//! Contains the dense slot map implementation. // There is quite a lot of unsafe code in this implementation. To prevent the // same explanation over and over again, care must be taken that indices in // slots and keys from key-value pairs **that are stored inside the slot map** // are valid. Keys that are received from the user are not trusted (as they // might have come from a different slot map or malicious serde deseralization). #[cfg(all(nightly, any(doc, feature = "unstable")))] use alloc::collections::TryReserveError; use alloc::vec::Vec; use core::iter::FusedIterator; #[allow(unused_imports)] // MaybeUninit is only used on nightly at the moment. use core::mem::MaybeUninit; use core::ops::{Index, IndexMut}; use crate::util::{Never, UnwrapUnchecked}; use crate::{DefaultKey, Key, KeyData}; // A slot, which represents storage for an index and a current version. // Can be occupied or vacant. #[derive(Debug, Clone)] struct Slot { // Even = vacant, odd = occupied. version: u32, // An index when occupied, the next free slot otherwise. idx_or_free: u32, } /// Dense slot map, storage with stable unique keys. /// /// See [crate documentation](crate) for more details. #[derive(Debug)] pub struct DenseSlotMap { keys: Vec, values: Vec, slots: Vec, free_head: u32, } impl DenseSlotMap { /// Construct a new, empty [`DenseSlotMap`]. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm: DenseSlotMap<_, i32> = DenseSlotMap::new(); /// ``` pub fn new() -> Self { Self::with_capacity_and_key(0) } /// Creates an empty [`DenseSlotMap`] with the given capacity. /// /// The slot map will not reallocate until it holds at least `capacity` /// elements. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm: DenseSlotMap<_, i32> = DenseSlotMap::with_capacity(10); /// ``` pub fn with_capacity(capacity: usize) -> DenseSlotMap { Self::with_capacity_and_key(capacity) } } impl DenseSlotMap { /// Constructs a new, empty [`DenseSlotMap`] with a custom key type. /// /// # Examples /// /// ``` /// # use slotmap::*; /// new_key_type! { /// struct PositionKey; /// } /// let mut positions: DenseSlotMap = DenseSlotMap::with_key(); /// ``` pub fn with_key() -> Self { Self::with_capacity_and_key(0) } /// Creates an empty [`DenseSlotMap`] with the given capacity and a custom key /// type. /// /// The slot map will not reallocate until it holds at least `capacity` /// elements. /// /// # Examples /// /// ``` /// # use slotmap::*; /// new_key_type! { /// struct MessageKey; /// } /// let mut messages = DenseSlotMap::with_capacity_and_key(3); /// let welcome: MessageKey = messages.insert("Welcome"); /// let good_day = messages.insert("Good day"); /// let hello = messages.insert("Hello"); /// ``` pub fn with_capacity_and_key(capacity: usize) -> Self { // Create slots with a sentinel at index 0. // We don't actually use the sentinel for anything currently, but // HopSlotMap does, and if we want keys to remain valid through // conversion we have to have one as well. let mut slots = Vec::with_capacity(capacity + 1); slots.push(Slot { idx_or_free: 0, version: 0, }); DenseSlotMap { keys: Vec::with_capacity(capacity), values: Vec::with_capacity(capacity), slots, free_head: 1, } } /// Returns the number of elements in the slot map. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::with_capacity(10); /// sm.insert("len() counts actual elements, not capacity"); /// let key = sm.insert("removed elements don't count either"); /// sm.remove(key); /// assert_eq!(sm.len(), 1); /// ``` pub fn len(&self) -> usize { self.keys.len() } /// Returns if the slot map is empty. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert("dummy"); /// assert_eq!(sm.is_empty(), false); /// sm.remove(key); /// assert_eq!(sm.is_empty(), true); /// ``` pub fn is_empty(&self) -> bool { self.keys.is_empty() } /// Returns the number of elements the [`DenseSlotMap`] can hold without /// reallocating. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let sm: DenseSlotMap<_, f64> = DenseSlotMap::with_capacity(10); /// assert_eq!(sm.capacity(), 10); /// ``` pub fn capacity(&self) -> usize { self.keys.capacity() } /// Reserves capacity for at least `additional` more elements to be inserted /// in the [`DenseSlotMap`]. The collection may reserve more space to /// avoid frequent reallocations. /// /// # Panics /// /// Panics if the new allocation size overflows [`usize`]. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// sm.insert("foo"); /// sm.reserve(32); /// assert!(sm.capacity() >= 33); /// ``` pub fn reserve(&mut self, additional: usize) { self.keys.reserve(additional); self.values.reserve(additional); // One slot is reserved for the sentinel. let needed = (self.len() + additional).saturating_sub(self.slots.len() - 1); self.slots.reserve(needed); } /// Tries to reserve capacity for at least `additional` more elements to be /// inserted in the [`DenseSlotMap`]. The collection may reserve more space to /// avoid frequent reallocations. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// sm.insert("foo"); /// sm.try_reserve(32).unwrap(); /// assert!(sm.capacity() >= 33); /// ``` #[cfg(all(nightly, any(doc, feature = "unstable")))] #[cfg_attr(all(nightly, doc), doc(cfg(feature = "unstable")))] pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.keys.try_reserve(additional)?; self.values.try_reserve(additional)?; // One slot is reserved for the sentinel. let needed = (self.len() + additional).saturating_sub(self.slots.len() - 1); self.slots.try_reserve(needed) } /// Returns [`true`] if the slot map contains `key`. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert(42); /// assert_eq!(sm.contains_key(key), true); /// sm.remove(key); /// assert_eq!(sm.contains_key(key), false); /// ``` pub fn contains_key(&self, key: K) -> bool { let kd = key.data(); self.slots .get(kd.idx as usize) .map_or(false, |slot| slot.version == kd.version.get()) } /// Inserts a value into the slot map. Returns a unique key that can be used /// to access this value. /// /// # Panics /// /// Panics if the number of elements in the slot map equals /// 232 - 2. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert(42); /// assert_eq!(sm[key], 42); /// ``` #[inline(always)] pub fn insert(&mut self, value: V) -> K { unsafe { self.try_insert_with_key::<_, Never>(move |_| Ok(value)).unwrap_unchecked_() } } /// Inserts a value given by `f` into the slot map. The key where the /// value will be stored is passed into `f`. This is useful to store values /// that contain their own key. /// /// # Panics /// /// Panics if the number of elements in the slot map equals /// 232 - 2. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert_with_key(|k| (k, 20)); /// assert_eq!(sm[key], (key, 20)); /// ``` #[inline(always)] pub fn insert_with_key(&mut self, f: F) -> K where F: FnOnce(K) -> V, { unsafe { self.try_insert_with_key::<_, Never>(move |k| Ok(f(k))).unwrap_unchecked_() } } /// Inserts a value given by `f` into the slot map. The key where the /// value will be stored is passed into `f`. This is useful to store values /// that contain their own key. /// /// If `f` returns `Err`, this method returns the error. The slotmap is untouched. /// /// # Panics /// /// Panics if the number of elements in the slot map equals /// 232 - 2. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.try_insert_with_key::<_, ()>(|k| Ok((k, 20))).unwrap(); /// assert_eq!(sm[key], (key, 20)); /// /// sm.try_insert_with_key::<_, ()>(|k| Err(())).unwrap_err(); /// ``` pub fn try_insert_with_key(&mut self, f: F) -> Result where F: FnOnce(K) -> Result, { if self.len() >= (core::u32::MAX - 1) as usize { panic!("DenseSlotMap number of elements overflow"); } let idx = self.free_head; if let Some(slot) = self.slots.get_mut(idx as usize) { let occupied_version = slot.version | 1; let key = KeyData::new(idx, occupied_version).into(); // Push value before adjusting slots/freelist in case f panics or returns an error. self.values.push(f(key)?); self.keys.push(key); self.free_head = slot.idx_or_free; slot.idx_or_free = self.keys.len() as u32 - 1; slot.version = occupied_version; return Ok(key); } // Push value before adjusting slots/freelist in case f panics or returns an error. let key = KeyData::new(idx, 1).into(); self.values.push(f(key)?); self.keys.push(key); self.slots.push(Slot { version: 1, idx_or_free: self.keys.len() as u32 - 1, }); self.free_head = self.slots.len() as u32; Ok(key) } // Helper function to add a slot to the freelist. Returns the index that // was stored in the slot. #[inline(always)] fn free_slot(&mut self, slot_idx: usize) -> u32 { let slot = &mut self.slots[slot_idx]; let value_idx = slot.idx_or_free; slot.version = slot.version.wrapping_add(1); slot.idx_or_free = self.free_head; self.free_head = slot_idx as u32; value_idx } // Helper function to remove a value from a slot and make the slot free. // Returns the value removed. #[inline(always)] fn remove_from_slot(&mut self, slot_idx: usize) -> V { let value_idx = self.free_slot(slot_idx); // Remove values/slot_indices by swapping to end. let _ = self.keys.swap_remove(value_idx as usize); let value = self.values.swap_remove(value_idx as usize); // Did something take our place? Update its slot to new position. if let Some(k) = self.keys.get(value_idx as usize) { self.slots[k.data().idx as usize].idx_or_free = value_idx; } value } /// Removes a key from the slot map, returning the value at the key if the /// key was not previously removed. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert(42); /// assert_eq!(sm.remove(key), Some(42)); /// assert_eq!(sm.remove(key), None); /// ``` pub fn remove(&mut self, key: K) -> Option { let kd = key.data(); if self.contains_key(kd.into()) { Some(self.remove_from_slot(kd.idx as usize)) } else { None } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all key-value pairs `(k, v)` such that /// `f(k, &mut v)` returns false. This method invalidates any removed keys. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// /// let k3 = sm.insert(2); /// let k1 = sm.insert(0); /// let k2 = sm.insert(1); /// /// sm.retain(|key, val| key == k1 || *val == 1); /// /// assert!(sm.contains_key(k1)); /// assert!(sm.contains_key(k2)); /// assert!(!sm.contains_key(k3)); /// /// assert_eq!(2, sm.len()); /// ``` pub fn retain(&mut self, mut f: F) where F: FnMut(K, &mut V) -> bool, { let mut i = 0; while i < self.keys.len() { let (should_keep, slot_idx) = { let (kd, mut value) = (self.keys[i].data(), &mut self.values[i]); (f(kd.into(), &mut value), kd.idx as usize) }; if should_keep { i += 1; } else { // We do not increment i here intentionally. This index has just // been replaced with a new value. self.remove_from_slot(slot_idx); } } } /// Clears the slot map. Keeps the allocated memory for reuse. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// for i in 0..10 { /// sm.insert(i); /// } /// assert_eq!(sm.len(), 10); /// sm.clear(); /// assert_eq!(sm.len(), 0); /// ``` pub fn clear(&mut self) { self.drain(); } /// Clears the slot map, returning all key-value pairs in arbitrary order /// as an iterator. Keeps the allocated memory for reuse. /// /// When the iterator is dropped all elements in the slot map are removed, /// even if the iterator was not fully consumed. If the iterator is not /// dropped (using e.g. [`std::mem::forget`]), only the elements that were /// iterated over are removed. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let k = sm.insert(0); /// let v: Vec<_> = sm.drain().collect(); /// assert_eq!(sm.len(), 0); /// assert_eq!(v, vec![(k, 0)]); /// ``` pub fn drain(&mut self) -> Drain { Drain { sm: self } } /// Returns a reference to the value corresponding to the key. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert("bar"); /// assert_eq!(sm.get(key), Some(&"bar")); /// sm.remove(key); /// assert_eq!(sm.get(key), None); /// ``` pub fn get(&self, key: K) -> Option<&V> { let kd = key.data(); self.slots .get(kd.idx as usize) .filter(|slot| slot.version == kd.version.get()) .map(|slot| unsafe { // This is safe because we only store valid indices. let idx = slot.idx_or_free as usize; self.values.get_unchecked(idx) }) } /// Returns a reference to the value corresponding to the key without /// version or bounds checking. /// /// # Safety /// /// This should only be used if `contains_key(key)` is true. Otherwise it is /// potentially unsafe. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert("bar"); /// assert_eq!(unsafe { sm.get_unchecked(key) }, &"bar"); /// sm.remove(key); /// // sm.get_unchecked(key) is now dangerous! /// ``` pub unsafe fn get_unchecked(&self, key: K) -> &V { debug_assert!(self.contains_key(key)); let idx = self.slots.get_unchecked(key.data().idx as usize).idx_or_free; &self.values.get_unchecked(idx as usize) } /// Returns a mutable reference to the value corresponding to the key. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert(3.5); /// if let Some(x) = sm.get_mut(key) { /// *x += 3.0; /// } /// assert_eq!(sm[key], 6.5); /// ``` pub fn get_mut(&mut self, key: K) -> Option<&mut V> { let kd = key.data(); self.slots .get(kd.idx as usize) .filter(|slot| slot.version == kd.version.get()) .map(|slot| slot.idx_or_free as usize) .map(move |idx| unsafe { // This is safe because we only store valid indices. self.values.get_unchecked_mut(idx) }) } /// Returns a mutable reference to the value corresponding to the key /// without version or bounds checking. /// /// # Safety /// /// This should only be used if `contains_key(key)` is true. Otherwise it is /// potentially unsafe. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let key = sm.insert("foo"); /// unsafe { *sm.get_unchecked_mut(key) = "bar" }; /// assert_eq!(sm[key], "bar"); /// sm.remove(key); /// // sm.get_unchecked_mut(key) is now dangerous! /// ``` pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V { debug_assert!(self.contains_key(key)); let idx = self.slots.get_unchecked(key.data().idx as usize).idx_or_free; self.values.get_unchecked_mut(idx as usize) } /// Returns mutable references to the values corresponding to the given /// keys. All keys must be valid and disjoint, otherwise [`None`] is /// returned. /// /// Requires at least stable Rust version 1.51. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let ka = sm.insert("butter"); /// let kb = sm.insert("apples"); /// let kc = sm.insert("charlie"); /// sm.remove(kc); // Make key c invalid. /// assert_eq!(sm.get_disjoint_mut([ka, kb, kc]), None); // Has invalid key. /// assert_eq!(sm.get_disjoint_mut([ka, ka]), None); // Not disjoint. /// let [a, b] = sm.get_disjoint_mut([ka, kb]).unwrap(); /// std::mem::swap(a, b); /// assert_eq!(sm[ka], "apples"); /// assert_eq!(sm[kb], "butter"); /// ``` #[cfg(has_min_const_generics)] pub fn get_disjoint_mut(&mut self, keys: [K; N]) -> Option<[&mut V; N]> { // Create an uninitialized array of `MaybeUninit`. The `assume_init` is // safe because the type we are claiming to have initialized here is a // bunch of `MaybeUninit`s, which do not require initialization. let mut ptrs: [MaybeUninit<*mut V>; N] = unsafe { MaybeUninit::uninit().assume_init() }; let mut i = 0; while i < N { // We can avoid this clone after min_const_generics and array_map. let kd = keys[i].data(); if !self.contains_key(kd.into()) { break; } // This key is valid, and thus the slot is occupied. Temporarily // mark it as unoccupied so duplicate keys would show up as invalid. // This gives us a linear time disjointness check. unsafe { let slot = self.slots.get_unchecked_mut(kd.idx as usize); slot.version ^= 1; let ptr = self.values.get_unchecked_mut(slot.idx_or_free as usize); ptrs[i] = MaybeUninit::new(ptr); } i += 1; } // Undo temporary unoccupied markings. for k in &keys[..i] { let idx = k.data().idx as usize; unsafe { self.slots.get_unchecked_mut(idx).version ^= 1; } } if i == N { // All were valid and disjoint. Some(unsafe { core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs) }) } else { None } } /// Returns mutable references to the values corresponding to the given /// keys. All keys must be valid and disjoint. /// /// Requires at least stable Rust version 1.51. /// /// # Safety /// /// This should only be used if `contains_key(key)` is true for every given /// key and no two keys are equal. Otherwise it is potentially unsafe. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let ka = sm.insert("butter"); /// let kb = sm.insert("apples"); /// let [a, b] = unsafe { sm.get_disjoint_unchecked_mut([ka, kb]) }; /// std::mem::swap(a, b); /// assert_eq!(sm[ka], "apples"); /// assert_eq!(sm[kb], "butter"); /// ``` #[cfg(has_min_const_generics)] pub unsafe fn get_disjoint_unchecked_mut( &mut self, keys: [K; N], ) -> [&mut V; N] { // Safe, see get_disjoint_mut. let mut ptrs: [MaybeUninit<*mut V>; N] = MaybeUninit::uninit().assume_init(); for i in 0..N { ptrs[i] = MaybeUninit::new(self.get_unchecked_mut(keys[i])); } core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs) } /// An iterator visiting all key-value pairs in arbitrary order. The /// iterator element type is `(K, &'a V)`. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let k0 = sm.insert(0); /// let k1 = sm.insert(1); /// let k2 = sm.insert(2); /// /// let mut it = sm.iter(); /// for (k, v) in sm.iter() { /// println!("key: {:?}, val: {}", k, v); /// } /// ``` pub fn iter(&self) -> Iter { Iter { inner_keys: self.keys.iter(), inner_values: self.values.iter(), } } /// An iterator visiting all key-value pairs in arbitrary order, with /// mutable references to the values. The iterator element type is /// `(K, &'a mut V)`. /// /// # Examples /// /// ``` /// # use slotmap::*; /// let mut sm = DenseSlotMap::new(); /// let k0 = sm.insert(10); /// let k1 = sm.insert(20); /// let k2 = sm.insert(30); /// /// for (k, v) in sm.iter_mut() { /// if k != k1 { /// *v *= -1; /// } /// } /// /// assert_eq!(sm[k0], -10); /// assert_eq!(sm[k1], 20); /// assert_eq!(sm[k2], -30); /// ``` pub fn iter_mut(&mut self) -> IterMut { IterMut { inner_keys: self.keys.iter(), inner_values: self.values.iter_mut(), } } /// An iterator visiting all keys in arbitrary order. The iterator element /// type is K. /// /// # Examples /// /// ``` /// # use slotmap::*; /// # use std::collections::HashSet; /// let mut sm = DenseSlotMap::new(); /// let k0 = sm.insert(10); /// let k1 = sm.insert(20); /// let k2 = sm.insert(30); /// let keys: HashSet<_> = sm.keys().collect(); /// let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect(); /// assert_eq!(keys, check); /// ``` pub fn keys(&self) -> Keys { Keys { inner: self.iter() } } /// An iterator visiting all values in arbitrary order. The iterator element /// type is `&'a V`. /// /// # Examples /// /// ``` /// # use slotmap::*; /// # use std::collections::HashSet; /// let mut sm = DenseSlotMap::new(); /// let k0 = sm.insert(10); /// let k1 = sm.insert(20); /// let k2 = sm.insert(30); /// let values: HashSet<_> = sm.values().collect(); /// let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect(); /// assert_eq!(values, check); /// ``` pub fn values(&self) -> Values { Values { inner: self.iter() } } /// An iterator visiting all values mutably in arbitrary order. The iterator /// element type is `&'a mut V`. /// /// # Examples /// /// ``` /// # use slotmap::*; /// # use std::collections::HashSet; /// let mut sm = DenseSlotMap::new(); /// sm.insert(1); /// sm.insert(2); /// sm.insert(3); /// sm.values_mut().for_each(|n| { *n *= 3 }); /// let values: HashSet<_> = sm.into_iter().map(|(_k, v)| v).collect(); /// let check: HashSet<_> = vec![3, 6, 9].into_iter().collect(); /// assert_eq!(values, check); /// ``` pub fn values_mut(&mut self) -> ValuesMut { ValuesMut { inner: self.iter_mut(), } } } impl Clone for DenseSlotMap where V: Clone, { fn clone(&self) -> Self { Self { keys: self.keys.clone(), values: self.values.clone(), slots: self.slots.clone(), ..*self } } fn clone_from(&mut self, source: &Self) { self.keys.clone_from(&source.keys); self.values.clone_from(&source.values); self.slots.clone_from(&source.slots); self.free_head = source.free_head; } } impl Default for DenseSlotMap { fn default() -> Self { Self::with_key() } } impl Index for DenseSlotMap { type Output = V; fn index(&self, key: K) -> &V { match self.get(key) { Some(r) => r, None => panic!("invalid DenseSlotMap key used"), } } } impl IndexMut for DenseSlotMap { fn index_mut(&mut self, key: K) -> &mut V { match self.get_mut(key) { Some(r) => r, None => panic!("invalid DenseSlotMap key used"), } } } // Iterators. /// A draining iterator for [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::drain`]. #[derive(Debug)] pub struct Drain<'a, K: 'a + Key, V: 'a> { sm: &'a mut DenseSlotMap, } /// An iterator that moves key-value pairs out of a [`DenseSlotMap`]. /// /// This iterator is created by calling the `into_iter` method on [`DenseSlotMap`], /// provided by the [`IntoIterator`] trait. #[derive(Debug, Clone)] pub struct IntoIter { inner_keys: alloc::vec::IntoIter, inner_values: alloc::vec::IntoIter, } /// An iterator over the key-value pairs in a [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::iter`]. #[derive(Debug)] pub struct Iter<'a, K: 'a + Key, V: 'a> { inner_keys: core::slice::Iter<'a, K>, inner_values: core::slice::Iter<'a, V>, } impl<'a, K: 'a + Key, V: 'a> Clone for Iter<'a, K, V> { fn clone(&self) -> Self { Iter { inner_keys: self.inner_keys.clone(), inner_values: self.inner_values.clone(), } } } /// A mutable iterator over the key-value pairs in a [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::iter_mut`]. #[derive(Debug)] pub struct IterMut<'a, K: 'a + Key, V: 'a> { inner_keys: core::slice::Iter<'a, K>, inner_values: core::slice::IterMut<'a, V>, } /// An iterator over the keys in a [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::keys`]. #[derive(Debug)] pub struct Keys<'a, K: 'a + Key, V> { inner: Iter<'a, K, V>, } impl<'a, K: 'a + Key, V: 'a> Clone for Keys<'a, K, V> { fn clone(&self) -> Self { Keys { inner: self.inner.clone(), } } } /// An iterator over the values in a [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::values`]. #[derive(Debug)] pub struct Values<'a, K: 'a + Key, V> { inner: Iter<'a, K, V>, } impl<'a, K: 'a + Key, V: 'a> Clone for Values<'a, K, V> { fn clone(&self) -> Self { Values { inner: self.inner.clone(), } } } /// A mutable iterator over the values in a [`DenseSlotMap`]. /// /// This iterator is created by [`DenseSlotMap::values_mut`]. #[derive(Debug)] pub struct ValuesMut<'a, K: 'a + Key, V: 'a> { inner: IterMut<'a, K, V>, } impl<'a, K: Key, V> Iterator for Drain<'a, K, V> { type Item = (K, V); fn next(&mut self) -> Option<(K, V)> { // We make no iteration order guarantees, so we just repeatedly pop. let key = self.sm.keys.pop(); let value = self.sm.values.pop(); if let (Some(k), Some(v)) = (key, value) { self.sm.free_slot(k.data().idx as usize); Some((k, v)) } else { None } } fn size_hint(&self) -> (usize, Option) { let len = self.sm.keys.len(); (len, Some(len)) } } impl<'a, K: Key, V> Drop for Drain<'a, K, V> { fn drop(&mut self) { self.for_each(|_drop| {}); } } impl Iterator for IntoIter { type Item = (K, V); fn next(&mut self) -> Option<(K, V)> { let key = self.inner_keys.next(); let value = self.inner_values.next(); if let (Some(k), Some(v)) = (key, value) { Some((k, v)) } else { None } } fn size_hint(&self) -> (usize, Option) { self.inner_keys.size_hint() } } impl<'a, K: 'a + Key, V> Iterator for Iter<'a, K, V> { type Item = (K, &'a V); fn next(&mut self) -> Option<(K, &'a V)> { let key = self.inner_keys.next(); let value = self.inner_values.next(); if let (Some(k), Some(v)) = (key, value) { Some((*k, v)) } else { None } } fn size_hint(&self) -> (usize, Option) { self.inner_keys.size_hint() } } impl<'a, K: 'a + Key, V> Iterator for IterMut<'a, K, V> { type Item = (K, &'a mut V); fn next(&mut self) -> Option<(K, &'a mut V)> { let key = self.inner_keys.next(); let value = self.inner_values.next(); if let (Some(k), Some(v)) = (key, value) { Some((*k, v)) } else { None } } fn size_hint(&self) -> (usize, Option) { self.inner_keys.size_hint() } } impl<'a, K: 'a + Key, V> Iterator for Keys<'a, K, V> { type Item = K; fn next(&mut self) -> Option { self.inner.next().map(|(key, _)| key) } fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a, K: 'a + Key, V> Iterator for Values<'a, K, V> { type Item = &'a V; fn next(&mut self) -> Option<&'a V> { self.inner.next().map(|(_, value)| value) } fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a, K: 'a + Key, V> Iterator for ValuesMut<'a, K, V> { type Item = &'a mut V; fn next(&mut self) -> Option<&'a mut V> { self.inner.next().map(|(_, value)| value) } fn size_hint(&self) -> (usize, Option) { self.inner.size_hint() } } impl<'a, K: 'a + Key, V> IntoIterator for &'a DenseSlotMap { type Item = (K, &'a V); type IntoIter = Iter<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl<'a, K: 'a + Key, V> IntoIterator for &'a mut DenseSlotMap { type Item = (K, &'a mut V); type IntoIter = IterMut<'a, K, V>; fn into_iter(self) -> Self::IntoIter { self.iter_mut() } } impl IntoIterator for DenseSlotMap { type Item = (K, V); type IntoIter = IntoIter; fn into_iter(self) -> Self::IntoIter { IntoIter { inner_keys: self.keys.into_iter(), inner_values: self.values.into_iter(), } } } impl<'a, K: 'a + Key, V> FusedIterator for Iter<'a, K, V> {} impl<'a, K: 'a + Key, V> FusedIterator for IterMut<'a, K, V> {} impl<'a, K: 'a + Key, V> FusedIterator for Keys<'a, K, V> {} impl<'a, K: 'a + Key, V> FusedIterator for Values<'a, K, V> {} impl<'a, K: 'a + Key, V> FusedIterator for ValuesMut<'a, K, V> {} impl<'a, K: 'a + Key, V> FusedIterator for Drain<'a, K, V> {} impl FusedIterator for IntoIter {} impl<'a, K: 'a + Key, V> ExactSizeIterator for Iter<'a, K, V> {} impl<'a, K: 'a + Key, V> ExactSizeIterator for IterMut<'a, K, V> {} impl<'a, K: 'a + Key, V> ExactSizeIterator for Keys<'a, K, V> {} impl<'a, K: 'a + Key, V> ExactSizeIterator for Values<'a, K, V> {} impl<'a, K: 'a + Key, V> ExactSizeIterator for ValuesMut<'a, K, V> {} impl<'a, K: 'a + Key, V> ExactSizeIterator for Drain<'a, K, V> {} impl ExactSizeIterator for IntoIter {} // Serialization with serde. #[cfg(feature = "serde")] mod serialize { use serde::{de, Deserialize, Deserializer, Serialize, Serializer}; use super::*; #[derive(Serialize, Deserialize)] struct SerdeSlot { value: Option, version: u32, } impl Serialize for DenseSlotMap { fn serialize(&self, serializer: S) -> Result where S: Serializer, { let serde_slots: Vec<_> = self .slots .iter() .map(|slot| SerdeSlot { value: if slot.version % 2 == 1 { self.values.get(slot.idx_or_free as usize) } else { None }, version: slot.version, }) .collect(); serde_slots.serialize(serializer) } } impl<'de, K: Key, V: Deserialize<'de>> Deserialize<'de> for DenseSlotMap { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { let serde_slots: Vec> = Deserialize::deserialize(deserializer)?; if serde_slots.len() >= u32::max_value() as usize { return Err(de::Error::custom(&"too many slots")); } // Ensure the first slot exists and is empty for the sentinel. if serde_slots.get(0).map_or(true, |slot| slot.version % 2 == 1) { return Err(de::Error::custom(&"first slot not empty")); } // Rebuild slots, key and values. let mut keys = Vec::new(); let mut values = Vec::new(); let mut slots = Vec::new(); slots.push(Slot { idx_or_free: 0, version: 0, }); let mut next_free = serde_slots.len(); for (i, serde_slot) in serde_slots.into_iter().enumerate().skip(1) { let occupied = serde_slot.version % 2 == 1; if occupied ^ serde_slot.value.is_some() { return Err(de::Error::custom(&"inconsistent occupation in Slot")); } if let Some(value) = serde_slot.value { let kd = KeyData::new(i as u32, serde_slot.version); keys.push(kd.into()); values.push(value); slots.push(Slot { version: serde_slot.version, idx_or_free: (keys.len() - 1) as u32, }); } else { slots.push(Slot { version: serde_slot.version, idx_or_free: next_free as u32, }); next_free = i; } } Ok(DenseSlotMap { keys, values, slots, free_head: next_free as u32, }) } } } #[cfg(test)] mod tests { use std::collections::{HashMap, HashSet}; use quickcheck::quickcheck; use super::*; #[derive(Clone)] struct CountDrop<'a>(&'a core::cell::RefCell); impl<'a> Drop for CountDrop<'a> { fn drop(&mut self) { *self.0.borrow_mut() += 1; } } #[test] fn check_drops() { let drops = core::cell::RefCell::new(0usize); { let mut clone = { // Insert 1000 items. let mut sm = DenseSlotMap::new(); let mut sm_keys = Vec::new(); for _ in 0..1000 { sm_keys.push(sm.insert(CountDrop(&drops))); } // Remove even keys. for i in (0..1000).filter(|i| i % 2 == 0) { sm.remove(sm_keys[i]); } // Should only have dropped 500 so far. assert_eq!(*drops.borrow(), 500); // Let's clone ourselves and then die. sm.clone() }; // Now all original items should have been dropped exactly once. assert_eq!(*drops.borrow(), 1000); // Re-use some empty slots. for _ in 0..250 { clone.insert(CountDrop(&drops)); } } // 1000 + 750 drops in total should have happened. assert_eq!(*drops.borrow(), 1750); } #[cfg(all(nightly, feature = "unstable"))] #[test] fn disjoint() { // Intended to be run with miri to find any potential UB. let mut sm = DenseSlotMap::new(); // Some churn. for i in 0..20usize { sm.insert(i); } sm.retain(|_, i| *i % 2 == 0); let keys: Vec<_> = sm.keys().collect(); for i in 0..keys.len() { for j in 0..keys.len() { if let Some([r0, r1]) = sm.get_disjoint_mut([keys[i], keys[j]]) { *r0 ^= *r1; *r1 = r1.wrapping_add(*r0); } else { assert!(i == j); } } } for i in 0..keys.len() { for j in 0..keys.len() { for k in 0..keys.len() { if let Some([r0, r1, r2]) = sm.get_disjoint_mut([keys[i], keys[j], keys[k]]) { *r0 ^= *r1; *r0 = r0.wrapping_add(*r2); *r1 ^= *r0; *r1 = r1.wrapping_add(*r2); *r2 ^= *r0; *r2 = r2.wrapping_add(*r1); } else { assert!(i == j || j == k || i == k); } } } } } quickcheck! { fn qc_slotmap_equiv_hashmap(operations: Vec<(u8, u32)>) -> bool { let mut hm = HashMap::new(); let mut hm_keys = Vec::new(); let mut unique_key = 0u32; let mut sm = DenseSlotMap::new(); let mut sm_keys = Vec::new(); #[cfg(not(feature = "serde"))] let num_ops = 3; #[cfg(feature = "serde")] let num_ops = 4; for (op, val) in operations { match op % num_ops { // Insert. 0 => { hm.insert(unique_key, val); hm_keys.push(unique_key); unique_key += 1; sm_keys.push(sm.insert(val)); } // Delete. 1 => { // 10% of the time test clear. if val % 10 == 0 { let hmvals: HashSet<_> = hm.drain().map(|(_, v)| v).collect(); let smvals: HashSet<_> = sm.drain().map(|(_, v)| v).collect(); if hmvals != smvals { return false; } } if hm_keys.is_empty() { continue; } let idx = val as usize % hm_keys.len(); if hm.remove(&hm_keys[idx]) != sm.remove(sm_keys[idx]) { return false; } } // Access. 2 => { if hm_keys.is_empty() { continue; } let idx = val as usize % hm_keys.len(); let (hm_key, sm_key) = (&hm_keys[idx], sm_keys[idx]); if hm.contains_key(hm_key) != sm.contains_key(sm_key) || hm.get(hm_key) != sm.get(sm_key) { return false; } } // Serde round-trip. #[cfg(feature = "serde")] 3 => { let ser = serde_json::to_string(&sm).unwrap(); sm = serde_json::from_str(&ser).unwrap(); } _ => unreachable!(), } } let mut smv: Vec<_> = sm.values().collect(); let mut hmv: Vec<_> = hm.values().collect(); smv.sort(); hmv.sort(); smv == hmv } } #[cfg(feature = "serde")] #[test] fn slotmap_serde() { let mut sm = DenseSlotMap::new(); // Self-referential structure. let first = sm.insert_with_key(|k| (k, 23i32)); let second = sm.insert((first, 42)); // Make some empty slots. let empties = vec![sm.insert((first, 0)), sm.insert((first, 0))]; empties.iter().for_each(|k| { sm.remove(*k); }); let third = sm.insert((second, 0)); sm[first].0 = third; let ser = serde_json::to_string(&sm).unwrap(); let de: DenseSlotMap = serde_json::from_str(&ser).unwrap(); assert_eq!(de.len(), sm.len()); let mut smkv: Vec<_> = sm.iter().collect(); let mut dekv: Vec<_> = de.iter().collect(); smkv.sort(); dekv.sort(); assert_eq!(smkv, dekv); } #[cfg(feature = "serde")] #[test] fn slotmap_serde_freelist() { let mut sm = DenseSlotMap::new(); let k0 = sm.insert(5i32); let k1 = sm.insert(5i32); sm.remove(k0); sm.remove(k1); let ser = serde_json::to_string(&sm).unwrap(); let mut de: DenseSlotMap = serde_json::from_str(&ser).unwrap(); de.insert(0); de.insert(1); de.insert(2); assert_eq!(de.len(), 3); } }