/* * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. * // * // Redistribution and use in source and binary forms, with or without modification, * // are permitted provided that the following conditions are met: * // * // 1. Redistributions of source code must retain the above copyright notice, this * // list of conditions and the following disclaimer. * // * // 2. Redistributions in binary form must reproduce the above copyright notice, * // this list of conditions and the following disclaimer in the documentation * // and/or other materials provided with the distribution. * // * // 3. Neither the name of the copyright holder nor the names of its * // contributors may be used to endorse or promote products derived from * // this software without specific prior written permission. * // * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use crate::acospi::PI_OVER_TWO_F128; use crate::asin::asin_eval; use crate::asin_eval_dyadic::asin_eval_dyadic; use crate::common::f_fmla; use crate::double_double::DoubleDouble; use crate::dyadic_float::{DyadicFloat128, DyadicSign}; use crate::round::RoundFinite; /// Computes acos(x) /// /// Max found ULP 0.5 pub fn f_acos(x: f64) -> f64 { let x_e = (x.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; const PI_OVER_TWO: DoubleDouble = DoubleDouble::new( f64::from_bits(0x3c91a62633145c07), f64::from_bits(0x3ff921fb54442d18), ); let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff); // |x| < 0.5. if x_e < E_BIAS - 1 { // |x| < 2^-55. if x_e < E_BIAS - 55 { // When |x| < 2^-55, acos(x) = pi/2 return (x_abs + f64::from_bits(0x35f0000000000000)) + PI_OVER_TWO.hi; } let x_sq = DoubleDouble::from_exact_mult(x, x); let err = x_abs * f64::from_bits(0x3cc0000000000000); // Polynomial approximation: // p ~ asin(x)/x let (p, err) = asin_eval(x_sq, err); // asin(x) ~ x * p let r0 = DoubleDouble::from_exact_mult(x, p.hi); // acos(x) = pi/2 - asin(x) // ~ pi/2 - x * p // = pi/2 - x * (p.hi + p.lo) let r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi); // Use Dekker's 2SUM algorithm to compute the lower part. let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo; r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo); let r_upper = r_hi + (r_lo + err); let r_lower = r_hi + (r_lo - err); if r_upper == r_lower { return r_upper; } return acos_less_0p5_hard(x, x_sq); } // |x| >= 0.5 let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 }; const PI: DoubleDouble = DoubleDouble::new( f64::from_bits(0x3ca1a62633145c07), f64::from_bits(0x400921fb54442d18), ); // |x| >= 1 if x_e >= E_BIAS { // x = +-1, asin(x) = +- pi/2 if x_abs == 1.0 { // x = 1, acos(x) = 0, // x = -1, acos(x) = pi return if x == 1.0 { 0.0 } else { f_fmla(-x_sign, PI.hi, PI.lo) }; } // |x| > 1, return NaN. return f64::NAN; } // When |x| >= 0.5, we perform range reduction as follow: // // When 0.5 <= x < 1, let: // y = acos(x) // We will use the double angle formula: // cos(2y) = 1 - 2 sin^2(y) // and the complement angle identity: // x = cos(y) = 1 - 2 sin^2 (y/2) // So: // sin(y/2) = sqrt( (1 - x)/2 ) // And hence: // y/2 = asin( sqrt( (1 - x)/2 ) ) // Equivalently: // acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) ) // Let u = (1 - x)/2, then: // acos(x) = 2 * asin( sqrt(u) ) // Moreover, since 0.5 <= x < 1: // 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5, // And hence we can reuse the same polynomial approximation of asin(x) when // |x| <= 0.5: // acos(x) ~ 2 * sqrt(u) * P(u). // // When -1 < x <= -0.5, we reduce to the previous case using the formula: // acos(x) = pi - acos(-x) // = pi - 2 * asin ( sqrt( (1 + x)/2 ) ) // ~ pi - 2 * sqrt(u) * P(u), // where u = (1 - |x|)/2. // u = (1 - |x|)/2 let u = f_fmla(x_abs, -0.5, 0.5); // v_hi + v_lo ~ sqrt(u). // Let: // h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi) // Then: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // ~ v_hi + h / (2 * v_hi) // So we can use: // v_lo = h / (2 * v_hi). let v_hi = u.sqrt(); let h; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { h = f_fmla(v_hi, -v_hi, u); } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi); h = (u - v_hi_sq.hi) - v_hi_sq.lo; } // Scale v_lo and v_hi by 2 from the formula: // vh = v_hi * 2 // vl = 2*v_lo = h / v_hi. let vh = v_hi * 2.0; let vl = h / v_hi; // Polynomial approximation: // p ~ asin(sqrt(u))/sqrt(u) let err = vh * f64::from_bits(0x3cc0000000000000); let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err); // Perform computations in double-double arithmetic: // asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p) let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p); let r_hi; let r_lo; if x.is_sign_positive() { r_hi = r0.hi; r_lo = r0.lo; } else { let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi); r_hi = r.hi; r_lo = (PI.lo - r0.lo) + r.lo; } let r_upper = r_hi + (r_lo + err); let r_lower = r_hi + (r_lo - err); if r_upper == r_lower { return r_upper; } acos_hard(x, u, v_hi, h, vh, vl) } #[cold] #[inline(never)] fn acos_hard(x: f64, u: f64, v_hi: f64, h: f64, vh: f64, vl: f64) -> f64 { // Ziv's accuracy test failed, we redo the computations in Float128. // Recalculate mod 1/64. let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize; // After the first step of Newton-Raphson approximating v = sqrt(u), we have // that: // sqrt(u) = v_hi + h / (sqrt(u) + v_hi) // v_lo = h / (2 * v_hi) // With error: // sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) ) // = -h^2 / (2*v * (sqrt(u) + v)^2). // Since: // (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u, // we can add another correction term to (v_hi + v_lo) that is: // v_ll = -h^2 / (2*v_hi * 4u) // = -v_lo * (h / 4u) // = -vl * (h / 8u), // making the errors: // sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3) // well beyond 128-bit precision needed. // Get the rounding error of vl = 2 * v_lo ~ h / vh // Get full product of vh * vl let vl_lo; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { vl_lo = f_fmla(-v_hi, vl, h) / v_hi; } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl); vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi; } let t = h * (-0.25) / u; let vll = f_fmla(vl, t, vl_lo); let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll); let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p; m_v.sign = if x.is_sign_negative() { DyadicSign::Neg } else { DyadicSign::Pos }; // Perform computations in Float128: // acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1, // = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5. let y_f128 = DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u)); let p_f128 = asin_eval_dyadic(y_f128, idx); let mut r_f128 = m_v * p_f128; if x.is_sign_negative() { const PI_F128: DyadicFloat128 = DyadicFloat128 { sign: DyadicSign::Pos, exponent: -126, mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128, }; r_f128 = PI_F128 + r_f128; } r_f128.fast_as_f64() } #[cold] #[inline(never)] fn acos_less_0p5_hard(x: f64, x_sq: DoubleDouble) -> f64 { // Ziv's accuracy test failed, perform 128-bit calculation. // Recalculate mod 1/64. let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize; // Get x^2 - idx/64 exactly. When FMA is available, double-double // multiplication will be correct for all rounding modes. Otherwise, we use // Float128 directly. let mut x_f128 = DyadicFloat128::new_from_f64(x); let u: DyadicFloat128; #[cfg(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") ))] { // u = x^2 - idx/64 let u_hi = DyadicFloat128::new_from_f64(f_fmla( idx as f64, f64::from_bits(0xbf90000000000000), x_sq.hi, )); u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo)); } #[cfg(not(any( all( any(target_arch = "x86", target_arch = "x86_64"), target_feature = "fma" ), all(target_arch = "aarch64", target_feature = "neon") )))] { let x_sq_f128 = x_f128.quick_mul(&x_f128); u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64( idx as f64 * f64::from_bits(0xbf90000000000000), )); } let p_f128 = asin_eval_dyadic(u, idx); // Flip the sign of x_f128 to perform subtraction. x_f128.sign = x_f128.sign.negate(); let r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128)); r.fast_as_f64() } #[cfg(test)] mod tests { use super::*; #[test] fn f_acos_test() { assert_eq!(f_acos(0.7), 0.7953988301841436); assert_eq!(f_acos(-0.1), 1.6709637479564565); assert_eq!(f_acos(-0.4), 1.9823131728623846); } }