// SPDX-License-Identifier: Apache-2.0 OR MIT //! Types and Traits for working with asynchronous tasks. // This module is based on alloc::task::Wake. // // The code has been adjusted to work with stable Rust. // // Source: https://github.com/rust-lang/rust/blob/1.80.0/library/alloc/src/task.rs. // // Copyright & License of the original code: // - https://github.com/rust-lang/rust/blob/1.80.0/COPYRIGHT // - https://github.com/rust-lang/rust/blob/1.80.0/LICENSE-APACHE // - https://github.com/rust-lang/rust/blob/1.80.0/LICENSE-MIT use core::{ mem::ManuallyDrop, task::{RawWaker, RawWakerVTable, Waker}, }; use crate::Arc; /// The implementation of waking a task on an executor. /// /// This is an equivalent to [`std::task::Wake`], but using [`portable_atomic_util::Arc`](crate::Arc) /// as a reference-counted pointer. See the documentation for [`std::task::Wake`] for more details. /// /// **Note:** Unlike `std::task::Wake`, all methods take `this:` instead of `self:`. /// This is because using `portable_atomic_util::Arc` as a receiver requires the /// [unstable `arbitrary_self_types` feature](https://github.com/rust-lang/rust/issues/44874). /// /// # Examples /// /// A basic `block_on` function that takes a future and runs it to completion on /// the current thread. /// /// **Note:** This example trades correctness for simplicity. In order to prevent /// deadlocks, production-grade implementations will also need to handle /// intermediate calls to `thread::unpark` as well as nested invocations. /// /// ``` /// use portable_atomic_util::{task::Wake, Arc}; /// use std::{ /// future::Future, /// task::{Context, Poll}, /// thread::{self, Thread}, /// }; /// /// /// A waker that wakes up the current thread when called. /// struct ThreadWaker(Thread); /// /// impl Wake for ThreadWaker { /// fn wake(this: Arc) { /// this.0.unpark(); /// } /// } /// /// /// Run a future to completion on the current thread. /// fn block_on(fut: impl Future) -> T { /// // Pin the future so it can be polled. /// let mut fut = Box::pin(fut); /// /// // Create a new context to be passed to the future. /// let t = thread::current(); /// let waker = Arc::new(ThreadWaker(t)).into(); /// let mut cx = Context::from_waker(&waker); /// /// // Run the future to completion. /// loop { /// match fut.as_mut().poll(&mut cx) { /// Poll::Ready(res) => return res, /// Poll::Pending => thread::park(), /// } /// } /// } /// /// block_on(async { /// println!("Hi from inside a future!"); /// }); /// ``` pub trait Wake { /// Wake this task. fn wake(this: Arc); /// Wake this task without consuming the waker. /// /// If an executor supports a cheaper way to wake without consuming the /// waker, it should override this method. By default, it clones the /// [`Arc`] and calls [`wake`] on the clone. /// /// [`wake`]: Wake::wake fn wake_by_ref(this: &Arc) { Self::wake(this.clone()); } } impl From> for Waker { /// Use a `Wake`-able type as a `Waker`. /// /// No heap allocations or atomic operations are used for this conversion. fn from(waker: Arc) -> Self { // SAFETY: This is safe because raw_waker safely constructs // a RawWaker from Arc. unsafe { Self::from_raw(raw_waker(waker)) } } } impl From> for RawWaker { /// Use a `Wake`-able type as a `RawWaker`. /// /// No heap allocations or atomic operations are used for this conversion. fn from(waker: Arc) -> Self { raw_waker(waker) } } // NB: This private function for constructing a RawWaker is used, rather than // inlining this into the `From> for RawWaker` impl, to ensure that // the safety of `From> for Waker` does not depend on the correct // trait dispatch - instead both impls call this function directly and // explicitly. #[inline(always)] fn raw_waker(waker: Arc) -> RawWaker { // Increment the reference count of the arc to clone it. // // The #[inline(always)] is to ensure that raw_waker and clone_waker are // always generated in the same code generation unit as one another, and // therefore that the structurally identical const-promoted RawWakerVTable // within both functions is deduplicated at LLVM IR code generation time. // This allows optimizing Waker::will_wake to a single pointer comparison of // the vtable pointers, rather than comparing all four function pointers // within the vtables. #[inline(always)] unsafe fn clone_waker(waker: *const ()) -> RawWaker { // SAFETY: the caller must uphold the safety contract. unsafe { Arc::increment_strong_count(waker as *const W) }; RawWaker::new( waker, &RawWakerVTable::new(clone_waker::, wake::, wake_by_ref::, drop_waker::), ) } // Wake by value, moving the Arc into the Wake::wake function unsafe fn wake(waker: *const ()) { // SAFETY: the caller must uphold the safety contract. let waker = unsafe { Arc::from_raw(waker as *const W) }; ::wake(waker); } // Wake by reference, wrap the waker in ManuallyDrop to avoid dropping it unsafe fn wake_by_ref(waker: *const ()) { // SAFETY: the caller must uphold the safety contract. let waker = unsafe { ManuallyDrop::new(Arc::from_raw(waker as *const W)) }; ::wake_by_ref(&waker); } // Decrement the reference count of the Arc on drop unsafe fn drop_waker(waker: *const ()) { // SAFETY: the caller must uphold the safety contract. unsafe { Arc::decrement_strong_count(waker as *const W) }; } RawWaker::new( Arc::into_raw(waker) as *const (), &RawWakerVTable::new(clone_waker::, wake::, wake_by_ref::, drop_waker::), ) }