Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

632
vendor/rand_chacha/src/chacha.rs vendored Normal file
View File

@@ -0,0 +1,632 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
#[cfg(not(feature = "std"))] use core;
#[cfg(feature = "std")] use std as core;
use self::core::fmt;
use crate::guts::ChaCha;
use rand_core::block::{BlockRng, BlockRngCore};
use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
#[cfg(feature = "serde1")] use serde::{Serialize, Deserialize, Serializer, Deserializer};
// NB. this must remain consistent with some currently hard-coded numbers in this module
const BUF_BLOCKS: u8 = 4;
// number of 32-bit words per ChaCha block (fixed by algorithm definition)
const BLOCK_WORDS: u8 = 16;
#[repr(transparent)]
pub struct Array64<T>([T; 64]);
impl<T> Default for Array64<T>
where T: Default
{
#[rustfmt::skip]
fn default() -> Self {
Self([
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
])
}
}
impl<T> AsRef<[T]> for Array64<T> {
fn as_ref(&self) -> &[T] {
&self.0
}
}
impl<T> AsMut<[T]> for Array64<T> {
fn as_mut(&mut self) -> &mut [T] {
&mut self.0
}
}
impl<T> Clone for Array64<T>
where T: Copy + Default
{
fn clone(&self) -> Self {
let mut new = Self::default();
new.0.copy_from_slice(&self.0);
new
}
}
impl<T> fmt::Debug for Array64<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Array64 {{}}")
}
}
macro_rules! chacha_impl {
($ChaChaXCore:ident, $ChaChaXRng:ident, $rounds:expr, $doc:expr, $abst:ident) => {
#[doc=$doc]
#[derive(Clone, PartialEq, Eq)]
pub struct $ChaChaXCore {
state: ChaCha,
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for $ChaChaXCore {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ChaChaXCore {{}}")
}
}
impl BlockRngCore for $ChaChaXCore {
type Item = u32;
type Results = Array64<u32>;
#[inline]
fn generate(&mut self, r: &mut Self::Results) {
// Fill slice of words by writing to equivalent slice of bytes, then fixing endianness.
self.state.refill4($rounds, unsafe {
&mut *(&mut *r as *mut Array64<u32> as *mut [u8; 256])
});
for x in r.as_mut() {
*x = x.to_le();
}
}
}
impl SeedableRng for $ChaChaXCore {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
$ChaChaXCore { state: ChaCha::new(&seed, &[0u8; 8]) }
}
}
impl CryptoRng for $ChaChaXCore {}
/// A cryptographically secure random number generator that uses the ChaCha algorithm.
///
/// ChaCha is a stream cipher designed by Daniel J. Bernstein[^1], that we use as an RNG. It is
/// an improved variant of the Salsa20 cipher family, which was selected as one of the "stream
/// ciphers suitable for widespread adoption" by eSTREAM[^2].
///
/// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe against timing
/// attacks, although that is mostly a concern for ciphers and not for RNGs. We provide a SIMD
/// implementation to support high throughput on a variety of common hardware platforms.
///
/// With the ChaCha algorithm it is possible to choose the number of rounds the core algorithm
/// should run. The number of rounds is a tradeoff between performance and security, where 8
/// rounds is the minimum potentially secure configuration, and 20 rounds is widely used as a
/// conservative choice.
///
/// We use a 64-bit counter and 64-bit stream identifier as in Bernstein's implementation[^1]
/// except that we use a stream identifier in place of a nonce. A 64-bit counter over 64-byte
/// (16 word) blocks allows 1 ZiB of output before cycling, and the stream identifier allows
/// 2<sup>64</sup> unique streams of output per seed. Both counter and stream are initialized
/// to zero but may be set via the `set_word_pos` and `set_stream` methods.
///
/// The word layout is:
///
/// ```text
/// constant constant constant constant
/// seed seed seed seed
/// seed seed seed seed
/// counter counter stream_id stream_id
/// ```
///
/// This implementation uses an output buffer of sixteen `u32` words, and uses
/// [`BlockRng`] to implement the [`RngCore`] methods.
///
/// [^1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*](
/// https://cr.yp.to/chacha.html)
///
/// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project](
/// http://www.ecrypt.eu.org/stream/)
#[derive(Clone, Debug)]
pub struct $ChaChaXRng {
rng: BlockRng<$ChaChaXCore>,
}
impl SeedableRng for $ChaChaXRng {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
let core = $ChaChaXCore::from_seed(seed);
Self {
rng: BlockRng::new(core),
}
}
}
impl RngCore for $ChaChaXRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.fill_bytes(bytes)
}
#[inline]
fn try_fill_bytes(&mut self, bytes: &mut [u8]) -> Result<(), Error> {
self.rng.try_fill_bytes(bytes)
}
}
impl $ChaChaXRng {
// The buffer is a 4-block window, i.e. it is always at a block-aligned position in the
// stream but if the stream has been seeked it may not be self-aligned.
/// Get the offset from the start of the stream, in 32-bit words.
///
/// Since the generated blocks are 16 words (2<sup>4</sup>) long and the
/// counter is 64-bits, the offset is a 68-bit number. Sub-word offsets are
/// not supported, hence the result can simply be multiplied by 4 to get a
/// byte-offset.
#[inline]
pub fn get_word_pos(&self) -> u128 {
let buf_start_block = {
let buf_end_block = self.rng.core.state.get_block_pos();
u64::wrapping_sub(buf_end_block, BUF_BLOCKS.into())
};
let (buf_offset_blocks, block_offset_words) = {
let buf_offset_words = self.rng.index() as u64;
let blocks_part = buf_offset_words / u64::from(BLOCK_WORDS);
let words_part = buf_offset_words % u64::from(BLOCK_WORDS);
(blocks_part, words_part)
};
let pos_block = u64::wrapping_add(buf_start_block, buf_offset_blocks);
let pos_block_words = u128::from(pos_block) * u128::from(BLOCK_WORDS);
pos_block_words + u128::from(block_offset_words)
}
/// Set the offset from the start of the stream, in 32-bit words.
///
/// As with `get_word_pos`, we use a 68-bit number. Since the generator
/// simply cycles at the end of its period (1 ZiB), we ignore the upper
/// 60 bits.
#[inline]
pub fn set_word_pos(&mut self, word_offset: u128) {
let block = (word_offset / u128::from(BLOCK_WORDS)) as u64;
self.rng
.core
.state
.set_block_pos(block);
self.rng.generate_and_set((word_offset % u128::from(BLOCK_WORDS)) as usize);
}
/// Set the stream number.
///
/// This is initialized to zero; 2<sup>64</sup> unique streams of output
/// are available per seed/key.
///
/// Note that in order to reproduce ChaCha output with a specific 64-bit
/// nonce, one can convert that nonce to a `u64` in little-endian fashion
/// and pass to this function. In theory a 96-bit nonce can be used by
/// passing the last 64-bits to this function and using the first 32-bits as
/// the most significant half of the 64-bit counter (which may be set
/// indirectly via `set_word_pos`), but this is not directly supported.
#[inline]
pub fn set_stream(&mut self, stream: u64) {
self.rng
.core
.state
.set_nonce(stream);
if self.rng.index() != 64 {
let wp = self.get_word_pos();
self.set_word_pos(wp);
}
}
/// Get the stream number.
#[inline]
pub fn get_stream(&self) -> u64 {
self.rng
.core
.state
.get_nonce()
}
/// Get the seed.
#[inline]
pub fn get_seed(&self) -> [u8; 32] {
self.rng
.core
.state
.get_seed()
}
}
impl CryptoRng for $ChaChaXRng {}
impl From<$ChaChaXCore> for $ChaChaXRng {
fn from(core: $ChaChaXCore) -> Self {
$ChaChaXRng {
rng: BlockRng::new(core),
}
}
}
impl PartialEq<$ChaChaXRng> for $ChaChaXRng {
fn eq(&self, rhs: &$ChaChaXRng) -> bool {
let a: $abst::$ChaChaXRng = self.into();
let b: $abst::$ChaChaXRng = rhs.into();
a == b
}
}
impl Eq for $ChaChaXRng {}
#[cfg(feature = "serde1")]
impl Serialize for $ChaChaXRng {
fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
where S: Serializer {
$abst::$ChaChaXRng::from(self).serialize(s)
}
}
#[cfg(feature = "serde1")]
impl<'de> Deserialize<'de> for $ChaChaXRng {
fn deserialize<D>(d: D) -> Result<Self, D::Error> where D: Deserializer<'de> {
$abst::$ChaChaXRng::deserialize(d).map(|x| Self::from(&x))
}
}
mod $abst {
#[cfg(feature = "serde1")] use serde::{Serialize, Deserialize};
// The abstract state of a ChaCha stream, independent of implementation choices. The
// comparison and serialization of this object is considered a semver-covered part of
// the API.
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(
feature = "serde1",
derive(Serialize, Deserialize),
)]
pub(crate) struct $ChaChaXRng {
seed: [u8; 32],
stream: u64,
word_pos: u128,
}
impl From<&super::$ChaChaXRng> for $ChaChaXRng {
// Forget all information about the input except what is necessary to determine the
// outputs of any sequence of pub API calls.
fn from(r: &super::$ChaChaXRng) -> Self {
Self {
seed: r.get_seed(),
stream: r.get_stream(),
word_pos: r.get_word_pos(),
}
}
}
impl From<&$ChaChaXRng> for super::$ChaChaXRng {
// Construct one of the possible concrete RNGs realizing an abstract state.
fn from(a: &$ChaChaXRng) -> Self {
use rand_core::SeedableRng;
let mut r = Self::from_seed(a.seed);
r.set_stream(a.stream);
r.set_word_pos(a.word_pos);
r
}
}
}
}
}
chacha_impl!(ChaCha20Core, ChaCha20Rng, 10, "ChaCha with 20 rounds", abstract20);
chacha_impl!(ChaCha12Core, ChaCha12Rng, 6, "ChaCha with 12 rounds", abstract12);
chacha_impl!(ChaCha8Core, ChaCha8Rng, 4, "ChaCha with 8 rounds", abstract8);
#[cfg(test)]
mod test {
use rand_core::{RngCore, SeedableRng};
#[cfg(feature = "serde1")] use super::{ChaCha20Rng, ChaCha12Rng, ChaCha8Rng};
type ChaChaRng = super::ChaCha20Rng;
#[cfg(feature = "serde1")]
#[test]
fn test_chacha_serde_roundtrip() {
let seed = [
1, 0, 52, 0, 0, 0, 0, 0, 1, 0, 10, 0, 22, 32, 0, 0, 2, 0, 55, 49, 0, 11, 0, 0, 3, 0, 0, 0, 0,
0, 2, 92,
];
let mut rng1 = ChaCha20Rng::from_seed(seed);
let mut rng2 = ChaCha12Rng::from_seed(seed);
let mut rng3 = ChaCha8Rng::from_seed(seed);
let encoded1 = serde_json::to_string(&rng1).unwrap();
let encoded2 = serde_json::to_string(&rng2).unwrap();
let encoded3 = serde_json::to_string(&rng3).unwrap();
let mut decoded1: ChaCha20Rng = serde_json::from_str(&encoded1).unwrap();
let mut decoded2: ChaCha12Rng = serde_json::from_str(&encoded2).unwrap();
let mut decoded3: ChaCha8Rng = serde_json::from_str(&encoded3).unwrap();
assert_eq!(rng1, decoded1);
assert_eq!(rng2, decoded2);
assert_eq!(rng3, decoded3);
assert_eq!(rng1.next_u32(), decoded1.next_u32());
assert_eq!(rng2.next_u32(), decoded2.next_u32());
assert_eq!(rng3.next_u32(), decoded3.next_u32());
}
// This test validates that:
// 1. a hard-coded serialization demonstrating the format at time of initial release can still
// be deserialized to a ChaChaRng
// 2. re-serializing the resultant object produces exactly the original string
//
// Condition 2 is stronger than necessary: an equivalent serialization (e.g. with field order
// permuted, or whitespace differences) would also be admissible, but would fail this test.
// However testing for equivalence of serialized data is difficult, and there shouldn't be any
// reason we need to violate the stronger-than-needed condition, e.g. by changing the field
// definition order.
#[cfg(feature = "serde1")]
#[test]
fn test_chacha_serde_format_stability() {
let j = r#"{"seed":[4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8],"stream":27182818284,"word_pos":314159265359}"#;
let r: ChaChaRng = serde_json::from_str(&j).unwrap();
let j1 = serde_json::to_string(&r).unwrap();
assert_eq!(j, j1);
}
#[test]
fn test_chacha_construction() {
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0,
0, 0, 0,
];
let mut rng1 = ChaChaRng::from_seed(seed);
assert_eq!(rng1.next_u32(), 137206642);
let mut rng2 = ChaChaRng::from_rng(rng1).unwrap();
assert_eq!(rng2.next_u32(), 1325750369);
}
#[test]
fn test_chacha_true_values_a() {
// Test vectors 1 and 2 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, 0xb819d2bd, 0x1aed8da0, 0xccef36a8,
0xc70d778b, 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, 0xf4b8436a, 0x1ca11815,
0x69b687c3, 0x8665eeb2,
];
assert_eq!(results, expected);
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, 0xa0290fcb, 0x6965e348, 0x3e53c612,
0xed7aee32, 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, 0x281fed31, 0x45fb0a51,
0x1f0ae1ac, 0x6f4d794b,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_b() {
// Test vector 3 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1,
];
let mut rng = ChaChaRng::from_seed(seed);
// Skip block 0
for _ in 0..16 {
rng.next_u32();
}
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, 0xe8252083, 0x60818b01, 0xf38422b8,
0x5aaa49c9, 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, 0x4436274e, 0x2561b3c8,
0xebdd4aa6, 0xa0136c00,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_c() {
// Test vector 4 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
];
let expected = [
0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, 0xa78dea8f, 0x5e269039, 0xa1bebbc1,
0xcaf09aae, 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, 0x546ca624, 0x1bec45d5,
0x87f47473, 0x96f0992e,
];
let expected_end = 3 * 16;
let mut results = [0u32; 16];
// Test block 2 by skipping block 0 and 1
let mut rng1 = ChaChaRng::from_seed(seed);
for _ in 0..32 {
rng1.next_u32();
}
for i in results.iter_mut() {
*i = rng1.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng1.get_word_pos(), expected_end);
// Test block 2 by using `set_word_pos`
let mut rng2 = ChaChaRng::from_seed(seed);
rng2.set_word_pos(2 * 16);
for i in results.iter_mut() {
*i = rng2.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng2.get_word_pos(), expected_end);
// Test skipping behaviour with other types
let mut buf = [0u8; 32];
rng2.fill_bytes(&mut buf[..]);
assert_eq!(rng2.get_word_pos(), expected_end + 8);
rng2.fill_bytes(&mut buf[0..25]);
assert_eq!(rng2.get_word_pos(), expected_end + 15);
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 17);
rng2.next_u32();
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 20);
rng2.fill_bytes(&mut buf[0..1]);
assert_eq!(rng2.get_word_pos(), expected_end + 21);
}
#[test]
fn test_chacha_multiple_blocks() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
// Store the 17*i-th 32-bit word,
// i.e., the i-th word of the i-th 16-word block
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
for _ in 0..16 {
rng.next_u32();
}
}
let expected = [
0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, 0x49884684, 0x64efec72, 0x4be2d186,
0x3615b384, 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, 0x2c5bad8f, 0x898881dc,
0x5f1c86d9, 0xc1f8e7f4,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_bytes() {
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u8; 32];
rng.fill_bytes(&mut results);
let expected = [
118, 184, 224, 173, 160, 241, 61, 144, 64, 93, 106, 229, 83, 134, 189, 40, 189, 210,
25, 184, 160, 141, 237, 26, 168, 54, 239, 204, 139, 119, 13, 199,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_nonce() {
// Test vector 5 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
// Although we do not support setting a nonce, we try it here anyway so
// we can use this test vector.
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
// 96-bit nonce in LE order is: 0,0,0,0, 0,0,0,0, 0,0,0,2
rng.set_stream(2u64 << (24 + 32));
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, 0x88228b1a, 0x96a4dfb3, 0x5b76ab72,
0xc727ee54, 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, 0x99c28f5f, 0x628314e8,
0x398a19fa, 0x6ded1b53,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_clone_streams() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
let mut clone = rng.clone();
for _ in 0..16 {
assert_eq!(rng.next_u64(), clone.next_u64());
}
rng.set_stream(51);
for _ in 0..7 {
assert!(rng.next_u32() != clone.next_u32());
}
clone.set_stream(51); // switch part way through block
for _ in 7..16 {
assert_eq!(rng.next_u32(), clone.next_u32());
}
}
#[test]
fn test_chacha_word_pos_wrap_exact() {
use super::{BUF_BLOCKS, BLOCK_WORDS};
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter to 0
let last_block = (1 << 68) - u128::from(BUF_BLOCKS * BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_wrap_excess() {
use super::BLOCK_WORDS;
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter past 0
let last_block = (1 << 68) - u128::from(BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_zero() {
let mut rng = ChaChaRng::from_seed(Default::default());
assert_eq!(rng.get_word_pos(), 0);
rng.set_word_pos(0);
assert_eq!(rng.get_word_pos(), 0);
}
}

273
vendor/rand_chacha/src/guts.rs vendored Normal file
View File

@@ -0,0 +1,273 @@
// Copyright 2019 The CryptoCorrosion Contributors
// Copyright 2020 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
use ppv_lite86::{dispatch, dispatch_light128};
pub use ppv_lite86::Machine;
use ppv_lite86::{vec128_storage, ArithOps, BitOps32, LaneWords4, MultiLane, StoreBytes, Vec4};
pub(crate) const BLOCK: usize = 64;
pub(crate) const BLOCK64: u64 = BLOCK as u64;
const LOG2_BUFBLOCKS: u64 = 2;
const BUFBLOCKS: u64 = 1 << LOG2_BUFBLOCKS;
pub(crate) const BUFSZ64: u64 = BLOCK64 * BUFBLOCKS;
pub(crate) const BUFSZ: usize = BUFSZ64 as usize;
const STREAM_PARAM_NONCE: u32 = 1;
const STREAM_PARAM_BLOCK: u32 = 0;
#[derive(Clone, PartialEq, Eq)]
pub struct ChaCha {
pub(crate) b: vec128_storage,
pub(crate) c: vec128_storage,
pub(crate) d: vec128_storage,
}
#[derive(Clone)]
pub struct State<V> {
pub(crate) a: V,
pub(crate) b: V,
pub(crate) c: V,
pub(crate) d: V,
}
#[inline(always)]
pub(crate) fn round<V: ArithOps + BitOps32>(mut x: State<V>) -> State<V> {
x.a += x.b;
x.d = (x.d ^ x.a).rotate_each_word_right16();
x.c += x.d;
x.b = (x.b ^ x.c).rotate_each_word_right20();
x.a += x.b;
x.d = (x.d ^ x.a).rotate_each_word_right24();
x.c += x.d;
x.b = (x.b ^ x.c).rotate_each_word_right25();
x
}
#[inline(always)]
pub(crate) fn diagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
x.b = x.b.shuffle_lane_words3012();
x.c = x.c.shuffle_lane_words2301();
x.d = x.d.shuffle_lane_words1230();
x
}
#[inline(always)]
pub(crate) fn undiagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
x.b = x.b.shuffle_lane_words1230();
x.c = x.c.shuffle_lane_words2301();
x.d = x.d.shuffle_lane_words3012();
x
}
impl ChaCha {
#[inline(always)]
pub fn new(key: &[u8; 32], nonce: &[u8]) -> Self {
init_chacha(key, nonce)
}
#[inline(always)]
fn pos64<M: Machine>(&self, m: M) -> u64 {
let d: M::u32x4 = m.unpack(self.d);
((d.extract(1) as u64) << 32) | d.extract(0) as u64
}
/// Produce 4 blocks of output, advancing the state
#[inline(always)]
pub fn refill4(&mut self, drounds: u32, out: &mut [u8; BUFSZ]) {
refill_wide(self, drounds, out)
}
#[inline(always)]
pub fn set_block_pos(&mut self, value: u64) {
set_stream_param(self, STREAM_PARAM_BLOCK, value)
}
#[inline(always)]
pub fn get_block_pos(&self) -> u64 {
get_stream_param(self, STREAM_PARAM_BLOCK)
}
#[inline(always)]
pub fn set_nonce(&mut self, value: u64) {
set_stream_param(self, STREAM_PARAM_NONCE, value)
}
#[inline(always)]
pub fn get_nonce(&self) -> u64 {
get_stream_param(self, STREAM_PARAM_NONCE)
}
#[inline(always)]
pub fn get_seed(&self) -> [u8; 32] {
get_seed(self)
}
}
#[allow(clippy::many_single_char_names)]
#[inline(always)]
fn refill_wide_impl<Mach: Machine>(
m: Mach, state: &mut ChaCha, drounds: u32, out: &mut [u8; BUFSZ],
) {
let k = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
let mut pos = state.pos64(m);
let d0: Mach::u32x4 = m.unpack(state.d);
pos = pos.wrapping_add(1);
let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos = pos.wrapping_add(1);
let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos = pos.wrapping_add(1);
let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
let b = m.unpack(state.b);
let c = m.unpack(state.c);
let mut x = State {
a: Mach::u32x4x4::from_lanes([k, k, k, k]),
b: Mach::u32x4x4::from_lanes([b, b, b, b]),
c: Mach::u32x4x4::from_lanes([c, c, c, c]),
d: m.unpack(Mach::u32x4x4::from_lanes([d0, d1, d2, d3]).into()),
};
for _ in 0..drounds {
x = round(x);
x = undiagonalize(round(diagonalize(x)));
}
let mut pos = state.pos64(m);
let d0: Mach::u32x4 = m.unpack(state.d);
pos = pos.wrapping_add(1);
let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos = pos.wrapping_add(1);
let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos = pos.wrapping_add(1);
let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos = pos.wrapping_add(1);
let d4 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
let (a, b, c, d) = (
x.a.to_lanes(),
x.b.to_lanes(),
x.c.to_lanes(),
x.d.to_lanes(),
);
let sb = m.unpack(state.b);
let sc = m.unpack(state.c);
let sd = [m.unpack(state.d), d1, d2, d3];
state.d = d4.into();
let mut words = out.chunks_exact_mut(16);
for ((((&a, &b), &c), &d), &sd) in a.iter().zip(&b).zip(&c).zip(&d).zip(&sd) {
(a + k).write_le(words.next().unwrap());
(b + sb).write_le(words.next().unwrap());
(c + sc).write_le(words.next().unwrap());
(d + sd).write_le(words.next().unwrap());
}
}
dispatch!(m, Mach, {
fn refill_wide(state: &mut ChaCha, drounds: u32, out: &mut [u8; BUFSZ]) {
refill_wide_impl(m, state, drounds, out);
}
});
// Single-block, rounds-only; shared by try_apply_keystream for tails shorter than BUFSZ
// and XChaCha's setup step.
dispatch!(m, Mach, {
fn refill_narrow_rounds(state: &mut ChaCha, drounds: u32) -> State<vec128_storage> {
let k: Mach::u32x4 = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
let mut x = State {
a: k,
b: m.unpack(state.b),
c: m.unpack(state.c),
d: m.unpack(state.d),
};
for _ in 0..drounds {
x = round(x);
x = undiagonalize(round(diagonalize(x)));
}
State {
a: x.a.into(),
b: x.b.into(),
c: x.c.into(),
d: x.d.into(),
}
}
});
dispatch_light128!(m, Mach, {
fn set_stream_param(state: &mut ChaCha, param: u32, value: u64) {
let d: Mach::u32x4 = m.unpack(state.d);
state.d = d
.insert((value >> 32) as u32, (param << 1) | 1)
.insert(value as u32, param << 1)
.into();
}
});
dispatch_light128!(m, Mach, {
fn get_stream_param(state: &ChaCha, param: u32) -> u64 {
let d: Mach::u32x4 = m.unpack(state.d);
((d.extract((param << 1) | 1) as u64) << 32) | d.extract(param << 1) as u64
}
});
dispatch_light128!(m, Mach, {
fn get_seed(state: &ChaCha) -> [u8; 32] {
let b: Mach::u32x4 = m.unpack(state.b);
let c: Mach::u32x4 = m.unpack(state.c);
let mut key = [0u8; 32];
b.write_le(&mut key[..16]);
c.write_le(&mut key[16..]);
key
}
});
fn read_u32le(xs: &[u8]) -> u32 {
assert_eq!(xs.len(), 4);
u32::from(xs[0]) | (u32::from(xs[1]) << 8) | (u32::from(xs[2]) << 16) | (u32::from(xs[3]) << 24)
}
dispatch_light128!(m, Mach, {
fn init_chacha(key: &[u8; 32], nonce: &[u8]) -> ChaCha {
let ctr_nonce = [
0,
if nonce.len() == 12 {
read_u32le(&nonce[0..4])
} else {
0
},
read_u32le(&nonce[nonce.len() - 8..nonce.len() - 4]),
read_u32le(&nonce[nonce.len() - 4..]),
];
let key0: Mach::u32x4 = m.read_le(&key[..16]);
let key1: Mach::u32x4 = m.read_le(&key[16..]);
ChaCha {
b: key0.into(),
c: key1.into(),
d: ctr_nonce.into(),
}
}
});
dispatch_light128!(m, Mach, {
fn init_chacha_x(key: &[u8; 32], nonce: &[u8; 24], rounds: u32) -> ChaCha {
let key0: Mach::u32x4 = m.read_le(&key[..16]);
let key1: Mach::u32x4 = m.read_le(&key[16..]);
let nonce0: Mach::u32x4 = m.read_le(&nonce[..16]);
let mut state = ChaCha {
b: key0.into(),
c: key1.into(),
d: nonce0.into(),
};
let x = refill_narrow_rounds(&mut state, rounds);
let ctr_nonce1 = [0, 0, read_u32le(&nonce[16..20]), read_u32le(&nonce[20..24])];
state.b = x.a;
state.c = x.d;
state.d = ctr_nonce1.into();
state
}
});

33
vendor/rand_chacha/src/lib.rs vendored Normal file
View File

@@ -0,0 +1,33 @@
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
#![doc(
html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/"
)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(not(feature = "std"), no_std)]
pub use rand_core;
mod chacha;
mod guts;
pub use crate::chacha::{
ChaCha12Core, ChaCha12Rng, ChaCha20Core, ChaCha20Rng, ChaCha8Core, ChaCha8Rng,
};
/// ChaCha with 20 rounds
pub type ChaChaRng = ChaCha20Rng;
/// ChaCha with 20 rounds, low-level interface
pub type ChaChaCore = ChaCha20Core;