/* * // Copyright (c) Radzivon Bartoshyk 3/2025. All rights reserved. * // * // Redistribution and use in source and binary forms, with or without modification, * // are permitted provided that the following conditions are met: * // * // 1. Redistributions of source code must retain the above copyright notice, this * // list of conditions and the following disclaimer. * // * // 2. Redistributions in binary form must reproduce the above copyright notice, * // this list of conditions and the following disclaimer in the documentation * // and/or other materials provided with the distribution. * // * // 3. Neither the name of the copyright holder nor the names of its * // contributors may be used to endorse or promote products derived from * // this software without specific prior written permission. * // * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use crate::conversions::neon::hypercube::HypercubeNeon; use crate::conversions::neon::interpolator::NeonVector; use crate::{CmsError, DataColorSpace, InterpolationMethod, Stage}; use std::arch::aarch64::vgetq_lane_f32; pub(crate) struct ACurves4x3Neon<'a, const DEPTH: usize> { pub(crate) curve0: Box<[f32; 65536]>, pub(crate) curve1: Box<[f32; 65536]>, pub(crate) curve2: Box<[f32; 65536]>, pub(crate) curve3: Box<[f32; 65536]>, pub(crate) clut: &'a [f32], pub(crate) grid_size: [u8; 4], pub(crate) interpolation_method: InterpolationMethod, pub(crate) pcs: DataColorSpace, } pub(crate) struct ACurves4x3NeonOptimizedNeon<'a> { pub(crate) clut: &'a [f32], pub(crate) grid_size: [u8; 4], pub(crate) interpolation_method: InterpolationMethod, pub(crate) pcs: DataColorSpace, } impl ACurves4x3Neon<'_, DEPTH> { fn transform_impl NeonVector>( &self, src: &[f32], dst: &mut [f32], fetch: Fetch, ) -> Result<(), CmsError> { let scale_value = (DEPTH - 1) as f32; assert_eq!(src.len() / 4, dst.len() / 3); for (src, dst) in src.chunks_exact(4).zip(dst.chunks_exact_mut(3)) { let a0 = (src[0] * scale_value).round().min(scale_value) as u16; let a1 = (src[1] * scale_value).round().min(scale_value) as u16; let a2 = (src[2] * scale_value).round().min(scale_value) as u16; let a3 = (src[3] * scale_value).round().min(scale_value) as u16; let c = self.curve0[a0 as usize]; let m = self.curve1[a1 as usize]; let y = self.curve2[a2 as usize]; let k = self.curve3[a3 as usize]; let v = fetch(c, m, y, k).v; unsafe { dst[0] = vgetq_lane_f32::<0>(v); dst[1] = vgetq_lane_f32::<1>(v); dst[2] = vgetq_lane_f32::<2>(v); } } Ok(()) } } impl ACurves4x3NeonOptimizedNeon<'_> { fn transform_impl NeonVector>( &self, src: &[f32], dst: &mut [f32], fetch: Fetch, ) -> Result<(), CmsError> { assert_eq!(src.len() / 4, dst.len() / 3); for (src, dst) in src.chunks_exact(4).zip(dst.chunks_exact_mut(3)) { let c = src[0]; let m = src[1]; let y = src[2]; let k = src[3]; let v = fetch(c, m, y, k).v; unsafe { dst[0] = vgetq_lane_f32::<0>(v); dst[1] = vgetq_lane_f32::<1>(v); dst[2] = vgetq_lane_f32::<2>(v); } } Ok(()) } } impl Stage for ACurves4x3Neon<'_, DEPTH> { fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> { let lut = HypercubeNeon::new(self.clut, self.grid_size, 3); // If PCS is LAB then linear interpolation should be used if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz { return self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w)); } match self.interpolation_method { #[cfg(feature = "options")] InterpolationMethod::Tetrahedral => { self.transform_impl(src, dst, |x, y, z, w| lut.tetra_vec3(x, y, z, w))?; } #[cfg(feature = "options")] InterpolationMethod::Pyramid => { self.transform_impl(src, dst, |x, y, z, w| lut.pyramid_vec3(x, y, z, w))?; } #[cfg(feature = "options")] InterpolationMethod::Prism => { self.transform_impl(src, dst, |x, y, z, w| lut.prism_vec3(x, y, z, w))?; } InterpolationMethod::Linear => { self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w))?; } } Ok(()) } } impl Stage for ACurves4x3NeonOptimizedNeon<'_> { fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> { let lut = HypercubeNeon::new(self.clut, self.grid_size, 3); // If PCS is LAB then linear interpolation should be used if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz { return self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w)); } match self.interpolation_method { #[cfg(feature = "options")] InterpolationMethod::Tetrahedral => { self.transform_impl(src, dst, |x, y, z, w| lut.tetra_vec3(x, y, z, w))?; } #[cfg(feature = "options")] InterpolationMethod::Pyramid => { self.transform_impl(src, dst, |x, y, z, w| lut.pyramid_vec3(x, y, z, w))?; } #[cfg(feature = "options")] InterpolationMethod::Prism => { self.transform_impl(src, dst, |x, y, z, w| lut.prism_vec3(x, y, z, w))?; } InterpolationMethod::Linear => { self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w))?; } } Ok(()) } }