::zip_eq) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct ZipEq<I, J> {
a: I,
b: J,
}
/// Zips two iterators but **panics** if they are not of the same length.
///
/// [`IntoIterator`] enabled version of [`Itertools::zip_eq`](crate::Itertools::zip_eq).
///
/// ```
/// use itertools::zip_eq;
///
/// let data = [1, 2, 3, 4, 5];
/// for (a, b) in zip_eq(&data[..data.len() - 1], &data[1..]) {
/// /* loop body */
/// # let _ = (a, b);
/// }
/// ```
pub fn zip_eq<I, J>(i: I, j: J) -> ZipEq<I::IntoIter, J::IntoIter>
where
I: IntoIterator,
J: IntoIterator,
{
ZipEq {
a: i.into_iter(),
b: j.into_iter(),
}
}
impl<I, J> Iterator for ZipEq<I, J>
where
I: Iterator,
J: Iterator,
{
type Item = (I::Item, J::Item);
fn next(&mut self) -> Option<Self::Item> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
(Some(a), Some(b)) => Some((a, b)),
(None, Some(_)) | (Some(_), None) => {
panic!("itertools: .zip_eq() reached end of one iterator before the other")
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::min(self.a.size_hint(), self.b.size_hint())
}
}
impl<I, J> ExactSizeIterator for ZipEq<I, J>
where
I: ExactSizeIterator,
J: ExactSizeIterator,
{
}

139
vendor/itertools/src/zip_longest.rs vendored Normal file
View File

@@ -0,0 +1,139 @@
use super::size_hint;
use std::cmp::Ordering::{Equal, Greater, Less};
use std::iter::{Fuse, FusedIterator};
use crate::either_or_both::EitherOrBoth;
// ZipLongest originally written by SimonSapin,
// and dedicated to itertools https://github.com/rust-lang/rust/pull/19283
/// An iterator which iterates two other iterators simultaneously
/// and wraps the elements in [`EitherOrBoth`].
///
/// This iterator is *fused*.
///
/// See [`.zip_longest()`](crate::Itertools::zip_longest) for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct ZipLongest<T, U> {
a: Fuse<T>,
b: Fuse<U>,
}
/// Create a new `ZipLongest` iterator.
pub fn zip_longest<T, U>(a: T, b: U) -> ZipLongest<T, U>
where
T: Iterator,
U: Iterator,
{
ZipLongest {
a: a.fuse(),
b: b.fuse(),
}
}
impl<T, U> Iterator for ZipLongest<T, U>
where
T: Iterator,
U: Iterator,
{
type Item = EitherOrBoth<T::Item, U::Item>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
match (self.a.next(), self.b.next()) {
(None, None) => None,
(Some(a), None) => Some(EitherOrBoth::Left(a)),
(None, Some(b)) => Some(EitherOrBoth::Right(b)),
(Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
size_hint::max(self.a.size_hint(), self.b.size_hint())
}
#[inline]
fn fold<B, F>(self, init: B, mut f: F) -> B
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
let Self { mut a, mut b } = self;
let res = a.try_fold(init, |init, a| match b.next() {
Some(b) => Ok(f(init, EitherOrBoth::Both(a, b))),
None => Err(f(init, EitherOrBoth::Left(a))),
});
match res {
Ok(acc) => b.map(EitherOrBoth::Right).fold(acc, f),
Err(acc) => a.map(EitherOrBoth::Left).fold(acc, f),
}
}
}
impl<T, U> DoubleEndedIterator for ZipLongest<T, U>
where
T: DoubleEndedIterator + ExactSizeIterator,
U: DoubleEndedIterator + ExactSizeIterator,
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
match self.a.len().cmp(&self.b.len()) {
Equal => match (self.a.next_back(), self.b.next_back()) {
(None, None) => None,
(Some(a), Some(b)) => Some(EitherOrBoth::Both(a, b)),
// These can only happen if .len() is inconsistent with .next_back()
(Some(a), None) => Some(EitherOrBoth::Left(a)),
(None, Some(b)) => Some(EitherOrBoth::Right(b)),
},
Greater => self.a.next_back().map(EitherOrBoth::Left),
Less => self.b.next_back().map(EitherOrBoth::Right),
}
}
fn rfold<B, F>(self, mut init: B, mut f: F) -> B
where
F: FnMut(B, Self::Item) -> B,
{
let Self { mut a, mut b } = self;
let a_len = a.len();
let b_len = b.len();
match a_len.cmp(&b_len) {
Equal => {}
Greater => {
init = a
.by_ref()
.rev()
.take(a_len - b_len)
.map(EitherOrBoth::Left)
.fold(init, &mut f)
}
Less => {
init = b
.by_ref()
.rev()
.take(b_len - a_len)
.map(EitherOrBoth::Right)
.fold(init, &mut f)
}
}
a.rfold(init, |acc, item_a| {
f(acc, EitherOrBoth::Both(item_a, b.next_back().unwrap()))
})
}
}
impl<T, U> ExactSizeIterator for ZipLongest<T, U>
where
T: ExactSizeIterator,
U: ExactSizeIterator,
{
}
impl<T, U> FusedIterator for ZipLongest<T, U>
where
T: Iterator,
U: Iterator,
{
}

137
vendor/itertools/src/ziptuple.rs vendored Normal file
View File

@@ -0,0 +1,137 @@
use super::size_hint;
/// See [`multizip`] for more information.
#[derive(Clone, Debug)]
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct Zip<T> {
t: T,
}
/// An iterator that generalizes `.zip()` and allows running multiple iterators in lockstep.
///
/// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that
/// implement [`IntoIterator`]) and yields elements
/// until any of the subiterators yields `None`.
///
/// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the
/// element types of the subiterator.
///
/// **Note:** The result of this function is a value of a named type (`Zip<(I, J,
/// ..)>` of each component iterator `I, J, ...`) if each component iterator is
/// nameable.
///
/// Prefer [`izip!()`](crate::izip) over `multizip` for the performance benefits of using the
/// standard library `.zip()`. Prefer `multizip` if a nameable type is needed.
///
/// ```
/// use itertools::multizip;
///
/// // iterate over three sequences side-by-side
/// let mut results = [0, 0, 0, 0];
/// let inputs = [3, 7, 9, 6];
///
/// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) {
/// *r = index * 10 + input;
/// }
///
/// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]);
/// ```
pub fn multizip<T, U>(t: U) -> Zip<T>
where
Zip<T>: From<U> + Iterator,
{
Zip::from(t)
}
macro_rules! impl_zip_iter {
($($B:ident),*) => (
#[allow(non_snake_case)]
impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> {
fn from(t: ($($B,)*)) -> Self {
let ($($B,)*) = t;
Zip { t: ($($B.into_iter(),)*) }
}
}
#[allow(non_snake_case)]
#[allow(unused_assignments)]
impl<$($B),*> Iterator for Zip<($($B,)*)>
where
$(
$B: Iterator,
)*
{
type Item = ($($B::Item,)*);
fn next(&mut self) -> Option<Self::Item>
{
let ($(ref mut $B,)*) = self.t;
// NOTE: Just like iter::Zip, we check the iterators
// for None in order. We may finish unevenly (some
// iterators gave n + 1 elements, some only n).
$(
let $B = match $B.next() {
None => return None,
Some(elt) => elt
};
)*
Some(($($B,)*))
}
fn size_hint(&self) -> (usize, Option<usize>)
{
let sh = (usize::MAX, None);
let ($(ref $B,)*) = self.t;
$(
let sh = size_hint::min($B.size_hint(), sh);
)*
sh
}
}
#[allow(non_snake_case)]
impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where
$(
$B: ExactSizeIterator,
)*
{ }
#[allow(non_snake_case)]
impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where
$(
$B: DoubleEndedIterator + ExactSizeIterator,
)*
{
#[inline]
fn next_back(&mut self) -> Option<Self::Item> {
let ($(ref mut $B,)*) = self.t;
let size = *[$( $B.len(), )*].iter().min().unwrap();
$(
if $B.len() != size {
for _ in 0..$B.len() - size { $B.next_back(); }
}
)*
match ($($B.next_back(),)*) {
($(Some($B),)*) => Some(($($B,)*)),
_ => None,
}
}
}
);
}
impl_zip_iter!(A);
impl_zip_iter!(A, B);
impl_zip_iter!(A, B, C);
impl_zip_iter!(A, B, C, D);
impl_zip_iter!(A, B, C, D, E);
impl_zip_iter!(A, B, C, D, E, F);
impl_zip_iter!(A, B, C, D, E, F, G);
impl_zip_iter!(A, B, C, D, E, F, G, H);
impl_zip_iter!(A, B, C, D, E, F, G, H, I);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K);
impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L);

View File

@@ -0,0 +1,51 @@
use itertools::Itertools;
struct PanickingCounter {
curr: usize,
max: usize,
}
impl Iterator for PanickingCounter {
type Item = ();
fn next(&mut self) -> Option<Self::Item> {
self.curr += 1;
assert_ne!(
self.curr, self.max,
"Input iterator reached maximum of {} suggesting collection by adaptor",
self.max
);
Some(())
}
}
fn no_collect_test<A, T>(to_adaptor: T)
where
A: Iterator,
T: Fn(PanickingCounter) -> A,
{
let counter = PanickingCounter {
curr: 0,
max: 10_000,
};
let adaptor = to_adaptor(counter);
for _ in adaptor.take(5) {}
}
#[test]
fn permutations_no_collect() {
no_collect_test(|iter| iter.permutations(5))
}
#[test]
fn combinations_no_collect() {
no_collect_test(|iter| iter.combinations(5))
}
#[test]
fn combinations_with_replacement_no_collect() {
no_collect_test(|iter| iter.combinations_with_replacement(5))
}

76
vendor/itertools/tests/flatten_ok.rs vendored Normal file
View File

@@ -0,0 +1,76 @@
use itertools::{assert_equal, Itertools};
use std::{ops::Range, vec::IntoIter};
fn mix_data() -> IntoIter<Result<Range<i32>, bool>> {
vec![Ok(0..2), Err(false), Ok(2..4), Err(true), Ok(4..6)].into_iter()
}
fn ok_data() -> IntoIter<Result<Range<i32>, bool>> {
vec![Ok(0..2), Ok(2..4), Ok(4..6)].into_iter()
}
#[test]
fn flatten_ok_mixed_expected_forward() {
assert_equal(
mix_data().flatten_ok(),
vec![
Ok(0),
Ok(1),
Err(false),
Ok(2),
Ok(3),
Err(true),
Ok(4),
Ok(5),
],
);
}
#[test]
fn flatten_ok_mixed_expected_reverse() {
assert_equal(
mix_data().flatten_ok().rev(),
vec![
Ok(5),
Ok(4),
Err(true),
Ok(3),
Ok(2),
Err(false),
Ok(1),
Ok(0),
],
);
}
#[test]
fn flatten_ok_collect_mixed_forward() {
assert_eq!(
mix_data().flatten_ok().collect::<Result<Vec<_>, _>>(),
Err(false)
);
}
#[test]
fn flatten_ok_collect_mixed_reverse() {
assert_eq!(
mix_data().flatten_ok().rev().collect::<Result<Vec<_>, _>>(),
Err(true)
);
}
#[test]
fn flatten_ok_collect_ok_forward() {
assert_eq!(
ok_data().flatten_ok().collect::<Result<Vec<_>, _>>(),
Ok((0..6).collect())
);
}
#[test]
fn flatten_ok_collect_ok_reverse() {
assert_eq!(
ok_data().flatten_ok().rev().collect::<Result<Vec<_>, _>>(),
Ok((0..6).rev().collect())
);
}

283
vendor/itertools/tests/laziness.rs vendored Normal file
View File

@@ -0,0 +1,283 @@
#![allow(unstable_name_collisions)]
use itertools::Itertools;
#[derive(Debug, Clone)]
#[must_use = "iterators are lazy and do nothing unless consumed"]
struct Panicking;
impl Iterator for Panicking {
type Item = u8;
fn next(&mut self) -> Option<u8> {
panic!("iterator adaptor is not lazy")
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(0))
}
}
impl ExactSizeIterator for Panicking {}
/// ## Usage example
/// ```compile_fail
/// must_use_tests! {
/// name {
/// Panicking.name(); // Add `let _ =` only if required (encountered error).
/// }
/// // ...
/// }
/// ```
///
/// **TODO:** test missing `must_use` attributes better, maybe with a new lint.
macro_rules! must_use_tests {
($($(#[$attr:meta])* $name:ident $body:block)*) => {
$(
/// `#[deny(unused_must_use)]` should force us to ignore the resulting iterators
/// by adding `let _ = ...;` on every iterator.
/// If it does not, then a `must_use` attribute is missing on the associated struct.
///
/// However, it's only helpful if we don't add `let _ =` before seeing if there is an error or not.
/// And it does not protect us against removed `must_use` attributes.
/// There is no simple way to test this yet.
#[deny(unused_must_use)]
#[test]
$(#[$attr])*
fn $name() $body
)*
};
}
must_use_tests! {
// Itertools trait:
interleave {
let _ = Panicking.interleave(Panicking);
}
interleave_shortest {
let _ = Panicking.interleave_shortest(Panicking);
}
intersperse {
let _ = Panicking.intersperse(0);
}
intersperse_with {
let _ = Panicking.intersperse_with(|| 0);
}
get {
let _ = Panicking.get(1..4);
let _ = Panicking.get(1..=4);
let _ = Panicking.get(1..);
let _ = Panicking.get(..4);
let _ = Panicking.get(..=4);
let _ = Panicking.get(..);
}
zip_longest {
let _ = Panicking.zip_longest(Panicking);
}
zip_eq {
let _ = Panicking.zip_eq(Panicking);
}
batching {
let _ = Panicking.batching(Iterator::next);
}
chunk_by {
// ChunkBy
let _ = Panicking.chunk_by(|x| *x);
// Groups
let _ = Panicking.chunk_by(|x| *x).into_iter();
}
chunks {
// IntoChunks
let _ = Panicking.chunks(1);
let _ = Panicking.chunks(2);
// Chunks
let _ = Panicking.chunks(1).into_iter();
let _ = Panicking.chunks(2).into_iter();
}
tuple_windows {
let _ = Panicking.tuple_windows::<(_,)>();
let _ = Panicking.tuple_windows::<(_, _)>();
let _ = Panicking.tuple_windows::<(_, _, _)>();
}
circular_tuple_windows {
let _ = Panicking.circular_tuple_windows::<(_,)>();
let _ = Panicking.circular_tuple_windows::<(_, _)>();
let _ = Panicking.circular_tuple_windows::<(_, _, _)>();
}
tuples {
let _ = Panicking.tuples::<(_,)>();
let _ = Panicking.tuples::<(_, _)>();
let _ = Panicking.tuples::<(_, _, _)>();
}
tee {
let _ = Panicking.tee();
}
map_into {
let _ = Panicking.map_into::<u16>();
}
map_ok {
let _ = Panicking.map(Ok::<u8, ()>).map_ok(|x| x + 1);
}
filter_ok {
let _ = Panicking.map(Ok::<u8, ()>).filter_ok(|x| x % 2 == 0);
}
filter_map_ok {
let _ = Panicking.map(Ok::<u8, ()>).filter_map_ok(|x| {
if x % 2 == 0 {
Some(x + 1)
} else {
None
}
});
}
flatten_ok {
let _ = Panicking.map(|x| Ok::<_, ()>([x])).flatten_ok();
}
merge {
let _ = Panicking.merge(Panicking);
}
merge_by {
let _ = Panicking.merge_by(Panicking, |_, _| true);
}
merge_join_by {
let _ = Panicking.merge_join_by(Panicking, |_, _| true);
let _ = Panicking.merge_join_by(Panicking, Ord::cmp);
}
#[should_panic]
kmerge {
let _ = Panicking.map(|_| Panicking).kmerge();
}
#[should_panic]
kmerge_by {
let _ = Panicking.map(|_| Panicking).kmerge_by(|_, _| true);
}
cartesian_product {
let _ = Panicking.cartesian_product(Panicking);
}
multi_cartesian_product {
let _ = vec![Panicking, Panicking, Panicking].into_iter().multi_cartesian_product();
}
coalesce {
let _ = Panicking.coalesce(|x, y| if x == y { Ok(x) } else { Err((x, y)) });
}
dedup {
let _ = Panicking.dedup();
}
dedup_by {
let _ = Panicking.dedup_by(|_, _| true);
}
dedup_with_count {
let _ = Panicking.dedup_with_count();
}
dedup_by_with_count {
let _ = Panicking.dedup_by_with_count(|_, _| true);
}
duplicates {
let _ = Panicking.duplicates();
}
duplicates_by {
let _ = Panicking.duplicates_by(|x| *x);
}
unique {
let _ = Panicking.unique();
}
unique_by {
let _ = Panicking.unique_by(|x| *x);
}
peeking_take_while {
let _ = Panicking.peekable().peeking_take_while(|x| x % 2 == 0);
}
take_while_ref {
let _ = Panicking.take_while_ref(|x| x % 2 == 0);
}
take_while_inclusive {
let _ = Panicking.take_while_inclusive(|x| x % 2 == 0);
}
while_some {
let _ = Panicking.map(Some).while_some();
}
tuple_combinations1 {
let _ = Panicking.tuple_combinations::<(_,)>();
}
#[should_panic]
tuple_combinations2 {
let _ = Panicking.tuple_combinations::<(_, _)>();
}
#[should_panic]
tuple_combinations3 {
let _ = Panicking.tuple_combinations::<(_, _, _)>();
}
combinations {
let _ = Panicking.combinations(0);
let _ = Panicking.combinations(1);
let _ = Panicking.combinations(2);
}
combinations_with_replacement {
let _ = Panicking.combinations_with_replacement(0);
let _ = Panicking.combinations_with_replacement(1);
let _ = Panicking.combinations_with_replacement(2);
}
permutations {
let _ = Panicking.permutations(0);
let _ = Panicking.permutations(1);
let _ = Panicking.permutations(2);
}
powerset {
let _ = Panicking.powerset();
}
pad_using {
let _ = Panicking.pad_using(25, |_| 10);
}
with_position {
let _ = Panicking.with_position();
}
positions {
let _ = Panicking.positions(|v| v % 2 == 0);
}
update {
let _ = Panicking.update(|n| *n += 1);
}
multipeek {
let _ = Panicking.multipeek();
}
// Not iterator themselves but still lazy.
into_grouping_map {
let _ = Panicking.map(|x| (x, x + 1)).into_grouping_map();
}
into_grouping_map_by {
let _ = Panicking.into_grouping_map_by(|x| *x);
}
// Macros:
iproduct {
let _ = itertools::iproduct!(Panicking);
let _ = itertools::iproduct!(Panicking, Panicking);
let _ = itertools::iproduct!(Panicking, Panicking, Panicking);
}
izip {
let _ = itertools::izip!(Panicking);
let _ = itertools::izip!(Panicking, Panicking);
let _ = itertools::izip!(Panicking, Panicking, Panicking);
}
chain {
let _ = itertools::chain!(Panicking);
let _ = itertools::chain!(Panicking, Panicking);
let _ = itertools::chain!(Panicking, Panicking, Panicking);
}
// Free functions:
multizip {
let _ = itertools::multizip((Panicking, Panicking));
}
put_back {
let _ = itertools::put_back(Panicking);
let _ = itertools::put_back(Panicking).with_value(15);
}
peek_nth {
let _ = itertools::peek_nth(Panicking);
}
put_back_n {
let _ = itertools::put_back_n(Panicking);
}
rciter {
let _ = itertools::rciter(Panicking);
}
}

View File

@@ -0,0 +1,27 @@
mod alloc {}
mod core {}
mod either {}
mod std {}
#[test]
fn iproduct_hygiene() {
let _ = itertools::iproduct!();
let _ = itertools::iproduct!(0..6);
let _ = itertools::iproduct!(0..6, 0..9);
let _ = itertools::iproduct!(0..6, 0..9, 0..12);
}
#[test]
fn izip_hygiene() {
let _ = itertools::izip!(0..6);
let _ = itertools::izip!(0..6, 0..9);
let _ = itertools::izip!(0..6, 0..9, 0..12);
}
#[test]
fn chain_hygiene() {
let _: ::std::iter::Empty<i32> = itertools::chain!();
let _ = itertools::chain!(0..6);
let _ = itertools::chain!(0..6, 0..9);
let _ = itertools::chain!(0..6, 0..9, 0..12);
}

101
vendor/itertools/tests/merge_join.rs vendored Normal file
View File

@@ -0,0 +1,101 @@
use itertools::free::merge_join_by;
use itertools::EitherOrBoth;
#[test]
fn empty() {
let left: Vec<u32> = vec![];
let right: Vec<u32> = vec![];
let expected_result: Vec<EitherOrBoth<u32>> = vec![];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn left_only() {
let left: Vec<u32> = vec![1, 2, 3];
let right: Vec<u32> = vec![];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Left(1),
EitherOrBoth::Left(2),
EitherOrBoth::Left(3),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn right_only() {
let left: Vec<u32> = vec![];
let right: Vec<u32> = vec![1, 2, 3];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Right(1),
EitherOrBoth::Right(2),
EitherOrBoth::Right(3),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn first_left_then_right() {
let left: Vec<u32> = vec![1, 2, 3];
let right: Vec<u32> = vec![4, 5, 6];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Left(1),
EitherOrBoth::Left(2),
EitherOrBoth::Left(3),
EitherOrBoth::Right(4),
EitherOrBoth::Right(5),
EitherOrBoth::Right(6),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn first_right_then_left() {
let left: Vec<u32> = vec![4, 5, 6];
let right: Vec<u32> = vec![1, 2, 3];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Right(1),
EitherOrBoth::Right(2),
EitherOrBoth::Right(3),
EitherOrBoth::Left(4),
EitherOrBoth::Left(5),
EitherOrBoth::Left(6),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn interspersed_left_and_right() {
let left: Vec<u32> = vec![1, 3, 5];
let right: Vec<u32> = vec![2, 4, 6];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Left(1),
EitherOrBoth::Right(2),
EitherOrBoth::Left(3),
EitherOrBoth::Right(4),
EitherOrBoth::Left(5),
EitherOrBoth::Right(6),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}
#[test]
fn overlapping_left_and_right() {
let left: Vec<u32> = vec![1, 3, 4, 6];
let right: Vec<u32> = vec![2, 3, 4, 5];
let expected_result: Vec<EitherOrBoth<u32>> = vec![
EitherOrBoth::Left(1),
EitherOrBoth::Right(2),
EitherOrBoth::Both(3, 3),
EitherOrBoth::Both(4, 4),
EitherOrBoth::Right(5),
EitherOrBoth::Left(6),
];
let actual_result = merge_join_by(left, right, |l, r| l.cmp(r)).collect::<Vec<_>>();
assert_eq!(expected_result, actual_result);
}

View File

@@ -0,0 +1,69 @@
use itertools::Itertools;
use itertools::{put_back, put_back_n};
#[test]
fn peeking_take_while_peekable() {
let mut r = (0..10).peekable();
r.peeking_take_while(|x| *x <= 3).count();
assert_eq!(r.next(), Some(4));
}
#[test]
fn peeking_take_while_put_back() {
let mut r = put_back(0..10);
r.peeking_take_while(|x| *x <= 3).count();
assert_eq!(r.next(), Some(4));
r.peeking_take_while(|_| true).count();
assert_eq!(r.next(), None);
}
#[test]
fn peeking_take_while_put_back_n() {
let mut r = put_back_n(6..10);
for elt in (0..6).rev() {
r.put_back(elt);
}
r.peeking_take_while(|x| *x <= 3).count();
assert_eq!(r.next(), Some(4));
r.peeking_take_while(|_| true).count();
assert_eq!(r.next(), None);
}
#[test]
fn peeking_take_while_slice_iter() {
let v = [1, 2, 3, 4, 5, 6];
let mut r = v.iter();
r.peeking_take_while(|x| **x <= 3).count();
assert_eq!(r.next(), Some(&4));
r.peeking_take_while(|_| true).count();
assert_eq!(r.next(), None);
}
#[test]
fn peeking_take_while_slice_iter_rev() {
let v = [1, 2, 3, 4, 5, 6];
let mut r = v.iter().rev();
r.peeking_take_while(|x| **x >= 3).count();
assert_eq!(r.next(), Some(&2));
r.peeking_take_while(|_| true).count();
assert_eq!(r.next(), None);
}
#[test]
fn peeking_take_while_nested() {
let mut xs = (0..10).peekable();
let ys: Vec<_> = xs
.peeking_take_while(|x| *x < 6)
.peeking_take_while(|x| *x != 3)
.collect();
assert_eq!(ys, vec![0, 1, 2]);
assert_eq!(xs.next(), Some(3));
let mut xs = (4..10).peekable();
let ys: Vec<_> = xs
.peeking_take_while(|x| *x != 3)
.peeking_take_while(|x| *x < 6)
.collect();
assert_eq!(ys, vec![4, 5]);
assert_eq!(xs.next(), Some(6));
}

1969
vendor/itertools/tests/quick.rs vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,603 @@
//! Test specializations of methods with default impls match the behavior of the
//! default impls.
//!
//! **NOTE:** Due to performance limitations, these tests are not run with miri!
//! They cannot be relied upon to discover soundness issues.
#![cfg(not(miri))]
#![allow(unstable_name_collisions)]
use itertools::Itertools;
use quickcheck::Arbitrary;
use quickcheck::{quickcheck, TestResult};
use rand::Rng;
use std::fmt::Debug;
struct Unspecialized<I>(I);
impl<I> Iterator for Unspecialized<I>
where
I: Iterator,
{
type Item = I::Item;
#[inline(always)]
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
impl<I> DoubleEndedIterator for Unspecialized<I>
where
I: DoubleEndedIterator,
{
#[inline(always)]
fn next_back(&mut self) -> Option<Self::Item> {
self.0.next_back()
}
}
fn test_specializations<I>(it: &I)
where
I::Item: Eq + Debug + Clone,
I: Iterator + Clone,
{
macro_rules! check_specialized {
($src:expr, |$it:pat| $closure:expr) => {
// Many iterators special-case the first elements, so we test specializations for iterators that have already been advanced.
let mut src = $src.clone();
for _ in 0..5 {
let $it = src.clone();
let v1 = $closure;
let $it = Unspecialized(src.clone());
let v2 = $closure;
assert_eq!(v1, v2);
src.next();
}
}
}
check_specialized!(it, |i| i.count());
check_specialized!(it, |i| i.last());
check_specialized!(it, |i| i.collect::<Vec<_>>());
check_specialized!(it, |i| {
let mut parameters_from_fold = vec![];
let fold_result = i.fold(vec![], |mut acc, v: I::Item| {
parameters_from_fold.push((acc.clone(), v.clone()));
acc.push(v);
acc
});
(parameters_from_fold, fold_result)
});
check_specialized!(it, |mut i| {
let mut parameters_from_all = vec![];
let first = i.next();
let all_result = i.all(|x| {
parameters_from_all.push(x.clone());
Some(x) == first
});
(parameters_from_all, all_result)
});
let size = it.clone().count();
for n in 0..size + 2 {
check_specialized!(it, |mut i| i.nth(n));
}
// size_hint is a bit harder to check
let mut it_sh = it.clone();
for n in 0..size + 2 {
let len = it_sh.clone().count();
let (min, max) = it_sh.size_hint();
assert_eq!(size - n.min(size), len);
assert!(min <= len);
if let Some(max) = max {
assert!(len <= max);
}
it_sh.next();
}
}
fn test_double_ended_specializations<I>(it: &I)
where
I::Item: Eq + Debug + Clone,
I: DoubleEndedIterator + Clone,
{
macro_rules! check_specialized {
($src:expr, |$it:pat| $closure:expr) => {
// Many iterators special-case the first elements, so we test specializations for iterators that have already been advanced.
let mut src = $src.clone();
for step in 0..8 {
let $it = src.clone();
let v1 = $closure;
let $it = Unspecialized(src.clone());
let v2 = $closure;
assert_eq!(v1, v2);
if step % 2 == 0 {
src.next();
} else {
src.next_back();
}
}
}
}
check_specialized!(it, |i| {
let mut parameters_from_rfold = vec![];
let rfold_result = i.rfold(vec![], |mut acc, v: I::Item| {
parameters_from_rfold.push((acc.clone(), v.clone()));
acc.push(v);
acc
});
(parameters_from_rfold, rfold_result)
});
let size = it.clone().count();
for n in 0..size + 2 {
check_specialized!(it, |mut i| i.nth_back(n));
}
}
quickcheck! {
fn interleave(v: Vec<u8>, w: Vec<u8>) -> () {
test_specializations(&v.iter().interleave(w.iter()));
}
fn interleave_shortest(v: Vec<u8>, w: Vec<u8>) -> () {
test_specializations(&v.iter().interleave_shortest(w.iter()));
}
fn batching(v: Vec<u8>) -> () {
test_specializations(&v.iter().batching(Iterator::next));
}
fn tuple_windows(v: Vec<u8>) -> () {
test_specializations(&v.iter().tuple_windows::<(_,)>());
test_specializations(&v.iter().tuple_windows::<(_, _)>());
test_specializations(&v.iter().tuple_windows::<(_, _, _)>());
}
fn circular_tuple_windows(v: Vec<u8>) -> () {
test_specializations(&v.iter().circular_tuple_windows::<(_,)>());
test_specializations(&v.iter().circular_tuple_windows::<(_, _)>());
test_specializations(&v.iter().circular_tuple_windows::<(_, _, _)>());
}
fn tuples(v: Vec<u8>) -> () {
test_specializations(&v.iter().tuples::<(_,)>());
test_specializations(&v.iter().tuples::<(_, _)>());
test_specializations(&v.iter().tuples::<(_, _, _)>());
}
fn cartesian_product(a: Vec<u8>, b: Vec<u8>) -> TestResult {
if a.len() * b.len() > 100 {
return TestResult::discard();
}
test_specializations(&a.iter().cartesian_product(&b));
TestResult::passed()
}
fn multi_cartesian_product(a: Vec<u8>, b: Vec<u8>, c: Vec<u8>) -> TestResult {
if a.len() * b.len() * c.len() > 100 {
return TestResult::discard();
}
test_specializations(&vec![a, b, c].into_iter().multi_cartesian_product());
TestResult::passed()
}
fn coalesce(v: Vec<u8>) -> () {
test_specializations(&v.iter().coalesce(|x, y| if x == y { Ok(x) } else { Err((x, y)) }))
}
fn dedup(v: Vec<u8>) -> () {
test_specializations(&v.iter().dedup())
}
fn dedup_by(v: Vec<u8>) -> () {
test_specializations(&v.iter().dedup_by(PartialOrd::ge))
}
fn dedup_with_count(v: Vec<u8>) -> () {
test_specializations(&v.iter().dedup_with_count())
}
fn dedup_by_with_count(v: Vec<u8>) -> () {
test_specializations(&v.iter().dedup_by_with_count(PartialOrd::ge))
}
fn duplicates(v: Vec<u8>) -> () {
let it = v.iter().duplicates();
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn duplicates_by(v: Vec<u8>) -> () {
let it = v.iter().duplicates_by(|x| *x % 10);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn unique(v: Vec<u8>) -> () {
let it = v.iter().unique();
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn unique_by(v: Vec<u8>) -> () {
let it = v.iter().unique_by(|x| *x % 50);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn take_while_inclusive(v: Vec<u8>) -> () {
test_specializations(&v.iter().copied().take_while_inclusive(|&x| x < 100));
}
fn while_some(v: Vec<u8>) -> () {
test_specializations(&v.iter().map(|&x| if x < 100 { Some(2 * x) } else { None }).while_some());
}
fn pad_using(v: Vec<u8>) -> () {
use std::convert::TryFrom;
let it = v.iter().copied().pad_using(10, |i| u8::try_from(5 * i).unwrap_or(u8::MAX));
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn with_position(v: Vec<u8>) -> () {
test_specializations(&v.iter().with_position());
}
fn positions(v: Vec<u8>) -> () {
let it = v.iter().positions(|x| x % 5 == 0);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn update(v: Vec<u8>) -> () {
let it = v.iter().copied().update(|x| *x = x.wrapping_mul(7));
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn tuple_combinations(v: Vec<u8>) -> TestResult {
if v.len() > 10 {
return TestResult::discard();
}
test_specializations(&v.iter().tuple_combinations::<(_,)>());
test_specializations(&v.iter().tuple_combinations::<(_, _)>());
test_specializations(&v.iter().tuple_combinations::<(_, _, _)>());
TestResult::passed()
}
fn intersperse(v: Vec<u8>) -> () {
test_specializations(&v.into_iter().intersperse(0));
}
fn intersperse_with(v: Vec<u8>) -> () {
test_specializations(&v.into_iter().intersperse_with(|| 0));
}
fn array_combinations(v: Vec<u8>) -> TestResult {
if v.len() > 10 {
return TestResult::discard();
}
test_specializations(&v.iter().array_combinations::<1>());
test_specializations(&v.iter().array_combinations::<2>());
test_specializations(&v.iter().array_combinations::<3>());
TestResult::passed()
}
fn combinations(a: Vec<u8>, n: u8) -> TestResult {
if n > 3 || a.len() > 8 {
return TestResult::discard();
}
test_specializations(&a.iter().combinations(n as usize));
TestResult::passed()
}
fn combinations_with_replacement(a: Vec<u8>, n: u8) -> TestResult {
if n > 3 || a.len() > 7 {
return TestResult::discard();
}
test_specializations(&a.iter().combinations_with_replacement(n as usize));
TestResult::passed()
}
fn permutations(a: Vec<u8>, n: u8) -> TestResult {
if n > 3 || a.len() > 8 {
return TestResult::discard();
}
test_specializations(&a.iter().permutations(n as usize));
TestResult::passed()
}
fn powerset(a: Vec<u8>) -> TestResult {
if a.len() > 6 {
return TestResult::discard();
}
test_specializations(&a.iter().powerset());
TestResult::passed()
}
fn zip_longest(a: Vec<u8>, b: Vec<u8>) -> () {
let it = a.into_iter().zip_longest(b);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn zip_eq(a: Vec<u8>) -> () {
test_specializations(&a.iter().zip_eq(a.iter().rev()))
}
fn multizip(a: Vec<u8>) -> () {
let it = itertools::multizip((a.iter(), a.iter().rev(), a.iter().take(50)));
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn izip(a: Vec<u8>, b: Vec<u8>) -> () {
test_specializations(&itertools::izip!(b.iter(), a, b.iter().rev()));
}
fn iproduct(a: Vec<u8>, b: Vec<u8>, c: Vec<u8>) -> TestResult {
if a.len() * b.len() * c.len() > 200 {
return TestResult::discard();
}
test_specializations(&itertools::iproduct!(a, b.iter(), c));
TestResult::passed()
}
fn repeat_n(element: i8, n: u8) -> () {
let it = itertools::repeat_n(element, n as usize);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn exactly_one_error(v: Vec<u8>) -> TestResult {
// Use `at_most_one` would be similar.
match v.iter().exactly_one() {
Ok(_) => TestResult::discard(),
Err(it) => {
test_specializations(&it);
TestResult::passed()
}
}
}
}
quickcheck! {
fn put_back_qc(test_vec: Vec<i32>) -> () {
test_specializations(&itertools::put_back(test_vec.iter()));
let mut pb = itertools::put_back(test_vec.into_iter());
pb.put_back(1);
test_specializations(&pb);
}
fn put_back_n(v: Vec<u8>, n: u8) -> () {
let mut it = itertools::put_back_n(v);
for k in 0..n {
it.put_back(k);
}
test_specializations(&it);
}
fn multipeek(v: Vec<u8>, n: u8) -> () {
let mut it = v.into_iter().multipeek();
for _ in 0..n {
it.peek();
}
test_specializations(&it);
}
fn peek_nth_with_peek(v: Vec<u8>, n: u8) -> () {
let mut it = itertools::peek_nth(v);
for _ in 0..n {
it.peek();
}
test_specializations(&it);
}
fn peek_nth_with_peek_nth(v: Vec<u8>, n: u8) -> () {
let mut it = itertools::peek_nth(v);
it.peek_nth(n as usize);
test_specializations(&it);
}
fn peek_nth_with_peek_mut(v: Vec<u8>, n: u8) -> () {
let mut it = itertools::peek_nth(v);
for _ in 0..n {
if let Some(x) = it.peek_mut() {
*x = x.wrapping_add(50);
}
}
test_specializations(&it);
}
fn peek_nth_with_peek_nth_mut(v: Vec<u8>, n: u8) -> () {
let mut it = itertools::peek_nth(v);
if let Some(x) = it.peek_nth_mut(n as usize) {
*x = x.wrapping_add(50);
}
test_specializations(&it);
}
}
quickcheck! {
fn merge(a: Vec<u8>, b: Vec<u8>) -> () {
test_specializations(&a.into_iter().merge(b))
}
fn merge_by(a: Vec<u8>, b: Vec<u8>) -> () {
test_specializations(&a.into_iter().merge_by(b, PartialOrd::ge))
}
fn merge_join_by_ordering(i1: Vec<u8>, i2: Vec<u8>) -> () {
test_specializations(&i1.into_iter().merge_join_by(i2, Ord::cmp));
}
fn merge_join_by_bool(i1: Vec<u8>, i2: Vec<u8>) -> () {
test_specializations(&i1.into_iter().merge_join_by(i2, PartialOrd::ge));
}
fn kmerge(a: Vec<i8>, b: Vec<i8>, c: Vec<i8>) -> () {
test_specializations(&vec![a, b, c]
.into_iter()
.map(|v| v.into_iter().sorted())
.kmerge());
}
fn kmerge_by(a: Vec<i8>, b: Vec<i8>, c: Vec<i8>) -> () {
test_specializations(&vec![a, b, c]
.into_iter()
.map(|v| v.into_iter().sorted_by_key(|a| a.abs()))
.kmerge_by(|a, b| a.abs() < b.abs()));
}
}
quickcheck! {
fn map_into(v: Vec<u8>) -> () {
let it = v.into_iter().map_into::<u32>();
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn map_ok(v: Vec<Result<u8, char>>) -> () {
let it = v.into_iter().map_ok(|u| u.checked_add(1));
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn filter_ok(v: Vec<Result<u8, char>>) -> () {
let it = v.into_iter().filter_ok(|&i| i < 20);
test_specializations(&it);
test_double_ended_specializations(&it);
}
fn filter_map_ok(v: Vec<Result<u8, char>>) -> () {
let it = v.into_iter().filter_map_ok(|i| if i < 20 { Some(i * 2) } else { None });
test_specializations(&it);
test_double_ended_specializations(&it);
}
// `SmallIter2<u8>` because `Vec<u8>` is too slow and we get bad coverage from a singleton like Option<u8>
fn flatten_ok(v: Vec<Result<SmallIter2<u8>, char>>) -> () {
let it = v.into_iter().flatten_ok();
test_specializations(&it);
test_double_ended_specializations(&it);
}
}
quickcheck! {
// TODO Replace this function by a normal call to test_specializations
fn process_results(v: Vec<Result<u8, u8>>) -> () {
helper(v.iter().copied());
helper(v.iter().copied().filter(Result::is_ok));
fn helper(it: impl DoubleEndedIterator<Item = Result<u8, u8>> + Clone) {
macro_rules! check_results_specialized {
($src:expr, |$it:pat| $closure:expr) => {
assert_eq!(
itertools::process_results($src.clone(), |$it| $closure),
itertools::process_results($src.clone(), |i| {
let $it = Unspecialized(i);
$closure
}),
)
}
}
check_results_specialized!(it, |i| i.count());
check_results_specialized!(it, |i| i.last());
check_results_specialized!(it, |i| i.collect::<Vec<_>>());
check_results_specialized!(it, |i| i.rev().collect::<Vec<_>>());
check_results_specialized!(it, |i| {
let mut parameters_from_fold = vec![];
let fold_result = i.fold(vec![], |mut acc, v| {
parameters_from_fold.push((acc.clone(), v));
acc.push(v);
acc
});
(parameters_from_fold, fold_result)
});
check_results_specialized!(it, |i| {
let mut parameters_from_rfold = vec![];
let rfold_result = i.rfold(vec![], |mut acc, v| {
parameters_from_rfold.push((acc.clone(), v));
acc.push(v);
acc
});
(parameters_from_rfold, rfold_result)
});
check_results_specialized!(it, |mut i| {
let mut parameters_from_all = vec![];
let first = i.next();
let all_result = i.all(|x| {
parameters_from_all.push(x);
Some(x)==first
});
(parameters_from_all, all_result)
});
let size = it.clone().count();
for n in 0..size + 2 {
check_results_specialized!(it, |mut i| i.nth(n));
}
for n in 0..size + 2 {
check_results_specialized!(it, |mut i| i.nth_back(n));
}
}
}
}
/// Like `VecIntoIter<T>` with maximum 2 elements.
#[derive(Debug, Clone, Default)]
enum SmallIter2<T> {
#[default]
Zero,
One(T),
Two(T, T),
}
impl<T: Arbitrary> Arbitrary for SmallIter2<T> {
fn arbitrary<G: quickcheck::Gen>(g: &mut G) -> Self {
match g.gen_range(0u8, 3) {
0 => Self::Zero,
1 => Self::One(T::arbitrary(g)),
2 => Self::Two(T::arbitrary(g), T::arbitrary(g)),
_ => unreachable!(),
}
}
// maybe implement shrink too, maybe not
}
impl<T> Iterator for SmallIter2<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match std::mem::take(self) {
Self::Zero => None,
Self::One(val) => Some(val),
Self::Two(val, second) => {
*self = Self::One(second);
Some(val)
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = match self {
Self::Zero => 0,
Self::One(_) => 1,
Self::Two(_, _) => 2,
};
(len, Some(len))
}
}
impl<T> DoubleEndedIterator for SmallIter2<T> {
fn next_back(&mut self) -> Option<Self::Item> {
match std::mem::take(self) {
Self::Zero => None,
Self::One(val) => Some(val),
Self::Two(first, val) => {
*self = Self::One(first);
Some(val)
}
}
}
}

399
vendor/itertools/tests/test_core.rs vendored Normal file
View File

@@ -0,0 +1,399 @@
//! Licensed under the Apache License, Version 2.0
//! https://www.apache.org/licenses/LICENSE-2.0 or the MIT license
//! https://opensource.org/licenses/MIT, at your
//! option. This file may not be copied, modified, or distributed
//! except according to those terms.
#![no_std]
#![allow(deprecated)]
use crate::it::chain;
use crate::it::free::put_back;
use crate::it::interleave;
use crate::it::intersperse;
use crate::it::intersperse_with;
use crate::it::iproduct;
use crate::it::izip;
use crate::it::multizip;
use crate::it::Itertools;
use core::iter;
use itertools as it;
#[allow(dead_code)]
fn get_esi_then_esi<I: ExactSizeIterator + Clone>(it: I) {
fn is_esi(_: impl ExactSizeIterator) {}
is_esi(it.clone().get(1..4));
is_esi(it.clone().get(1..=4));
is_esi(it.clone().get(1..));
is_esi(it.clone().get(..4));
is_esi(it.clone().get(..=4));
is_esi(it.get(..));
}
#[allow(dead_code)]
fn get_dei_esi_then_dei_esi<I: DoubleEndedIterator + ExactSizeIterator + Clone>(it: I) {
fn is_dei_esi(_: impl DoubleEndedIterator + ExactSizeIterator) {}
is_dei_esi(it.clone().get(1..4));
is_dei_esi(it.clone().get(1..=4));
is_dei_esi(it.clone().get(1..));
is_dei_esi(it.clone().get(..4));
is_dei_esi(it.clone().get(..=4));
is_dei_esi(it.get(..));
}
#[test]
fn get_1_max() {
let mut it = (0..5).get(1..=usize::MAX);
assert_eq!(it.next(), Some(1));
assert_eq!(it.next_back(), Some(4));
}
#[test]
#[should_panic]
fn get_full_range_inclusive() {
let _it = (0..5).get(0..=usize::MAX);
}
#[test]
fn product0() {
let mut prod = iproduct!();
assert_eq!(prod.next(), Some(()));
assert!(prod.next().is_none());
}
#[test]
fn iproduct1() {
let s = "αβ";
let mut prod = iproduct!(s.chars());
assert_eq!(prod.next(), Some(('α',)));
assert_eq!(prod.next(), Some(('β',)));
assert!(prod.next().is_none());
}
#[test]
fn product2() {
let s = "αβ";
let mut prod = iproduct!(s.chars(), 0..2);
assert!(prod.next() == Some(('α', 0)));
assert!(prod.next() == Some(('α', 1)));
assert!(prod.next() == Some(('β', 0)));
assert!(prod.next() == Some(('β', 1)));
assert!(prod.next().is_none());
}
#[test]
fn product_temporary() {
for (_x, _y, _z) in iproduct!(
[0, 1, 2].iter().cloned(),
[0, 1, 2].iter().cloned(),
[0, 1, 2].iter().cloned()
) {
// ok
}
}
#[test]
fn izip_macro() {
let mut zip = izip!(2..3);
assert!(zip.next() == Some(2));
assert!(zip.next().is_none());
let mut zip = izip!(0..3, 0..2, 0..2i8);
for i in 0..2 {
assert!((i as usize, i, i as i8) == zip.next().unwrap());
}
assert!(zip.next().is_none());
let xs: [isize; 0] = [];
let mut zip = izip!(0..3, 0..2, 0..2i8, &xs);
assert!(zip.next().is_none());
}
#[test]
fn izip2() {
let _zip1: iter::Zip<_, _> = izip!(1.., 2..);
let _zip2: iter::Zip<_, _> = izip!(1.., 2..,);
}
#[test]
fn izip3() {
let mut zip: iter::Map<iter::Zip<_, _>, _> = izip!(0..3, 0..2, 0..2i8);
for i in 0..2 {
assert!((i as usize, i, i as i8) == zip.next().unwrap());
}
assert!(zip.next().is_none());
}
#[test]
fn multizip3() {
let mut zip = multizip((0..3, 0..2, 0..2i8));
for i in 0..2 {
assert!((i as usize, i, i as i8) == zip.next().unwrap());
}
assert!(zip.next().is_none());
let xs: [isize; 0] = [];
let mut zip = multizip((0..3, 0..2, 0..2i8, xs.iter()));
assert!(zip.next().is_none());
for (_, _, _, _, _) in multizip((0..3, 0..2, xs.iter(), &xs, xs.to_vec())) {
/* test compiles */
}
}
#[test]
fn chain_macro() {
let mut chain = chain!(2..3);
assert!(chain.next() == Some(2));
assert!(chain.next().is_none());
let mut chain = chain!(0..2, 2..3, 3..5i8);
for i in 0..5i8 {
assert_eq!(Some(i), chain.next());
}
assert!(chain.next().is_none());
let mut chain = chain!();
assert_eq!(chain.next(), Option::<()>::None);
}
#[test]
fn chain2() {
let _ = chain!(1.., 2..);
let _ = chain!(1.., 2..,);
}
#[test]
fn write_to() {
let xs = [7, 9, 8];
let mut ys = [0; 5];
let cnt = ys.iter_mut().set_from(xs.iter().copied());
assert!(cnt == xs.len());
assert!(ys == [7, 9, 8, 0, 0]);
let cnt = ys.iter_mut().set_from(0..10);
assert!(cnt == ys.len());
assert!(ys == [0, 1, 2, 3, 4]);
}
#[test]
fn test_interleave() {
let xs: [u8; 0] = [];
let ys = [7u8, 9, 8, 10];
let zs = [2u8, 77];
let it = interleave(xs.iter(), ys.iter());
it::assert_equal(it, ys.iter());
let rs = [7u8, 2, 9, 77, 8, 10];
let it = interleave(ys.iter(), zs.iter());
it::assert_equal(it, rs.iter());
}
#[test]
fn test_intersperse() {
let xs = [1u8, 2, 3];
let ys = [1u8, 0, 2, 0, 3];
let it = intersperse(&xs, &0);
it::assert_equal(it, ys.iter());
}
#[test]
fn test_intersperse_with() {
let xs = [1u8, 2, 3];
let ys = [1u8, 10, 2, 10, 3];
let i = 10;
let it = intersperse_with(&xs, || &i);
it::assert_equal(it, ys.iter());
}
#[test]
fn dropping() {
let xs = [1, 2, 3];
let mut it = xs.iter().dropping(2);
assert_eq!(it.next(), Some(&3));
assert!(it.next().is_none());
let mut it = xs.iter().dropping(5);
assert!(it.next().is_none());
}
#[test]
fn batching() {
let xs = [0, 1, 2, 1, 3];
let ys = [(0, 1), (2, 1)];
// An iterator that gathers elements up in pairs
let pit = xs
.iter()
.cloned()
.batching(|it| it.next().and_then(|x| it.next().map(|y| (x, y))));
it::assert_equal(pit, ys.iter().cloned());
}
#[test]
fn test_put_back() {
let xs = [0, 1, 1, 1, 2, 1, 3, 3];
let mut pb = put_back(xs.iter().cloned());
pb.next();
pb.put_back(1);
pb.put_back(0);
it::assert_equal(pb, xs.iter().cloned());
}
#[test]
fn merge() {
it::assert_equal((0..10).step_by(2).merge((1..10).step_by(2)), 0..10);
}
#[test]
fn repeatn() {
let s = "α";
let mut it = it::repeat_n(s, 3);
assert_eq!(it.len(), 3);
assert_eq!(it.next(), Some(s));
assert_eq!(it.next(), Some(s));
assert_eq!(it.next(), Some(s));
assert_eq!(it.next(), None);
assert_eq!(it.next(), None);
}
#[test]
fn count_clones() {
// Check that RepeatN only clones N - 1 times.
use core::cell::Cell;
#[derive(PartialEq, Debug)]
struct Foo {
n: Cell<usize>,
}
impl Clone for Foo {
fn clone(&self) -> Self {
let n = self.n.get();
self.n.set(n + 1);
Self {
n: Cell::new(n + 1),
}
}
}
for n in 0..10 {
let f = Foo { n: Cell::new(0) };
let it = it::repeat_n(f, n);
// drain it
let last = it.last();
if n == 0 {
assert_eq!(last, None);
} else {
assert_eq!(
last,
Some(Foo {
n: Cell::new(n - 1)
})
);
}
}
}
#[test]
fn part() {
let mut data = [7, 1, 1, 9, 1, 1, 3];
let i = it::partition(&mut data, |elt| *elt >= 3);
assert_eq!(i, 3);
assert_eq!(data, [7, 3, 9, 1, 1, 1, 1]);
let i = it::partition(&mut data, |elt| *elt == 1);
assert_eq!(i, 4);
assert_eq!(data, [1, 1, 1, 1, 9, 3, 7]);
let mut data = [1, 2, 3, 4, 5, 6, 7, 8, 9];
let i = it::partition(&mut data, |elt| *elt % 3 == 0);
assert_eq!(i, 3);
assert_eq!(data, [9, 6, 3, 4, 5, 2, 7, 8, 1]);
}
#[test]
fn tree_reduce() {
for i in 0..100 {
assert_eq!((0..i).tree_reduce(|x, y| x + y), (0..i).fold1(|x, y| x + y));
}
}
#[test]
fn exactly_one() {
assert_eq!((0..10).filter(|&x| x == 2).exactly_one().unwrap(), 2);
assert!((0..10)
.filter(|&x| x > 1 && x < 4)
.exactly_one()
.unwrap_err()
.eq(2..4));
assert!((0..10)
.filter(|&x| x > 1 && x < 5)
.exactly_one()
.unwrap_err()
.eq(2..5));
assert!((0..10)
.filter(|&_| false)
.exactly_one()
.unwrap_err()
.eq(0..0));
}
#[test]
fn at_most_one() {
assert_eq!((0..10).filter(|&x| x == 2).at_most_one().unwrap(), Some(2));
assert!((0..10)
.filter(|&x| x > 1 && x < 4)
.at_most_one()
.unwrap_err()
.eq(2..4));
assert!((0..10)
.filter(|&x| x > 1 && x < 5)
.at_most_one()
.unwrap_err()
.eq(2..5));
assert_eq!((0..10).filter(|&_| false).at_most_one().unwrap(), None);
}
#[test]
fn sum1() {
let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v[..0].iter().cloned().sum1::<i32>(), None);
assert_eq!(v[1..2].iter().cloned().sum1::<i32>(), Some(1));
assert_eq!(v[1..3].iter().cloned().sum1::<i32>(), Some(3));
assert_eq!(v.iter().cloned().sum1::<i32>(), Some(55));
}
#[test]
fn product1() {
let v: &[i32] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
assert_eq!(v[..0].iter().cloned().product1::<i32>(), None);
assert_eq!(v[..1].iter().cloned().product1::<i32>(), Some(0));
assert_eq!(v[1..3].iter().cloned().product1::<i32>(), Some(2));
assert_eq!(v[1..5].iter().cloned().product1::<i32>(), Some(24));
}
#[test]
fn next_array() {
let v = [1, 2, 3, 4, 5];
let mut iter = v.iter();
assert_eq!(iter.next_array(), Some([]));
assert_eq!(iter.next_array().map(|[&x, &y]| [x, y]), Some([1, 2]));
assert_eq!(iter.next_array().map(|[&x, &y]| [x, y]), Some([3, 4]));
assert_eq!(iter.next_array::<2>(), None);
}
#[test]
fn collect_array() {
let v = [1, 2];
let iter = v.iter().cloned();
assert_eq!(iter.collect_array(), Some([1, 2]));
let v = [1];
let iter = v.iter().cloned();
assert_eq!(iter.collect_array::<2>(), None);
let v = [1, 2, 3];
let iter = v.iter().cloned();
assert_eq!(iter.collect_array::<2>(), None);
}

1569
vendor/itertools/tests/test_std.rs vendored Normal file

File diff suppressed because it is too large Load Diff

86
vendor/itertools/tests/tuples.rs vendored Normal file
View File

@@ -0,0 +1,86 @@
use itertools::Itertools;
#[test]
fn tuples() {
let v = [1, 2, 3, 4, 5];
let mut iter = v.iter().cloned().tuples();
assert_eq!(Some((1,)), iter.next());
assert_eq!(Some((2,)), iter.next());
assert_eq!(Some((3,)), iter.next());
assert_eq!(Some((4,)), iter.next());
assert_eq!(Some((5,)), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.into_buffer().next());
let mut iter = v.iter().cloned().tuples();
assert_eq!(Some((1, 2)), iter.next());
assert_eq!(Some((3, 4)), iter.next());
assert_eq!(None, iter.next());
itertools::assert_equal(vec![5], iter.into_buffer());
let mut iter = v.iter().cloned().tuples();
assert_eq!(Some((1, 2, 3)), iter.next());
assert_eq!(None, iter.next());
itertools::assert_equal(vec![4, 5], iter.into_buffer());
let mut iter = v.iter().cloned().tuples();
assert_eq!(Some((1, 2, 3, 4)), iter.next());
assert_eq!(None, iter.next());
itertools::assert_equal(vec![5], iter.into_buffer());
}
#[test]
fn tuple_windows() {
let v = [1, 2, 3, 4, 5];
let mut iter = v.iter().cloned().tuple_windows();
assert_eq!(Some((1,)), iter.next());
assert_eq!(Some((2,)), iter.next());
assert_eq!(Some((3,)), iter.next());
let mut iter = v.iter().cloned().tuple_windows();
assert_eq!(Some((1, 2)), iter.next());
assert_eq!(Some((2, 3)), iter.next());
assert_eq!(Some((3, 4)), iter.next());
assert_eq!(Some((4, 5)), iter.next());
assert_eq!(None, iter.next());
let mut iter = v.iter().cloned().tuple_windows();
assert_eq!(Some((1, 2, 3)), iter.next());
assert_eq!(Some((2, 3, 4)), iter.next());
assert_eq!(Some((3, 4, 5)), iter.next());
assert_eq!(None, iter.next());
let mut iter = v.iter().cloned().tuple_windows();
assert_eq!(Some((1, 2, 3, 4)), iter.next());
assert_eq!(Some((2, 3, 4, 5)), iter.next());
assert_eq!(None, iter.next());
let v = [1, 2, 3];
let mut iter = v.iter().cloned().tuple_windows::<(_, _, _, _)>();
assert_eq!(None, iter.next());
}
#[test]
fn next_tuple() {
let v = [1, 2, 3, 4, 5];
let mut iter = v.iter();
assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((1, 2)));
assert_eq!(iter.next_tuple().map(|(&x, &y)| (x, y)), Some((3, 4)));
assert_eq!(iter.next_tuple::<(_, _)>(), None);
}
#[test]
fn collect_tuple() {
let v = [1, 2];
let iter = v.iter().cloned();
assert_eq!(iter.collect_tuple(), Some((1, 2)));
let v = [1];
let iter = v.iter().cloned();
assert_eq!(iter.collect_tuple::<(_, _)>(), None);
let v = [1, 2, 3];
let iter = v.iter().cloned();
assert_eq!(iter.collect_tuple::<(_, _)>(), None);
}

56
vendor/itertools/tests/zip.rs vendored Normal file
View File

@@ -0,0 +1,56 @@
use itertools::multizip;
use itertools::EitherOrBoth::{Both, Left, Right};
use itertools::Itertools;
#[test]
fn zip_longest_fused() {
let a = [Some(1), None, Some(3), Some(4)];
let b = [1, 2, 3];
let unfused = a
.iter()
.batching(|it| *it.next().unwrap())
.zip_longest(b.iter().cloned());
itertools::assert_equal(unfused, vec![Both(1, 1), Right(2), Right(3)]);
}
#[test]
fn test_zip_longest_size_hint() {
let c = (1..10).cycle();
let v: &[_] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
let v2 = &[10, 11, 12];
assert_eq!(c.zip_longest(v.iter()).size_hint(), (usize::MAX, None));
assert_eq!(v.iter().zip_longest(v2.iter()).size_hint(), (10, Some(10)));
}
#[test]
fn test_double_ended_zip_longest() {
let xs = [1, 2, 3, 4, 5, 6];
let ys = [1, 2, 3, 7];
let a = xs.iter().copied();
let b = ys.iter().copied();
let mut it = a.zip_longest(b);
assert_eq!(it.next(), Some(Both(1, 1)));
assert_eq!(it.next(), Some(Both(2, 2)));
assert_eq!(it.next_back(), Some(Left(6)));
assert_eq!(it.next_back(), Some(Left(5)));
assert_eq!(it.next_back(), Some(Both(4, 7)));
assert_eq!(it.next(), Some(Both(3, 3)));
assert_eq!(it.next(), None);
}
#[test]
fn test_double_ended_zip() {
let xs = [1, 2, 3, 4, 5, 6];
let ys = [1, 2, 3, 7];
let a = xs.iter().copied();
let b = ys.iter().copied();
let mut it = multizip((a, b));
assert_eq!(it.next_back(), Some((4, 7)));
assert_eq!(it.next_back(), Some((3, 3)));
assert_eq!(it.next_back(), Some((2, 2)));
assert_eq!(it.next_back(), Some((1, 1)));
assert_eq!(it.next_back(), None);
}