/* * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. * // * // Redistribution and use in source and binary forms, with or without modification, * // are permitted provided that the following conditions are met: * // * // 1. Redistributions of source code must retain the above copyright notice, this * // list of conditions and the following disclaimer. * // * // 2. Redistributions in binary form must reproduce the above copyright notice, * // this list of conditions and the following disclaimer in the documentation * // and/or other materials provided with the distribution. * // * // 3. Neither the name of the copyright holder nor the names of its * // contributors may be used to endorse or promote products derived from * // this software without specific prior written permission. * // * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use crate::asin_eval_dyadic::asin_eval_dyadic; use crate::common::f_fmla; use crate::double_double::DoubleDouble; use crate::dyadic_float::{DyadicFloat128, DyadicSign}; use crate::round::RoundFinite; static ASIN_COEFFS: [[u64; 12]; 9] = [ [ 0x3ff0000000000000, 0x0000000000000000, 0x3fc5555555555555, 0x3c65555555555555, 0x3fb3333333333333, 0x3fa6db6db6db6db7, 0x3f9f1c71c71c71c7, 0x3f96e8ba2e8ba2e9, 0x3f91c4ec4ec4ec4f, 0x3f8c99999999999a, 0x3f87a87878787878, 0x3f83fde50d79435e, ], [ 0x3ff015a397cf0f1c, 0xbc8eebd6ccfe3ee3, 0x3fc5f3581be7b08b, 0xbc65df80d0e7237d, 0x3fb4519ddf1ae530, 0x3fa8eb4b6eeb1696, 0x3fa17bc85420fec8, 0x3f9a8e39b5dcad81, 0x3f953f8df127539b, 0x3f91a485a0b0130a, 0x3f8e20e6e4930020, 0x3f8a466a7030f4c9, ], [ 0x3ff02be9ce0b87cd, 0x3c7e5d09da2e0f04, 0x3fc69ab5325bc359, 0xbc692f480cfede2d, 0x3fb58a4c3097aab1, 0x3fab3db36068dd80, 0x3fa3b94821846250, 0x3f9eedc823765d21, 0x3f998e35d756be6b, 0x3f95ea4f1b32731a, 0x3f9355115764148e, 0x3f916a5853847c91, ], [ 0x3ff042dc6a65ffbf, 0xbc8c7ea28dce95d1, 0x3fc74c4bd7412f9d, 0x3c5447024c0a3c87, 0x3fb6e09c6d2b72b9, 0x3faddd9dcdae5315, 0x3fa656f1f64058b8, 0x3fa21a42e4437101, 0x3f9eed0350b7edb2, 0x3f9b6bc877e58c52, 0x3f9903a0872eb2a4, 0x3f974da839ddd6d8, ], [ 0x3ff05a8621feb16b, 0xbc7e5b33b1407c5f, 0x3fc809186c2e57dd, 0xbc33dcb4d6069407, 0x3fb8587d99442dc5, 0x3fb06c23d1e75be3, 0x3fa969024051c67d, 0x3fa54e4f934aacfd, 0x3fa2d60a732dbc9c, 0x3fa149f0c046eac7, 0x3fa053a56dba1fba, 0x3f9f7face3343992, ], [ 0x3ff072f2b6f1e601, 0xbc92dcbb05419970, 0x3fc8d2397127aeba, 0x3c6ead0c497955fb, 0x3fb9f68df88da518, 0x3fb21ee26a5900d7, 0x3fad08e7081b53a9, 0x3fa938dd661713f7, 0x3fa71b9f299b72e6, 0x3fa5fbc7d2450527, 0x3fa58573247ec325, 0x3fa585a174a6a4ce, ], [ 0x3ff08c2f1d638e4c, 0x3c7b47c159534a3d, 0x3fc9a8f592078624, 0xbc6ea339145b65cd, 0x3fbbc04165b57aab, 0x3fb410df5f58441d, 0x3fb0ab6bdf5f8f70, 0x3fae0b92eea1fce1, 0x3fac9094e443a971, 0x3fac34651d64bc74, 0x3facaa008d1af080, 0x3fadc165bc0c4fc5, ], [ 0x3ff0a649a73e61f2, 0x3c874ac0d817e9c7, 0x3fca8ec30dc93890, 0xbc48ab1c0eef300c, 0x3fbdbc11ea95061b, 0x3fb64e371d661328, 0x3fb33e0023b3d895, 0x3fb2042269c243ce, 0x3fb1cce74bda2230, 0x3fb244d425572ce9, 0x3fb34d475c7f1e3e, 0x3fb4d4e653082ad3, ], [ 0x3ff0c152382d7366, 0xbc9ee6913347c2a6, 0x3fcb8550d62bfb6d, 0xbc6d10aec3f116d5, 0x3fbff1bde0fa3ca0, 0x3fb8e5f3ab69f6a4, 0x3fb656be8b6527ce, 0x3fb5c39755dc041a, 0x3fb661e6ebd40599, 0x3fb7ea3dddee2a4f, 0x3fba4f439abb4869, 0x3fbd9181c0fda658, ], ]; #[inline] pub(crate) fn asin_eval(u: DoubleDouble, err: f64) -> (DoubleDouble, f64) { // k = round(u * 32). let k = (u.hi * f64::from_bits(0x4040000000000000)).round_finite(); let idx = k as u64; // y = u - k/32. let y_hi = f_fmla(k, f64::from_bits(0xbfa0000000000000), u.hi); // Exact let y = DoubleDouble::from_exact_add(y_hi, u.lo); let y2 = y.hi * y.hi; // Add double-double errors in addition to the relative errors from y2. let err = f_fmla(err, y2, f64::from_bits(0x3990000000000000)); let coeffs = ASIN_COEFFS[idx as usize]; let c0 = DoubleDouble::quick_mult( y, DoubleDouble::new(f64::from_bits(coeffs[3]), f64::from_bits(coeffs[2])), ); let c1 = f_fmla(y.hi, f64::from_bits(coeffs[5]), f64::from_bits(coeffs[4])); let c2 = f_fmla(y.hi, f64::from_bits(coeffs[7]), f64::from_bits(coeffs[6])); let c3 = f_fmla(y.hi, f64::from_bits(coeffs[9]), f64::from_bits(coeffs[8])); let c4 = f_fmla(y.hi, f64::from_bits(coeffs[11]), f64::from_bits(coeffs[10])); let y4 = y2 * y2; let d0 = f_fmla(y2, c2, c1); let d1 = f_fmla(y2, c4, c3); let mut r = DoubleDouble::from_exact_add(f64::from_bits(coeffs[0]), c0.hi); let e1 = f_fmla(y4, d1, d0); r.lo = f_fmla(y2, e1, f64::from_bits(coeffs[1]) + c0.lo + r.lo); (r, err) } /// Computes asin(x) /// /// Max found ULP 0.5 pub fn f_asin(x: f64) -> f64 { let x_e = (x.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff); // |x| < 0.5. if x_e < E_BIAS - 1 { // |x| < 2^-26. if x_e < E_BIAS - 26 { // When |x| < 2^-26, the relative error of the approximation asin(x) ~ x // is: // |asin(x) - x| / |asin(x)| < |x^3| / (6|x|) // = x^2 / 6 // < 2^-54 // < epsilon(1)/2. // = x otherwise. , if x.abs() == 0. { return x; } // Get sign(x) * min_normal. let eps = f64::copysign(f64::MIN_POSITIVE, x); let normalize_const = if x_e == 0 { eps } else { 0.0 }; let scaled_normal = f_fmla(x + normalize_const, f64::from_bits(0x4350000000000000), eps); return f_fmla( scaled_normal, f64::from_bits(0x3c90000000000000), -normalize_const, ); } let x_sq = DoubleDouble::from_exact_mult(x, x); let err = x_abs * f64::from_bits(0x3cc0000000000000); // Polynomial approximation: // p ~ asin(x)/x let (p, err) = asin_eval(x_sq, err); // asin(x) ~ x * (ASIN_COEFFS[idx][0] + p) let r0 = DoubleDouble::from_exact_mult(x, p.hi); let r_lo = f_fmla(x, p.lo, r0.lo); let r_upper = r0.hi + (r_lo + err); let r_lower = r0.hi + (r_lo - err); if r_upper == r_lower { return r_upper; } // Ziv's accuracy test failed, perform 128-bit calculation. // Recalculate mod 1/64. let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize; // Get x^2 - idx/64 exactly. When FMA is available, double-double // multiplication will be correct for all rounding modes. Otherwise, we use // Float128 directly. let x_f128 = DyadicFloat128::new_from_f64(x); let u: DyadicFloat128; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { // u = x^2 - idx/64 let u_hi = DyadicFloat128::new_from_f64(f_fmla( idx as f64, f64::from_bits(0xbf90000000000000), x_sq.hi, )); u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo)); } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let x_sq_f128 = x_f128.quick_mul(&x_f128); u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64( idx as f64 * (f64::from_bits(0xbf90000000000000)), )); } let p_f128 = asin_eval_dyadic(u, idx); let r = x_f128.quick_mul(&p_f128); return r.fast_as_f64(); } const PI_OVER_TWO: DoubleDouble = DoubleDouble::new( f64::from_bits(0x3c91a62633145c07), f64::from_bits(0x3ff921fb54442d18), ); let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 }; // |x| >= 1 if x_e >= E_BIAS { // x = +-1, asin(x) = +- pi/2 if x_abs == 1.0 { // return +- pi/2 return f_fmla(x_sign, PI_OVER_TWO.hi, x_sign * PI_OVER_TWO.lo); } // |x| > 1, return NaN. if x.is_nan() { return x; } return f64::NAN; } // u = (1 - |x|)/2 let u = f_fmla(x_abs, -0.5, 0.5); // v_hi + v_lo ~ sqrt(u). // Let: // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) // Then: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // ~ v_hi + h / (2 * v_hi) // So we can use: // v_lo = h / (2 * v_hi). // Then, // asin(x) ~ pi/2 - 2*(v_hi + v_lo) * P(u) let v_hi = u.sqrt(); let h; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { h = f_fmla(v_hi, -v_hi, u); } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi); h = (u - v_hi_sq.hi) - v_hi_sq.lo; } // Scale v_lo and v_hi by 2 from the formula: // vh = v_hi * 2 // vl = 2*v_lo = h / v_hi. let vh = v_hi * 2.0; let vl = h / v_hi; // Polynomial approximation: // p ~ asin(sqrt(u))/sqrt(u) let err = vh * f64::from_bits(0x3cc0000000000000); let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err); // Perform computations in double-double arithmetic: // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p); let r = DoubleDouble::from_exact_add(PI_OVER_TWO.hi, -r0.hi); let r_lo = PI_OVER_TWO.lo - r0.lo + r.lo; let (r_upper, r_lower); #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { r_upper = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, err)); r_lower = f_fmla(r.hi, x_sign, f_fmla(r_lo, x_sign, -err)); } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let r_lo = r_lo * x_sign; let r_hi = r.hi * x_sign; r_upper = r_hi + (r_lo + err); r_lower = r.hi + (r_lo - err); } if r_upper == r_lower { return r_upper; } // Ziv's accuracy test failed, we redo the computations in Float128. // Recalculate mod 1/64. let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize; // After the first step of Newton-Raphson approximating v = sqrt(u), we have // that: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // v_lo = h / (2 * v_hi) // With error: // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) // = -h^2 / (2*v * (sqrt(u) + v)^2). // Since: // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, // we can add another correction term to (v_hi + v_lo) that is: // v_ll = -h^2 / (2*v_hi * 4u) // = -v_lo * (h / 4u) // = -vl * (h / 8u), // making the errors: // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) // well beyond 128-bit precision needed. // Get the rounding error of vl = 2 * v_lo ~ h / vh // Get full product of vh * vl let vl_lo; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { vl_lo = f_fmla(-v_hi, vl, h) / v_hi; } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl); vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; } // vll = 2*v_ll = -vl * (h / (4u)). let t = h * (-0.25) / u; let vll = f_fmla(vl, t, vl_lo); // m_v = -(v_hi + v_lo + v_ll). let mv0 = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll); let mut m_v = DyadicFloat128::new_from_f64(vh) + mv0; m_v.sign = DyadicSign::Neg; // Perform computations in Float128: // asin(x) = pi/2 - (v_hi + v_lo + vll) * P(u). let y_f128 = DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u)); const PI_OVER_TWO_F128: DyadicFloat128 = DyadicFloat128 { sign: DyadicSign::Pos, exponent: -127, mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128, }; let p_f128 = asin_eval_dyadic(y_f128, idx); let r0_f128 = m_v.quick_mul(&p_f128); let mut r_f128 = PI_OVER_TWO_F128.quick_add(&r0_f128); if x.is_sign_negative() { r_f128.sign = DyadicSign::Neg; } r_f128.fast_as_f64() } #[cfg(test)] mod tests { use super::*; #[test] fn f_asin_test() { assert_eq!(f_asin(-0.4), -0.41151684606748806); assert_eq!(f_asin(-0.8), -0.9272952180016123); assert_eq!(f_asin(0.3), 0.3046926540153975); assert_eq!(f_asin(0.6), 0.6435011087932844); } }