Vendor dependencies for 0.3.0 release

This commit is contained in:
2025-09-27 10:29:08 -05:00
parent 0c8d39d483
commit 82ab7f317b
26803 changed files with 16134934 additions and 0 deletions

218
vendor/serde_derive/src/internals/ast.rs vendored Normal file
View File

@@ -0,0 +1,218 @@
//! A Serde ast, parsed from the Syn ast and ready to generate Rust code.
use crate::internals::{attr, check, Ctxt, Derive};
use proc_macro2::Ident;
use syn::punctuated::Punctuated;
use syn::Token;
/// A source data structure annotated with `#[derive(Serialize)]` and/or `#[derive(Deserialize)]`,
/// parsed into an internal representation.
pub struct Container<'a> {
/// The struct or enum name (without generics).
pub ident: syn::Ident,
/// Attributes on the structure, parsed for Serde.
pub attrs: attr::Container,
/// The contents of the struct or enum.
pub data: Data<'a>,
/// Any generics on the struct or enum.
pub generics: &'a syn::Generics,
/// Original input.
pub original: &'a syn::DeriveInput,
}
/// The fields of a struct or enum.
///
/// Analogous to `syn::Data`.
pub enum Data<'a> {
Enum(Vec<Variant<'a>>),
Struct(Style, Vec<Field<'a>>),
}
/// A variant of an enum.
pub struct Variant<'a> {
pub ident: syn::Ident,
pub attrs: attr::Variant,
pub style: Style,
pub fields: Vec<Field<'a>>,
pub original: &'a syn::Variant,
}
/// A field of a struct.
pub struct Field<'a> {
pub member: syn::Member,
pub attrs: attr::Field,
pub ty: &'a syn::Type,
pub original: &'a syn::Field,
}
#[derive(Copy, Clone)]
pub enum Style {
/// Named fields.
Struct,
/// Many unnamed fields.
Tuple,
/// One unnamed field.
Newtype,
/// No fields.
Unit,
}
impl<'a> Container<'a> {
/// Convert the raw Syn ast into a parsed container object, collecting errors in `cx`.
pub fn from_ast(
cx: &Ctxt,
item: &'a syn::DeriveInput,
derive: Derive,
private: &Ident,
) -> Option<Container<'a>> {
let attrs = attr::Container::from_ast(cx, item);
let mut data = match &item.data {
syn::Data::Enum(data) => {
Data::Enum(enum_from_ast(cx, &data.variants, attrs.default(), private))
}
syn::Data::Struct(data) => {
let (style, fields) =
struct_from_ast(cx, &data.fields, None, attrs.default(), private);
Data::Struct(style, fields)
}
syn::Data::Union(_) => {
cx.error_spanned_by(item, "Serde does not support derive for unions");
return None;
}
};
match &mut data {
Data::Enum(variants) => {
for variant in variants {
variant.attrs.rename_by_rules(attrs.rename_all_rules());
for field in &mut variant.fields {
field.attrs.rename_by_rules(
variant
.attrs
.rename_all_rules()
.or(attrs.rename_all_fields_rules()),
);
}
}
}
Data::Struct(_, fields) => {
for field in fields {
field.attrs.rename_by_rules(attrs.rename_all_rules());
}
}
}
let mut item = Container {
ident: item.ident.clone(),
attrs,
data,
generics: &item.generics,
original: item,
};
check::check(cx, &mut item, derive);
Some(item)
}
}
impl<'a> Data<'a> {
pub fn all_fields(&'a self) -> Box<dyn Iterator<Item = &'a Field<'a>> + 'a> {
match self {
Data::Enum(variants) => {
Box::new(variants.iter().flat_map(|variant| variant.fields.iter()))
}
Data::Struct(_, fields) => Box::new(fields.iter()),
}
}
pub fn has_getter(&self) -> bool {
self.all_fields().any(|f| f.attrs.getter().is_some())
}
}
fn enum_from_ast<'a>(
cx: &Ctxt,
variants: &'a Punctuated<syn::Variant, Token![,]>,
container_default: &attr::Default,
private: &Ident,
) -> Vec<Variant<'a>> {
let variants: Vec<Variant> = variants
.iter()
.map(|variant| {
let attrs = attr::Variant::from_ast(cx, variant);
let (style, fields) = struct_from_ast(
cx,
&variant.fields,
Some(&attrs),
container_default,
private,
);
Variant {
ident: variant.ident.clone(),
attrs,
style,
fields,
original: variant,
}
})
.collect();
let index_of_last_tagged_variant = variants
.iter()
.rposition(|variant| !variant.attrs.untagged());
if let Some(index_of_last_tagged_variant) = index_of_last_tagged_variant {
for variant in &variants[..index_of_last_tagged_variant] {
if variant.attrs.untagged() {
cx.error_spanned_by(&variant.ident, "all variants with the #[serde(untagged)] attribute must be placed at the end of the enum");
}
}
}
variants
}
fn struct_from_ast<'a>(
cx: &Ctxt,
fields: &'a syn::Fields,
attrs: Option<&attr::Variant>,
container_default: &attr::Default,
private: &Ident,
) -> (Style, Vec<Field<'a>>) {
match fields {
syn::Fields::Named(fields) => (
Style::Struct,
fields_from_ast(cx, &fields.named, attrs, container_default, private),
),
syn::Fields::Unnamed(fields) if fields.unnamed.len() == 1 => (
Style::Newtype,
fields_from_ast(cx, &fields.unnamed, attrs, container_default, private),
),
syn::Fields::Unnamed(fields) => (
Style::Tuple,
fields_from_ast(cx, &fields.unnamed, attrs, container_default, private),
),
syn::Fields::Unit => (Style::Unit, Vec::new()),
}
}
fn fields_from_ast<'a>(
cx: &Ctxt,
fields: &'a Punctuated<syn::Field, Token![,]>,
attrs: Option<&attr::Variant>,
container_default: &attr::Default,
private: &Ident,
) -> Vec<Field<'a>> {
fields
.iter()
.enumerate()
.map(|(i, field)| Field {
member: match &field.ident {
Some(ident) => syn::Member::Named(ident.clone()),
None => syn::Member::Unnamed(i.into()),
},
attrs: attr::Field::from_ast(cx, i, field, attrs, container_default, private),
ty: &field.ty,
original: field,
})
.collect()
}

1831
vendor/serde_derive/src/internals/attr.rs vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,200 @@
//! Code to convert the Rust-styled field/variant (e.g. `my_field`, `MyType`) to the
//! case of the source (e.g. `my-field`, `MY_FIELD`).
use self::RenameRule::*;
use std::fmt::{self, Debug, Display};
/// The different possible ways to change case of fields in a struct, or variants in an enum.
#[derive(Copy, Clone, PartialEq)]
pub enum RenameRule {
/// Don't apply a default rename rule.
None,
/// Rename direct children to "lowercase" style.
LowerCase,
/// Rename direct children to "UPPERCASE" style.
UpperCase,
/// Rename direct children to "PascalCase" style, as typically used for
/// enum variants.
PascalCase,
/// Rename direct children to "camelCase" style.
CamelCase,
/// Rename direct children to "snake_case" style, as commonly used for
/// fields.
SnakeCase,
/// Rename direct children to "SCREAMING_SNAKE_CASE" style, as commonly
/// used for constants.
ScreamingSnakeCase,
/// Rename direct children to "kebab-case" style.
KebabCase,
/// Rename direct children to "SCREAMING-KEBAB-CASE" style.
ScreamingKebabCase,
}
static RENAME_RULES: &[(&str, RenameRule)] = &[
("lowercase", LowerCase),
("UPPERCASE", UpperCase),
("PascalCase", PascalCase),
("camelCase", CamelCase),
("snake_case", SnakeCase),
("SCREAMING_SNAKE_CASE", ScreamingSnakeCase),
("kebab-case", KebabCase),
("SCREAMING-KEBAB-CASE", ScreamingKebabCase),
];
impl RenameRule {
pub fn from_str(rename_all_str: &str) -> Result<Self, ParseError> {
for (name, rule) in RENAME_RULES {
if rename_all_str == *name {
return Ok(*rule);
}
}
Err(ParseError {
unknown: rename_all_str,
})
}
/// Apply a renaming rule to an enum variant, returning the version expected in the source.
pub fn apply_to_variant(self, variant: &str) -> String {
match self {
None | PascalCase => variant.to_owned(),
LowerCase => variant.to_ascii_lowercase(),
UpperCase => variant.to_ascii_uppercase(),
CamelCase => variant[..1].to_ascii_lowercase() + &variant[1..],
SnakeCase => {
let mut snake = String::new();
for (i, ch) in variant.char_indices() {
if i > 0 && ch.is_uppercase() {
snake.push('_');
}
snake.push(ch.to_ascii_lowercase());
}
snake
}
ScreamingSnakeCase => SnakeCase.apply_to_variant(variant).to_ascii_uppercase(),
KebabCase => SnakeCase.apply_to_variant(variant).replace('_', "-"),
ScreamingKebabCase => ScreamingSnakeCase
.apply_to_variant(variant)
.replace('_', "-"),
}
}
/// Apply a renaming rule to a struct field, returning the version expected in the source.
pub fn apply_to_field(self, field: &str) -> String {
match self {
None | LowerCase | SnakeCase => field.to_owned(),
UpperCase => field.to_ascii_uppercase(),
PascalCase => {
let mut pascal = String::new();
let mut capitalize = true;
for ch in field.chars() {
if ch == '_' {
capitalize = true;
} else if capitalize {
pascal.push(ch.to_ascii_uppercase());
capitalize = false;
} else {
pascal.push(ch);
}
}
pascal
}
CamelCase => {
let pascal = PascalCase.apply_to_field(field);
pascal[..1].to_ascii_lowercase() + &pascal[1..]
}
ScreamingSnakeCase => field.to_ascii_uppercase(),
KebabCase => field.replace('_', "-"),
ScreamingKebabCase => ScreamingSnakeCase.apply_to_field(field).replace('_', "-"),
}
}
/// Returns the `RenameRule` if it is not `None`, `rule_b` otherwise.
pub fn or(self, rule_b: Self) -> Self {
match self {
None => rule_b,
_ => self,
}
}
}
pub struct ParseError<'a> {
unknown: &'a str,
}
impl<'a> Display for ParseError<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("unknown rename rule `rename_all = ")?;
Debug::fmt(self.unknown, f)?;
f.write_str("`, expected one of ")?;
for (i, (name, _rule)) in RENAME_RULES.iter().enumerate() {
if i > 0 {
f.write_str(", ")?;
}
Debug::fmt(name, f)?;
}
Ok(())
}
}
#[test]
fn rename_variants() {
for &(original, lower, upper, camel, snake, screaming, kebab, screaming_kebab) in &[
(
"Outcome", "outcome", "OUTCOME", "outcome", "outcome", "OUTCOME", "outcome", "OUTCOME",
),
(
"VeryTasty",
"verytasty",
"VERYTASTY",
"veryTasty",
"very_tasty",
"VERY_TASTY",
"very-tasty",
"VERY-TASTY",
),
("A", "a", "A", "a", "a", "A", "a", "A"),
("Z42", "z42", "Z42", "z42", "z42", "Z42", "z42", "Z42"),
] {
assert_eq!(None.apply_to_variant(original), original);
assert_eq!(LowerCase.apply_to_variant(original), lower);
assert_eq!(UpperCase.apply_to_variant(original), upper);
assert_eq!(PascalCase.apply_to_variant(original), original);
assert_eq!(CamelCase.apply_to_variant(original), camel);
assert_eq!(SnakeCase.apply_to_variant(original), snake);
assert_eq!(ScreamingSnakeCase.apply_to_variant(original), screaming);
assert_eq!(KebabCase.apply_to_variant(original), kebab);
assert_eq!(
ScreamingKebabCase.apply_to_variant(original),
screaming_kebab
);
}
}
#[test]
fn rename_fields() {
for &(original, upper, pascal, camel, screaming, kebab, screaming_kebab) in &[
(
"outcome", "OUTCOME", "Outcome", "outcome", "OUTCOME", "outcome", "OUTCOME",
),
(
"very_tasty",
"VERY_TASTY",
"VeryTasty",
"veryTasty",
"VERY_TASTY",
"very-tasty",
"VERY-TASTY",
),
("a", "A", "A", "a", "A", "a", "A"),
("z42", "Z42", "Z42", "z42", "Z42", "z42", "Z42"),
] {
assert_eq!(None.apply_to_field(original), original);
assert_eq!(UpperCase.apply_to_field(original), upper);
assert_eq!(PascalCase.apply_to_field(original), pascal);
assert_eq!(CamelCase.apply_to_field(original), camel);
assert_eq!(SnakeCase.apply_to_field(original), original);
assert_eq!(ScreamingSnakeCase.apply_to_field(original), screaming);
assert_eq!(KebabCase.apply_to_field(original), kebab);
assert_eq!(ScreamingKebabCase.apply_to_field(original), screaming_kebab);
}
}

View File

@@ -0,0 +1,477 @@
use crate::internals::ast::{Container, Data, Field, Style};
use crate::internals::attr::{Default, Identifier, TagType};
use crate::internals::{ungroup, Ctxt, Derive};
use syn::{Member, Type};
// Cross-cutting checks that require looking at more than a single attrs object.
// Simpler checks should happen when parsing and building the attrs.
pub fn check(cx: &Ctxt, cont: &mut Container, derive: Derive) {
check_default_on_tuple(cx, cont);
check_remote_generic(cx, cont);
check_getter(cx, cont);
check_flatten(cx, cont);
check_identifier(cx, cont);
check_variant_skip_attrs(cx, cont);
check_internal_tag_field_name_conflict(cx, cont);
check_adjacent_tag_conflict(cx, cont);
check_transparent(cx, cont, derive);
check_from_and_try_from(cx, cont);
}
// If some field of a tuple struct is marked #[serde(default)] then all fields
// after it must also be marked with that attribute, or the struct must have a
// container-level serde(default) attribute. A field's default value is only
// used for tuple fields if the sequence is exhausted at that point; that means
// all subsequent fields will fail to deserialize if they don't have their own
// default.
fn check_default_on_tuple(cx: &Ctxt, cont: &Container) {
if let Default::None = cont.attrs.default() {
if let Data::Struct(Style::Tuple, fields) = &cont.data {
let mut first_default_index = None;
for (i, field) in fields.iter().enumerate() {
// Skipped fields automatically get the #[serde(default)]
// attribute. We are interested only on non-skipped fields here.
if field.attrs.skip_deserializing() {
continue;
}
if let Default::None = field.attrs.default() {
if let Some(first) = first_default_index {
cx.error_spanned_by(
field.ty,
format!("field must have #[serde(default)] because previous field {} has #[serde(default)]", first),
);
}
continue;
}
if first_default_index.is_none() {
first_default_index = Some(i);
}
}
}
}
}
// Remote derive definition type must have either all of the generics of the
// remote type:
//
// #[serde(remote = "Generic")]
// struct Generic<T> {…}
//
// or none of them, i.e. defining impls for one concrete instantiation of the
// remote type only:
//
// #[serde(remote = "Generic<T>")]
// struct ConcreteDef {…}
//
fn check_remote_generic(cx: &Ctxt, cont: &Container) {
if let Some(remote) = cont.attrs.remote() {
let local_has_generic = !cont.generics.params.is_empty();
let remote_has_generic = !remote.segments.last().unwrap().arguments.is_none();
if local_has_generic && remote_has_generic {
cx.error_spanned_by(remote, "remove generic parameters from this path");
}
}
}
// Getters are only allowed inside structs (not enums) with the `remote`
// attribute.
fn check_getter(cx: &Ctxt, cont: &Container) {
match cont.data {
Data::Enum(_) => {
if cont.data.has_getter() {
cx.error_spanned_by(
cont.original,
"#[serde(getter = \"...\")] is not allowed in an enum",
);
}
}
Data::Struct(_, _) => {
if cont.data.has_getter() && cont.attrs.remote().is_none() {
cx.error_spanned_by(
cont.original,
"#[serde(getter = \"...\")] can only be used in structs that have #[serde(remote = \"...\")]",
);
}
}
}
}
// Flattening has some restrictions we can test.
fn check_flatten(cx: &Ctxt, cont: &Container) {
match &cont.data {
Data::Enum(variants) => {
for variant in variants {
for field in &variant.fields {
check_flatten_field(cx, variant.style, field);
}
}
}
Data::Struct(style, fields) => {
for field in fields {
check_flatten_field(cx, *style, field);
}
}
}
}
fn check_flatten_field(cx: &Ctxt, style: Style, field: &Field) {
if !field.attrs.flatten() {
return;
}
match style {
Style::Tuple => {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] cannot be used on tuple structs",
);
}
Style::Newtype => {
cx.error_spanned_by(
field.original,
"#[serde(flatten)] cannot be used on newtype structs",
);
}
_ => {}
}
}
// The `other` attribute must be used at most once and it must be the last
// variant of an enum.
//
// Inside a `variant_identifier` all variants must be unit variants. Inside a
// `field_identifier` all but possibly one variant must be unit variants. The
// last variant may be a newtype variant which is an implicit "other" case.
fn check_identifier(cx: &Ctxt, cont: &Container) {
let variants = match &cont.data {
Data::Enum(variants) => variants,
Data::Struct(_, _) => return,
};
for (i, variant) in variants.iter().enumerate() {
match (
variant.style,
cont.attrs.identifier(),
variant.attrs.other(),
cont.attrs.tag(),
) {
// The `other` attribute may not be used in a variant_identifier.
(_, Identifier::Variant, true, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] may not be used on a variant identifier",
);
}
// Variant with `other` attribute cannot appear in untagged enum
(_, Identifier::No, true, &TagType::None) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] cannot appear on untagged enum",
);
}
// Variant with `other` attribute must be the last one.
(Style::Unit, Identifier::Field, true, _) | (Style::Unit, Identifier::No, true, _) => {
if i < variants.len() - 1 {
cx.error_spanned_by(
variant.original,
"#[serde(other)] must be on the last variant",
);
}
}
// Variant with `other` attribute must be a unit variant.
(_, Identifier::Field, true, _) | (_, Identifier::No, true, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(other)] must be on a unit variant",
);
}
// Any sort of variant is allowed if this is not an identifier.
(_, Identifier::No, false, _) => {}
// Unit variant without `other` attribute is always fine.
(Style::Unit, _, false, _) => {}
// The last field is allowed to be a newtype catch-all.
(Style::Newtype, Identifier::Field, false, _) => {
if i < variants.len() - 1 {
cx.error_spanned_by(
variant.original,
format!("`{}` must be the last variant", variant.ident),
);
}
}
(_, Identifier::Field, false, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(field_identifier)] may only contain unit variants",
);
}
(_, Identifier::Variant, false, _) => {
cx.error_spanned_by(
variant.original,
"#[serde(variant_identifier)] may only contain unit variants",
);
}
}
}
}
// Skip-(de)serializing attributes are not allowed on variants marked
// (de)serialize_with.
fn check_variant_skip_attrs(cx: &Ctxt, cont: &Container) {
let variants = match &cont.data {
Data::Enum(variants) => variants,
Data::Struct(_, _) => return,
};
for variant in variants {
if variant.attrs.serialize_with().is_some() {
if variant.attrs.skip_serializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and #[serde(skip_serializing)]",
variant.ident
),
);
}
for field in &variant.fields {
let member = member_message(&field.member);
if field.attrs.skip_serializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and a field {} marked with #[serde(skip_serializing)]",
variant.ident, member
),
);
}
if field.attrs.skip_serializing_if().is_some() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(serialize_with)] and a field {} marked with #[serde(skip_serializing_if)]",
variant.ident, member
),
);
}
}
}
if variant.attrs.deserialize_with().is_some() {
if variant.attrs.skip_deserializing() {
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(deserialize_with)] and #[serde(skip_deserializing)]",
variant.ident
),
);
}
for field in &variant.fields {
if field.attrs.skip_deserializing() {
let member = member_message(&field.member);
cx.error_spanned_by(
variant.original,
format!(
"variant `{}` cannot have both #[serde(deserialize_with)] and a field {} marked with #[serde(skip_deserializing)]",
variant.ident, member
),
);
}
}
}
}
}
// The tag of an internally-tagged struct variant must not be the same as either
// one of its fields, as this would result in duplicate keys in the serialized
// output and/or ambiguity in the to-be-deserialized input.
fn check_internal_tag_field_name_conflict(cx: &Ctxt, cont: &Container) {
let variants = match &cont.data {
Data::Enum(variants) => variants,
Data::Struct(_, _) => return,
};
let tag = match cont.attrs.tag() {
TagType::Internal { tag } => tag.as_str(),
TagType::External | TagType::Adjacent { .. } | TagType::None => return,
};
let diagnose_conflict = || {
cx.error_spanned_by(
cont.original,
format!("variant field name `{}` conflicts with internal tag", tag),
);
};
for variant in variants {
match variant.style {
Style::Struct => {
if variant.attrs.untagged() {
continue;
}
for field in &variant.fields {
let check_ser =
!(field.attrs.skip_serializing() || variant.attrs.skip_serializing());
let check_de =
!(field.attrs.skip_deserializing() || variant.attrs.skip_deserializing());
let name = field.attrs.name();
let ser_name = name.serialize_name();
if check_ser && ser_name.value == tag {
diagnose_conflict();
return;
}
for de_name in field.attrs.aliases() {
if check_de && de_name.value == tag {
diagnose_conflict();
return;
}
}
}
}
Style::Unit | Style::Newtype | Style::Tuple => {}
}
}
}
// In the case of adjacently-tagged enums, the type and the contents tag must
// differ, for the same reason.
fn check_adjacent_tag_conflict(cx: &Ctxt, cont: &Container) {
let (type_tag, content_tag) = match cont.attrs.tag() {
TagType::Adjacent { tag, content } => (tag, content),
TagType::Internal { .. } | TagType::External | TagType::None => return,
};
if type_tag == content_tag {
cx.error_spanned_by(
cont.original,
format!(
"enum tags `{}` for type and content conflict with each other",
type_tag
),
);
}
}
// Enums and unit structs cannot be transparent.
fn check_transparent(cx: &Ctxt, cont: &mut Container, derive: Derive) {
if !cont.attrs.transparent() {
return;
}
if cont.attrs.type_from().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed with #[serde(from = \"...\")]",
);
}
if cont.attrs.type_try_from().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed with #[serde(try_from = \"...\")]",
);
}
if cont.attrs.type_into().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed with #[serde(into = \"...\")]",
);
}
let fields = match &mut cont.data {
Data::Enum(_) => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed on an enum",
);
return;
}
Data::Struct(Style::Unit, _) => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] is not allowed on a unit struct",
);
return;
}
Data::Struct(_, fields) => fields,
};
let mut transparent_field = None;
for field in fields {
if allow_transparent(field, derive) {
if transparent_field.is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires struct to have at most one transparent field",
);
return;
}
transparent_field = Some(field);
}
}
match transparent_field {
Some(transparent_field) => transparent_field.attrs.mark_transparent(),
None => match derive {
Derive::Serialize => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires at least one field that is not skipped",
);
}
Derive::Deserialize => {
cx.error_spanned_by(
cont.original,
"#[serde(transparent)] requires at least one field that is neither skipped nor has a default",
);
}
},
}
}
fn member_message(member: &Member) -> String {
match member {
Member::Named(ident) => format!("`{}`", ident),
Member::Unnamed(i) => format!("#{}", i.index),
}
}
fn allow_transparent(field: &Field, derive: Derive) -> bool {
if let Type::Path(ty) = ungroup(field.ty) {
if let Some(seg) = ty.path.segments.last() {
if seg.ident == "PhantomData" {
return false;
}
}
}
match derive {
Derive::Serialize => !field.attrs.skip_serializing(),
Derive::Deserialize => !field.attrs.skip_deserializing() && field.attrs.default().is_none(),
}
}
fn check_from_and_try_from(cx: &Ctxt, cont: &mut Container) {
if cont.attrs.type_from().is_some() && cont.attrs.type_try_from().is_some() {
cx.error_spanned_by(
cont.original,
"#[serde(from = \"...\")] and #[serde(try_from = \"...\")] conflict with each other",
);
}
}

View File

@@ -0,0 +1,68 @@
use quote::ToTokens;
use std::cell::RefCell;
use std::fmt::Display;
use std::thread;
/// A type to collect errors together and format them.
///
/// Dropping this object will cause a panic. It must be consumed using `check`.
///
/// References can be shared since this type uses run-time exclusive mut checking.
#[derive(Default)]
pub struct Ctxt {
// The contents will be set to `None` during checking. This is so that checking can be
// enforced.
errors: RefCell<Option<Vec<syn::Error>>>,
}
impl Ctxt {
/// Create a new context object.
///
/// This object contains no errors, but will still trigger a panic if it is not `check`ed.
pub fn new() -> Self {
Ctxt {
errors: RefCell::new(Some(Vec::new())),
}
}
/// Add an error to the context object with a tokenenizable object.
///
/// The object is used for spanning in error messages.
pub fn error_spanned_by<A: ToTokens, T: Display>(&self, obj: A, msg: T) {
self.errors
.borrow_mut()
.as_mut()
.unwrap()
// Curb monomorphization from generating too many identical methods.
.push(syn::Error::new_spanned(obj.into_token_stream(), msg));
}
/// Add one of Syn's parse errors.
pub fn syn_error(&self, err: syn::Error) {
self.errors.borrow_mut().as_mut().unwrap().push(err);
}
/// Consume this object, producing a formatted error string if there are errors.
pub fn check(self) -> syn::Result<()> {
let mut errors = self.errors.borrow_mut().take().unwrap().into_iter();
let mut combined = match errors.next() {
Some(first) => first,
None => return Ok(()),
};
for rest in errors {
combined.combine(rest);
}
Err(combined)
}
}
impl Drop for Ctxt {
fn drop(&mut self) {
if !thread::panicking() && self.errors.borrow().is_some() {
panic!("forgot to check for errors");
}
}
}

View File

@@ -0,0 +1,28 @@
pub mod ast;
pub mod attr;
pub mod name;
mod case;
mod check;
mod ctxt;
mod receiver;
mod respan;
mod symbol;
use syn::Type;
pub use self::ctxt::Ctxt;
pub use self::receiver::replace_receiver;
#[derive(Copy, Clone)]
pub enum Derive {
Serialize,
Deserialize,
}
pub fn ungroup(mut ty: &Type) -> &Type {
while let Type::Group(group) = ty {
ty = &group.elem;
}
ty
}

View File

@@ -0,0 +1,113 @@
use crate::internals::attr::{Attr, VecAttr};
use proc_macro2::{Ident, Span, TokenStream};
use quote::ToTokens;
use std::cmp::Ordering;
use std::collections::BTreeSet;
use std::fmt::{self, Display};
use syn::LitStr;
pub struct MultiName {
pub(crate) serialize: Name,
pub(crate) serialize_renamed: bool,
pub(crate) deserialize: Name,
pub(crate) deserialize_renamed: bool,
pub(crate) deserialize_aliases: BTreeSet<Name>,
}
impl MultiName {
pub(crate) fn from_attrs(
source_name: Name,
ser_name: Attr<Name>,
de_name: Attr<Name>,
de_aliases: Option<VecAttr<Name>>,
) -> Self {
let mut alias_set = BTreeSet::new();
if let Some(de_aliases) = de_aliases {
for alias_name in de_aliases.get() {
alias_set.insert(alias_name);
}
}
let ser_name = ser_name.get();
let ser_renamed = ser_name.is_some();
let de_name = de_name.get();
let de_renamed = de_name.is_some();
MultiName {
serialize: ser_name.unwrap_or_else(|| source_name.clone()),
serialize_renamed: ser_renamed,
deserialize: de_name.unwrap_or(source_name),
deserialize_renamed: de_renamed,
deserialize_aliases: alias_set,
}
}
/// Return the container name for the container when serializing.
pub fn serialize_name(&self) -> &Name {
&self.serialize
}
/// Return the container name for the container when deserializing.
pub fn deserialize_name(&self) -> &Name {
&self.deserialize
}
pub(crate) fn deserialize_aliases(&self) -> &BTreeSet<Name> {
&self.deserialize_aliases
}
}
#[derive(Clone)]
pub struct Name {
pub value: String,
pub span: Span,
}
impl ToTokens for Name {
fn to_tokens(&self, tokens: &mut TokenStream) {
LitStr::new(&self.value, self.span).to_tokens(tokens);
}
}
impl Ord for Name {
fn cmp(&self, other: &Self) -> Ordering {
Ord::cmp(&self.value, &other.value)
}
}
impl PartialOrd for Name {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(Ord::cmp(self, other))
}
}
impl Eq for Name {}
impl PartialEq for Name {
fn eq(&self, other: &Self) -> bool {
self.value == other.value
}
}
impl From<&Ident> for Name {
fn from(ident: &Ident) -> Self {
Name {
value: ident.to_string(),
span: ident.span(),
}
}
}
impl From<&LitStr> for Name {
fn from(lit: &LitStr) -> Self {
Name {
value: lit.value(),
span: lit.span(),
}
}
}
impl Display for Name {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
Display::fmt(&self.value, formatter)
}
}

View File

@@ -0,0 +1,293 @@
use crate::internals::respan::respan;
use proc_macro2::Span;
use quote::ToTokens;
use std::mem;
use syn::{
parse_quote, Data, DeriveInput, Expr, ExprPath, GenericArgument, GenericParam, Generics, Macro,
Path, PathArguments, QSelf, ReturnType, Token, Type, TypeParamBound, TypePath, WherePredicate,
};
pub fn replace_receiver(input: &mut DeriveInput) {
let self_ty = {
let ident = &input.ident;
let ty_generics = input.generics.split_for_impl().1;
parse_quote!(#ident #ty_generics)
};
let mut visitor = ReplaceReceiver(&self_ty);
visitor.visit_generics_mut(&mut input.generics);
visitor.visit_data_mut(&mut input.data);
}
struct ReplaceReceiver<'a>(&'a TypePath);
impl ReplaceReceiver<'_> {
fn self_ty(&self, span: Span) -> TypePath {
let tokens = self.0.to_token_stream();
let respanned = respan(tokens, span);
syn::parse2(respanned).unwrap()
}
fn self_to_qself(&self, qself: &mut Option<QSelf>, path: &mut Path) {
if path.leading_colon.is_some() || path.segments[0].ident != "Self" {
return;
}
if path.segments.len() == 1 {
self.self_to_expr_path(path);
return;
}
let span = path.segments[0].ident.span();
*qself = Some(QSelf {
lt_token: Token![<](span),
ty: Box::new(Type::Path(self.self_ty(span))),
position: 0,
as_token: None,
gt_token: Token![>](span),
});
path.leading_colon = Some(**path.segments.pairs().next().unwrap().punct().unwrap());
let segments = mem::take(&mut path.segments);
path.segments = segments.into_pairs().skip(1).collect();
}
fn self_to_expr_path(&self, path: &mut Path) {
let self_ty = self.self_ty(path.segments[0].ident.span());
let variant = mem::replace(path, self_ty.path);
for segment in &mut path.segments {
if let PathArguments::AngleBracketed(bracketed) = &mut segment.arguments {
if bracketed.colon2_token.is_none() && !bracketed.args.is_empty() {
bracketed.colon2_token = Some(<Token![::]>::default());
}
}
}
if variant.segments.len() > 1 {
path.segments.push_punct(<Token![::]>::default());
path.segments.extend(variant.segments.into_pairs().skip(1));
}
}
}
impl ReplaceReceiver<'_> {
// `Self` -> `Receiver`
fn visit_type_mut(&mut self, ty: &mut Type) {
let span = if let Type::Path(node) = ty {
if node.qself.is_none() && node.path.is_ident("Self") {
node.path.segments[0].ident.span()
} else {
self.visit_type_path_mut(node);
return;
}
} else {
self.visit_type_mut_impl(ty);
return;
};
*ty = Type::Path(self.self_ty(span));
}
// `Self::Assoc` -> `<Receiver>::Assoc`
fn visit_type_path_mut(&mut self, ty: &mut TypePath) {
if ty.qself.is_none() {
self.self_to_qself(&mut ty.qself, &mut ty.path);
}
self.visit_type_path_mut_impl(ty);
}
// `Self::method` -> `<Receiver>::method`
fn visit_expr_path_mut(&mut self, expr: &mut ExprPath) {
if expr.qself.is_none() {
self.self_to_qself(&mut expr.qself, &mut expr.path);
}
self.visit_expr_path_mut_impl(expr);
}
// Everything below is simply traversing the syntax tree.
fn visit_type_mut_impl(&mut self, ty: &mut Type) {
match ty {
#![cfg_attr(all(test, exhaustive), deny(non_exhaustive_omitted_patterns))]
Type::Array(ty) => {
self.visit_type_mut(&mut ty.elem);
self.visit_expr_mut(&mut ty.len);
}
Type::BareFn(ty) => {
for arg in &mut ty.inputs {
self.visit_type_mut(&mut arg.ty);
}
self.visit_return_type_mut(&mut ty.output);
}
Type::Group(ty) => self.visit_type_mut(&mut ty.elem),
Type::ImplTrait(ty) => {
for bound in &mut ty.bounds {
self.visit_type_param_bound_mut(bound);
}
}
Type::Macro(ty) => self.visit_macro_mut(&mut ty.mac),
Type::Paren(ty) => self.visit_type_mut(&mut ty.elem),
Type::Path(ty) => {
if let Some(qself) = &mut ty.qself {
self.visit_type_mut(&mut qself.ty);
}
self.visit_path_mut(&mut ty.path);
}
Type::Ptr(ty) => self.visit_type_mut(&mut ty.elem),
Type::Reference(ty) => self.visit_type_mut(&mut ty.elem),
Type::Slice(ty) => self.visit_type_mut(&mut ty.elem),
Type::TraitObject(ty) => {
for bound in &mut ty.bounds {
self.visit_type_param_bound_mut(bound);
}
}
Type::Tuple(ty) => {
for elem in &mut ty.elems {
self.visit_type_mut(elem);
}
}
Type::Infer(_) | Type::Never(_) | Type::Verbatim(_) => {}
_ => {}
}
}
fn visit_type_path_mut_impl(&mut self, ty: &mut TypePath) {
if let Some(qself) = &mut ty.qself {
self.visit_type_mut(&mut qself.ty);
}
self.visit_path_mut(&mut ty.path);
}
fn visit_expr_path_mut_impl(&mut self, expr: &mut ExprPath) {
if let Some(qself) = &mut expr.qself {
self.visit_type_mut(&mut qself.ty);
}
self.visit_path_mut(&mut expr.path);
}
fn visit_path_mut(&mut self, path: &mut Path) {
for segment in &mut path.segments {
self.visit_path_arguments_mut(&mut segment.arguments);
}
}
fn visit_path_arguments_mut(&mut self, arguments: &mut PathArguments) {
match arguments {
PathArguments::None => {}
PathArguments::AngleBracketed(arguments) => {
for arg in &mut arguments.args {
match arg {
#![cfg_attr(all(test, exhaustive), deny(non_exhaustive_omitted_patterns))]
GenericArgument::Type(arg) => self.visit_type_mut(arg),
GenericArgument::AssocType(arg) => self.visit_type_mut(&mut arg.ty),
GenericArgument::Lifetime(_)
| GenericArgument::Const(_)
| GenericArgument::AssocConst(_)
| GenericArgument::Constraint(_) => {}
_ => {}
}
}
}
PathArguments::Parenthesized(arguments) => {
for argument in &mut arguments.inputs {
self.visit_type_mut(argument);
}
self.visit_return_type_mut(&mut arguments.output);
}
}
}
fn visit_return_type_mut(&mut self, return_type: &mut ReturnType) {
match return_type {
ReturnType::Default => {}
ReturnType::Type(_, output) => self.visit_type_mut(output),
}
}
fn visit_type_param_bound_mut(&mut self, bound: &mut TypeParamBound) {
match bound {
#![cfg_attr(all(test, exhaustive), deny(non_exhaustive_omitted_patterns))]
TypeParamBound::Trait(bound) => self.visit_path_mut(&mut bound.path),
TypeParamBound::Lifetime(_)
| TypeParamBound::PreciseCapture(_)
| TypeParamBound::Verbatim(_) => {}
_ => {}
}
}
fn visit_generics_mut(&mut self, generics: &mut Generics) {
for param in &mut generics.params {
match param {
GenericParam::Type(param) => {
for bound in &mut param.bounds {
self.visit_type_param_bound_mut(bound);
}
}
GenericParam::Lifetime(_) | GenericParam::Const(_) => {}
}
}
if let Some(where_clause) = &mut generics.where_clause {
for predicate in &mut where_clause.predicates {
match predicate {
#![cfg_attr(all(test, exhaustive), deny(non_exhaustive_omitted_patterns))]
WherePredicate::Type(predicate) => {
self.visit_type_mut(&mut predicate.bounded_ty);
for bound in &mut predicate.bounds {
self.visit_type_param_bound_mut(bound);
}
}
WherePredicate::Lifetime(_) => {}
_ => {}
}
}
}
}
fn visit_data_mut(&mut self, data: &mut Data) {
match data {
Data::Struct(data) => {
for field in &mut data.fields {
self.visit_type_mut(&mut field.ty);
}
}
Data::Enum(data) => {
for variant in &mut data.variants {
for field in &mut variant.fields {
self.visit_type_mut(&mut field.ty);
}
}
}
Data::Union(_) => {}
}
}
fn visit_expr_mut(&mut self, expr: &mut Expr) {
match expr {
Expr::Binary(expr) => {
self.visit_expr_mut(&mut expr.left);
self.visit_expr_mut(&mut expr.right);
}
Expr::Call(expr) => {
self.visit_expr_mut(&mut expr.func);
for arg in &mut expr.args {
self.visit_expr_mut(arg);
}
}
Expr::Cast(expr) => {
self.visit_expr_mut(&mut expr.expr);
self.visit_type_mut(&mut expr.ty);
}
Expr::Field(expr) => self.visit_expr_mut(&mut expr.base),
Expr::Index(expr) => {
self.visit_expr_mut(&mut expr.expr);
self.visit_expr_mut(&mut expr.index);
}
Expr::Paren(expr) => self.visit_expr_mut(&mut expr.expr),
Expr::Path(expr) => self.visit_expr_path_mut(expr),
Expr::Unary(expr) => self.visit_expr_mut(&mut expr.expr),
_ => {}
}
}
fn visit_macro_mut(&mut self, _mac: &mut Macro) {}
}

View File

@@ -0,0 +1,16 @@
use proc_macro2::{Group, Span, TokenStream, TokenTree};
pub(crate) fn respan(stream: TokenStream, span: Span) -> TokenStream {
stream
.into_iter()
.map(|token| respan_token(token, span))
.collect()
}
fn respan_token(mut token: TokenTree, span: Span) -> TokenTree {
if let TokenTree::Group(g) = &mut token {
*g = Group::new(g.delimiter(), respan(g.stream(), span));
}
token.set_span(span);
token
}

View File

@@ -0,0 +1,71 @@
use std::fmt::{self, Display};
use syn::{Ident, Path};
#[derive(Copy, Clone)]
pub struct Symbol(&'static str);
pub const ALIAS: Symbol = Symbol("alias");
pub const BORROW: Symbol = Symbol("borrow");
pub const BOUND: Symbol = Symbol("bound");
pub const CONTENT: Symbol = Symbol("content");
pub const CRATE: Symbol = Symbol("crate");
pub const DEFAULT: Symbol = Symbol("default");
pub const DENY_UNKNOWN_FIELDS: Symbol = Symbol("deny_unknown_fields");
pub const DESERIALIZE: Symbol = Symbol("deserialize");
pub const DESERIALIZE_WITH: Symbol = Symbol("deserialize_with");
pub const EXPECTING: Symbol = Symbol("expecting");
pub const FIELD_IDENTIFIER: Symbol = Symbol("field_identifier");
pub const FLATTEN: Symbol = Symbol("flatten");
pub const FROM: Symbol = Symbol("from");
pub const GETTER: Symbol = Symbol("getter");
pub const INTO: Symbol = Symbol("into");
pub const NON_EXHAUSTIVE: Symbol = Symbol("non_exhaustive");
pub const OTHER: Symbol = Symbol("other");
pub const REMOTE: Symbol = Symbol("remote");
pub const RENAME: Symbol = Symbol("rename");
pub const RENAME_ALL: Symbol = Symbol("rename_all");
pub const RENAME_ALL_FIELDS: Symbol = Symbol("rename_all_fields");
pub const REPR: Symbol = Symbol("repr");
pub const SERDE: Symbol = Symbol("serde");
pub const SERIALIZE: Symbol = Symbol("serialize");
pub const SERIALIZE_WITH: Symbol = Symbol("serialize_with");
pub const SKIP: Symbol = Symbol("skip");
pub const SKIP_DESERIALIZING: Symbol = Symbol("skip_deserializing");
pub const SKIP_SERIALIZING: Symbol = Symbol("skip_serializing");
pub const SKIP_SERIALIZING_IF: Symbol = Symbol("skip_serializing_if");
pub const TAG: Symbol = Symbol("tag");
pub const TRANSPARENT: Symbol = Symbol("transparent");
pub const TRY_FROM: Symbol = Symbol("try_from");
pub const UNTAGGED: Symbol = Symbol("untagged");
pub const VARIANT_IDENTIFIER: Symbol = Symbol("variant_identifier");
pub const WITH: Symbol = Symbol("with");
impl PartialEq<Symbol> for Ident {
fn eq(&self, word: &Symbol) -> bool {
self == word.0
}
}
impl PartialEq<Symbol> for &Ident {
fn eq(&self, word: &Symbol) -> bool {
*self == word.0
}
}
impl PartialEq<Symbol> for Path {
fn eq(&self, word: &Symbol) -> bool {
self.is_ident(word.0)
}
}
impl PartialEq<Symbol> for &Path {
fn eq(&self, word: &Symbol) -> bool {
self.is_ident(word.0)
}
}
impl Display for Symbol {
fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str(self.0)
}
}