//! Shared mathematical utility functions. use std::cmp::max; use std::ops::{Add, Mul}; use num_traits::MulAdd; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] #[inline(always)] /// Uses fused multiply add when available /// /// It is important not to call it if FMA flag is not turned on, /// Rust inserts libc `fmaf` based implementation here if FMA is clearly not available at compile time. /// This needs for speed only, one rounding error don't do anything useful here, thus it's blocked when /// we can't detect FMA availability at compile time. pub(crate) fn multiply_accumulate< T: Copy + Mul + Add + MulAdd, >( acc: T, a: T, b: T, ) -> T { MulAdd::mul_add(a, b, acc) } #[inline(always)] #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] pub(crate) fn multiply_accumulate< T: Copy + Mul + Add + MulAdd, >( acc: T, a: T, b: T, ) -> T { acc + a * b } /// Calculates the width and height an image should be resized to. /// This preserves aspect ratio, and based on the `fill` parameter /// will either fill the dimensions to fit inside the smaller constraint /// (will overflow the specified bounds on one axis to preserve /// aspect ratio), or will shrink so that both dimensions are /// completely contained within the given `width` and `height`, /// with empty space on one axis. pub(crate) fn resize_dimensions( width: u32, height: u32, nwidth: u32, nheight: u32, fill: bool, ) -> (u32, u32) { let wratio = f64::from(nwidth) / f64::from(width); let hratio = f64::from(nheight) / f64::from(height); let ratio = if fill { f64::max(wratio, hratio) } else { f64::min(wratio, hratio) }; let nw = max((f64::from(width) * ratio).round() as u64, 1); let nh = max((f64::from(height) * ratio).round() as u64, 1); if nw > u64::from(u32::MAX) { let ratio = f64::from(u32::MAX) / f64::from(width); (u32::MAX, max((f64::from(height) * ratio).round() as u32, 1)) } else if nh > u64::from(u32::MAX) { let ratio = f64::from(u32::MAX) / f64::from(height); (max((f64::from(width) * ratio).round() as u32, 1), u32::MAX) } else { (nw as u32, nh as u32) } } #[cfg(test)] mod test { quickcheck! { fn resize_bounds_correctly_width(old_w: u32, new_w: u32) -> bool { if old_w == 0 || new_w == 0 { return true; } // In this case, the scaling is limited by scaling of height. // We could check that case separately but it does not conform to the same expectation. if u64::from(new_w) * 400u64 >= u64::from(old_w) * u64::from(u32::MAX) { return true; } let result = super::resize_dimensions(old_w, 400, new_w, u32::MAX, false); let exact = (400_f64 * f64::from(new_w) / f64::from(old_w)).round() as u32; result.0 == new_w && result.1 == exact.max(1) } } quickcheck! { fn resize_bounds_correctly_height(old_h: u32, new_h: u32) -> bool { if old_h == 0 || new_h == 0 { return true; } // In this case, the scaling is limited by scaling of width. // We could check that case separately but it does not conform to the same expectation. if 400u64 * u64::from(new_h) >= u64::from(old_h) * u64::from(u32::MAX) { return true; } let result = super::resize_dimensions(400, old_h, u32::MAX, new_h, false); let exact = (400_f64 * f64::from(new_h) / f64::from(old_h)).round() as u32; result.1 == new_h && result.0 == exact.max(1) } } #[test] fn resize_handles_fill() { let result = super::resize_dimensions(100, 200, 200, 500, true); assert!(result.0 == 250); assert!(result.1 == 500); let result = super::resize_dimensions(200, 100, 500, 200, true); assert!(result.0 == 500); assert!(result.1 == 250); } #[test] fn resize_never_rounds_to_zero() { let result = super::resize_dimensions(1, 150, 128, 128, false); assert!(result.0 > 0); assert!(result.1 > 0); } #[test] fn resize_handles_overflow() { let result = super::resize_dimensions(100, u32::MAX, 200, u32::MAX, true); assert!(result.0 == 100); assert!(result.1 == u32::MAX); let result = super::resize_dimensions(u32::MAX, 100, u32::MAX, 200, true); assert!(result.0 == u32::MAX); assert!(result.1 == 100); } #[test] fn resize_rounds() { // Only truncation will result in (3840, 2229) and (2160, 3719) let result = super::resize_dimensions(4264, 2476, 3840, 2160, true); assert_eq!(result, (3840, 2230)); let result = super::resize_dimensions(2476, 4264, 2160, 3840, false); assert_eq!(result, (2160, 3720)); } #[test] fn resize_handles_zero() { let result = super::resize_dimensions(0, 100, 100, 100, false); assert_eq!(result, (1, 100)); let result = super::resize_dimensions(100, 0, 100, 100, false); assert_eq!(result, (100, 1)); let result = super::resize_dimensions(100, 100, 0, 100, false); assert_eq!(result, (1, 1)); let result = super::resize_dimensions(100, 100, 100, 0, false); assert_eq!(result, (1, 1)); } }