// Generated from mat.rs.tera template. Edit the template, not the generated file. use crate::{f32::math, swizzles::*, DMat2, Mat3, Mat3A, Vec2}; use core::fmt; use core::iter::{Product, Sum}; use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign}; use core::arch::wasm32::*; /// Creates a 2x2 matrix from two column vectors. #[inline(always)] #[must_use] pub const fn mat2(x_axis: Vec2, y_axis: Vec2) -> Mat2 { Mat2::from_cols(x_axis, y_axis) } /// A 2x2 column major matrix. /// /// SIMD vector types are used for storage on supported platforms. /// /// This type is 16 byte aligned. #[derive(Clone, Copy)] #[repr(transparent)] pub struct Mat2(pub(crate) v128); impl Mat2 { /// A 2x2 matrix with all elements set to `0.0`. pub const ZERO: Self = Self::from_cols(Vec2::ZERO, Vec2::ZERO); /// A 2x2 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`. pub const IDENTITY: Self = Self::from_cols(Vec2::X, Vec2::Y); /// All NAN:s. pub const NAN: Self = Self::from_cols(Vec2::NAN, Vec2::NAN); #[allow(clippy::too_many_arguments)] #[inline(always)] #[must_use] const fn new(m00: f32, m01: f32, m10: f32, m11: f32) -> Self { Self(f32x4(m00, m01, m10, m11)) } /// Creates a 2x2 matrix from two column vectors. #[inline(always)] #[must_use] pub const fn from_cols(x_axis: Vec2, y_axis: Vec2) -> Self { Self(f32x4(x_axis.x, x_axis.y, y_axis.x, y_axis.y)) } /// Creates a 2x2 matrix from a `[f32; 4]` array stored in column major order. /// If your data is stored in row major you will need to `transpose` the returned /// matrix. #[inline] #[must_use] pub const fn from_cols_array(m: &[f32; 4]) -> Self { Self::new(m[0], m[1], m[2], m[3]) } /// Creates a `[f32; 4]` array storing data in column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] #[must_use] pub const fn to_cols_array(&self) -> [f32; 4] { unsafe { *(self as *const Self as *const [f32; 4]) } } /// Creates a 2x2 matrix from a `[[f32; 2]; 2]` 2D array stored in column major order. /// If your data is in row major order you will need to `transpose` the returned /// matrix. #[inline] #[must_use] pub const fn from_cols_array_2d(m: &[[f32; 2]; 2]) -> Self { Self::from_cols(Vec2::from_array(m[0]), Vec2::from_array(m[1])) } /// Creates a `[[f32; 2]; 2]` 2D array storing data in column major order. /// If you require data in row major order `transpose` the matrix first. #[inline] #[must_use] pub const fn to_cols_array_2d(&self) -> [[f32; 2]; 2] { unsafe { *(self as *const Self as *const [[f32; 2]; 2]) } } /// Creates a 2x2 matrix with its diagonal set to `diagonal` and all other entries set to 0. #[doc(alias = "scale")] #[inline] #[must_use] pub const fn from_diagonal(diagonal: Vec2) -> Self { Self::new(diagonal.x, 0.0, 0.0, diagonal.y) } /// Creates a 2x2 matrix containing the combining non-uniform `scale` and rotation of /// `angle` (in radians). #[inline] #[must_use] pub fn from_scale_angle(scale: Vec2, angle: f32) -> Self { let (sin, cos) = math::sin_cos(angle); Self::new(cos * scale.x, sin * scale.x, -sin * scale.y, cos * scale.y) } /// Creates a 2x2 matrix containing a rotation of `angle` (in radians). #[inline] #[must_use] pub fn from_angle(angle: f32) -> Self { let (sin, cos) = math::sin_cos(angle); Self::new(cos, sin, -sin, cos) } /// Creates a 2x2 matrix from a 3x3 matrix, discarding the 2nd row and column. #[inline] #[must_use] pub fn from_mat3(m: Mat3) -> Self { Self::from_cols(m.x_axis.xy(), m.y_axis.xy()) } /// Creates a 2x2 matrix from the minor of the given 3x3 matrix, discarding the `i`th column /// and `j`th row. /// /// # Panics /// /// Panics if `i` or `j` is greater than 2. #[inline] #[must_use] pub fn from_mat3_minor(m: Mat3, i: usize, j: usize) -> Self { match (i, j) { (0, 0) => Self::from_cols(m.y_axis.yz(), m.z_axis.yz()), (0, 1) => Self::from_cols(m.y_axis.xz(), m.z_axis.xz()), (0, 2) => Self::from_cols(m.y_axis.xy(), m.z_axis.xy()), (1, 0) => Self::from_cols(m.x_axis.yz(), m.z_axis.yz()), (1, 1) => Self::from_cols(m.x_axis.xz(), m.z_axis.xz()), (1, 2) => Self::from_cols(m.x_axis.xy(), m.z_axis.xy()), (2, 0) => Self::from_cols(m.x_axis.yz(), m.y_axis.yz()), (2, 1) => Self::from_cols(m.x_axis.xz(), m.y_axis.xz()), (2, 2) => Self::from_cols(m.x_axis.xy(), m.y_axis.xy()), _ => panic!("index out of bounds"), } } /// Creates a 2x2 matrix from a 3x3 matrix, discarding the 2nd row and column. #[inline] #[must_use] pub fn from_mat3a(m: Mat3A) -> Self { Self::from_cols(m.x_axis.xy(), m.y_axis.xy()) } /// Creates a 2x2 matrix from the minor of the given 3x3 matrix, discarding the `i`th column /// and `j`th row. /// /// # Panics /// /// Panics if `i` or `j` is greater than 2. #[inline] #[must_use] pub fn from_mat3a_minor(m: Mat3A, i: usize, j: usize) -> Self { match (i, j) { (0, 0) => Self::from_cols(m.y_axis.yz(), m.z_axis.yz()), (0, 1) => Self::from_cols(m.y_axis.xz(), m.z_axis.xz()), (0, 2) => Self::from_cols(m.y_axis.xy(), m.z_axis.xy()), (1, 0) => Self::from_cols(m.x_axis.yz(), m.z_axis.yz()), (1, 1) => Self::from_cols(m.x_axis.xz(), m.z_axis.xz()), (1, 2) => Self::from_cols(m.x_axis.xy(), m.z_axis.xy()), (2, 0) => Self::from_cols(m.x_axis.yz(), m.y_axis.yz()), (2, 1) => Self::from_cols(m.x_axis.xz(), m.y_axis.xz()), (2, 2) => Self::from_cols(m.x_axis.xy(), m.y_axis.xy()), _ => panic!("index out of bounds"), } } /// Creates a 2x2 matrix from the first 4 values in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] #[must_use] pub const fn from_cols_slice(slice: &[f32]) -> Self { Self::new(slice[0], slice[1], slice[2], slice[3]) } /// Writes the columns of `self` to the first 4 elements in `slice`. /// /// # Panics /// /// Panics if `slice` is less than 4 elements long. #[inline] pub fn write_cols_to_slice(self, slice: &mut [f32]) { slice[0] = self.x_axis.x; slice[1] = self.x_axis.y; slice[2] = self.y_axis.x; slice[3] = self.y_axis.y; } /// Returns the matrix column for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 1. #[inline] #[must_use] pub fn col(&self, index: usize) -> Vec2 { match index { 0 => self.x_axis, 1 => self.y_axis, _ => panic!("index out of bounds"), } } /// Returns a mutable reference to the matrix column for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 1. #[inline] pub fn col_mut(&mut self, index: usize) -> &mut Vec2 { match index { 0 => &mut self.x_axis, 1 => &mut self.y_axis, _ => panic!("index out of bounds"), } } /// Returns the matrix row for the given `index`. /// /// # Panics /// /// Panics if `index` is greater than 1. #[inline] #[must_use] pub fn row(&self, index: usize) -> Vec2 { match index { 0 => Vec2::new(self.x_axis.x, self.y_axis.x), 1 => Vec2::new(self.x_axis.y, self.y_axis.y), _ => panic!("index out of bounds"), } } /// Returns `true` if, and only if, all elements are finite. /// If any element is either `NaN`, positive or negative infinity, this will return `false`. #[inline] #[must_use] pub fn is_finite(&self) -> bool { self.x_axis.is_finite() && self.y_axis.is_finite() } /// Returns `true` if any elements are `NaN`. #[inline] #[must_use] pub fn is_nan(&self) -> bool { self.x_axis.is_nan() || self.y_axis.is_nan() } /// Returns the transpose of `self`. #[inline] #[must_use] pub fn transpose(&self) -> Self { Self(i32x4_shuffle::<0, 2, 5, 7>(self.0, self.0)) } /// Returns the determinant of `self`. #[inline] #[must_use] pub fn determinant(&self) -> f32 { let abcd = self.0; let dcba = i32x4_shuffle::<3, 2, 5, 4>(abcd, abcd); let prod = f32x4_mul(abcd, dcba); let det = f32x4_sub(prod, i32x4_shuffle::<1, 1, 5, 5>(prod, prod)); f32x4_extract_lane::<0>(det) } /// Returns the inverse of `self`. /// /// If the matrix is not invertible the returned matrix will be invalid. /// /// # Panics /// /// Will panic if the determinant of `self` is zero when `glam_assert` is enabled. #[inline] #[must_use] pub fn inverse(&self) -> Self { const SIGN: v128 = crate::wasm32::v128_from_f32x4([1.0, -1.0, -1.0, 1.0]); let abcd = self.0; let dcba = i32x4_shuffle::<3, 2, 5, 4>(abcd, abcd); let prod = f32x4_mul(abcd, dcba); let sub = f32x4_sub(prod, i32x4_shuffle::<1, 1, 5, 5>(prod, prod)); let det = i32x4_shuffle::<0, 0, 4, 4>(sub, sub); let tmp = f32x4_div(SIGN, det); glam_assert!(Mat2(tmp).is_finite()); let dbca = i32x4_shuffle::<3, 1, 6, 4>(abcd, abcd); Self(f32x4_mul(dbca, tmp)) } /// Transforms a 2D vector. #[inline] #[must_use] pub fn mul_vec2(&self, rhs: Vec2) -> Vec2 { use core::mem::MaybeUninit; let abcd = self.0; let xxyy = f32x4(rhs.x, rhs.x, rhs.y, rhs.y); let axbxcydy = f32x4_mul(abcd, xxyy); let cydyaxbx = i32x4_shuffle::<2, 3, 4, 5>(axbxcydy, axbxcydy); let result = f32x4_add(axbxcydy, cydyaxbx); let mut out: MaybeUninit = MaybeUninit::uninit(); unsafe { v128_store(out.as_mut_ptr(), result); *(&out.assume_init() as *const v128 as *const Vec2) } } /// Multiplies two 2x2 matrices. #[inline] #[must_use] pub fn mul_mat2(&self, rhs: &Self) -> Self { let abcd = self.0; let rhs = rhs.0; let xxyy0 = i32x4_shuffle::<0, 0, 5, 5>(rhs, rhs); let xxyy1 = i32x4_shuffle::<2, 2, 7, 7>(rhs, rhs); let axbxcydy0 = f32x4_mul(abcd, xxyy0); let axbxcydy1 = f32x4_mul(abcd, xxyy1); let cydyaxbx0 = i32x4_shuffle::<2, 3, 4, 5>(axbxcydy0, axbxcydy0); let cydyaxbx1 = i32x4_shuffle::<2, 3, 4, 5>(axbxcydy1, axbxcydy1); let result0 = f32x4_add(axbxcydy0, cydyaxbx0); let result1 = f32x4_add(axbxcydy1, cydyaxbx1); Self(i32x4_shuffle::<0, 1, 4, 5>(result0, result1)) } /// Adds two 2x2 matrices. #[inline] #[must_use] pub fn add_mat2(&self, rhs: &Self) -> Self { Self(f32x4_add(self.0, rhs.0)) } /// Subtracts two 2x2 matrices. #[inline] #[must_use] pub fn sub_mat2(&self, rhs: &Self) -> Self { Self(f32x4_sub(self.0, rhs.0)) } /// Multiplies a 2x2 matrix by a scalar. #[inline] #[must_use] pub fn mul_scalar(&self, rhs: f32) -> Self { Self(f32x4_mul(self.0, f32x4_splat(rhs))) } /// Divides a 2x2 matrix by a scalar. #[inline] #[must_use] pub fn div_scalar(&self, rhs: f32) -> Self { Self(f32x4_div(self.0, f32x4_splat(rhs))) } /// Returns true if the absolute difference of all elements between `self` and `rhs` /// is less than or equal to `max_abs_diff`. /// /// This can be used to compare if two matrices contain similar elements. It works best /// when comparing with a known value. The `max_abs_diff` that should be used used /// depends on the values being compared against. /// /// For more see /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/). #[inline] #[must_use] pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f32) -> bool { self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff) && self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff) } /// Takes the absolute value of each element in `self` #[inline] #[must_use] pub fn abs(&self) -> Self { Self::from_cols(self.x_axis.abs(), self.y_axis.abs()) } #[inline] pub fn as_dmat2(&self) -> DMat2 { DMat2::from_cols(self.x_axis.as_dvec2(), self.y_axis.as_dvec2()) } } impl Default for Mat2 { #[inline] fn default() -> Self { Self::IDENTITY } } impl Add for Mat2 { type Output = Self; #[inline] fn add(self, rhs: Self) -> Self::Output { self.add_mat2(&rhs) } } impl AddAssign for Mat2 { #[inline] fn add_assign(&mut self, rhs: Self) { *self = self.add_mat2(&rhs); } } impl Sub for Mat2 { type Output = Self; #[inline] fn sub(self, rhs: Self) -> Self::Output { self.sub_mat2(&rhs) } } impl SubAssign for Mat2 { #[inline] fn sub_assign(&mut self, rhs: Self) { *self = self.sub_mat2(&rhs); } } impl Neg for Mat2 { type Output = Self; #[inline] fn neg(self) -> Self::Output { Self(f32x4_neg(self.0)) } } impl Mul for Mat2 { type Output = Self; #[inline] fn mul(self, rhs: Self) -> Self::Output { self.mul_mat2(&rhs) } } impl MulAssign for Mat2 { #[inline] fn mul_assign(&mut self, rhs: Self) { *self = self.mul_mat2(&rhs); } } impl Mul for Mat2 { type Output = Vec2; #[inline] fn mul(self, rhs: Vec2) -> Self::Output { self.mul_vec2(rhs) } } impl Mul for f32 { type Output = Mat2; #[inline] fn mul(self, rhs: Mat2) -> Self::Output { rhs.mul_scalar(self) } } impl Mul for Mat2 { type Output = Self; #[inline] fn mul(self, rhs: f32) -> Self::Output { self.mul_scalar(rhs) } } impl MulAssign for Mat2 { #[inline] fn mul_assign(&mut self, rhs: f32) { *self = self.mul_scalar(rhs); } } impl Div for f32 { type Output = Mat2; #[inline] fn div(self, rhs: Mat2) -> Self::Output { rhs.div_scalar(self) } } impl Div for Mat2 { type Output = Self; #[inline] fn div(self, rhs: f32) -> Self::Output { self.div_scalar(rhs) } } impl DivAssign for Mat2 { #[inline] fn div_assign(&mut self, rhs: f32) { *self = self.div_scalar(rhs); } } impl Sum for Mat2 { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, Self::add) } } impl<'a> Sum<&'a Self> for Mat2 { fn sum(iter: I) -> Self where I: Iterator, { iter.fold(Self::ZERO, |a, &b| Self::add(a, b)) } } impl Product for Mat2 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, Self::mul) } } impl<'a> Product<&'a Self> for Mat2 { fn product(iter: I) -> Self where I: Iterator, { iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b)) } } impl PartialEq for Mat2 { #[inline] fn eq(&self, rhs: &Self) -> bool { self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) } } #[cfg(not(target_arch = "spirv"))] impl AsRef<[f32; 4]> for Mat2 { #[inline] fn as_ref(&self) -> &[f32; 4] { unsafe { &*(self as *const Self as *const [f32; 4]) } } } #[cfg(not(target_arch = "spirv"))] impl AsMut<[f32; 4]> for Mat2 { #[inline] fn as_mut(&mut self) -> &mut [f32; 4] { unsafe { &mut *(self as *mut Self as *mut [f32; 4]) } } } impl core::ops::Deref for Mat2 { type Target = crate::deref::Cols2; #[inline] fn deref(&self) -> &Self::Target { unsafe { &*(self as *const Self as *const Self::Target) } } } impl core::ops::DerefMut for Mat2 { #[inline] fn deref_mut(&mut self) -> &mut Self::Target { unsafe { &mut *(self as *mut Self as *mut Self::Target) } } } impl fmt::Debug for Mat2 { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct(stringify!(Mat2)) .field("x_axis", &self.x_axis) .field("y_axis", &self.y_axis) .finish() } } impl fmt::Display for Mat2 { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(p) = f.precision() { write!(f, "[{:.*}, {:.*}]", p, self.x_axis, p, self.y_axis) } else { write!(f, "[{}, {}]", self.x_axis, self.y_axis) } } }