/* * // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved. * // * // Redistribution and use in source and binary forms, with or without modification, * // are permitted provided that the following conditions are met: * // * // 1. Redistributions of source code must retain the above copyright notice, this * // list of conditions and the following disclaimer. * // * // 2. Redistributions in binary form must reproduce the above copyright notice, * // this list of conditions and the following disclaimer in the documentation * // and/or other materials provided with the distribution. * // * // 3. Neither the name of the copyright holder nor the names of its * // contributors may be used to endorse or promote products derived from * // this software without specific prior written permission. * // * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use crate::double_double::DoubleDouble; use crate::dyadic_float::DyadicFloat128; use crate::round::RoundFinite; use crate::sin::{SinCos, get_sin_k_rational, sincos_eval}; use crate::sin_table::SIN_K_PI_OVER_128; use crate::sincos_dyadic::{range_reduction_small_f128_f128, sincos_eval_dyadic}; #[inline] fn sin_eval_dd(z: DoubleDouble) -> DoubleDouble { const SIN_C: [(u64, u64); 5] = [ (0x0000000000000000, 0x3ff0000000000000), (0xbc65555555555555, 0xbfc5555555555555), (0x3c01111111111111, 0x3f81111111111111), (0xbb6a01a01a01a01a, 0xbf2a01a01a01a01a), (0xbb6c154f8ddc6c00, 0x3ec71de3a556c734), ]; let x2 = DoubleDouble::quick_mult(z, z); let mut p = DoubleDouble::mul_add( x2, DoubleDouble::from_bit_pair(SIN_C[4]), DoubleDouble::from_bit_pair(SIN_C[3]), ); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[2])); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[1])); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[0])); DoubleDouble::quick_mult(p, z) } pub(crate) fn sin_dd_small(z: DoubleDouble) -> DoubleDouble { let x_e = (z.hi.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; if x_e < E_BIAS - 8 { return sin_eval_dd(z); } let (u_f128, k) = range_reduction_small_dd(z); let sin_cos = sincos_eval_dd(u_f128); // Fast look up version, but needs 256-entry table. // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let sk = SIN_K_PI_OVER_128[(k & 255) as usize]; let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; let sin_k = DoubleDouble::from_bit_pair(sk); let cos_k = DoubleDouble::from_bit_pair(ck); let sin_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, sin_k); let cos_k_sin_y = DoubleDouble::quick_mult(sin_cos.v_sin, cos_k); // sin_k_cos_y is always >> cos_k_sin_y let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; rr } pub(crate) fn sin_dd_small_fast(z: DoubleDouble) -> DoubleDouble { let x_e = (z.hi.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; if x_e < E_BIAS - 8 { return sin_eval_dd(z); } let (u_f128, k) = range_reduction_small_dd(z); let sin_cos = sincos_eval(u_f128); // Fast look up version, but needs 256-entry table. // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let sk = SIN_K_PI_OVER_128[(k & 255) as usize]; let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; let sin_k = DoubleDouble::from_bit_pair(sk); let cos_k = DoubleDouble::from_bit_pair(ck); let sin_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, sin_k); let cos_k_sin_y = DoubleDouble::quick_mult(sin_cos.v_sin, cos_k); // sin_k_cos_y is always >> cos_k_sin_y let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi); rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo; rr } #[inline] fn cos_eval_dd(z: DoubleDouble) -> DoubleDouble { let x2 = DoubleDouble::quick_mult(z, z); const COS_C: [(u64, u64); 5] = [ (0x0000000000000000, 0x3ff0000000000000), (0x0000000000000000, 0xbfe0000000000000), (0x3c45555555555555, 0x3fa5555555555555), (0x3bef49f49f49f49f, 0xbf56c16c16c16c17), (0x3b3a01a01a01a01a, 0x3efa01a01a01a01a), ]; let mut p = DoubleDouble::mul_add( x2, DoubleDouble::from_bit_pair(COS_C[4]), DoubleDouble::from_bit_pair(COS_C[3]), ); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[2])); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[1])); p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[0])); p } pub(crate) fn cos_dd_small(z: DoubleDouble) -> DoubleDouble { let x_e = (z.hi.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; if x_e < E_BIAS - 8 { return cos_eval_dd(z); } let (u_f128, k) = range_reduction_small_dd(z); let sin_cos = sincos_eval_dd(u_f128); // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize]; let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; let msin_k = DoubleDouble::from_bit_pair(sk); let cos_k = DoubleDouble::from_bit_pair(ck); let cos_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, cos_k); let cos_k_msin_y = DoubleDouble::quick_mult(sin_cos.v_sin, msin_k); // cos_k_cos_y is always >> cos_k_msin_y let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi); rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo; rr } pub(crate) fn cos_dd_small_fast(z: DoubleDouble) -> DoubleDouble { let x_e = (z.hi.to_bits() >> 52) & 0x7ff; const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64; if x_e < E_BIAS - 8 { return cos_eval_dd(z); } let (u_f128, k) = range_reduction_small_dd(z); let sin_cos = sincos_eval(u_f128); // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let sk = SIN_K_PI_OVER_128[(k.wrapping_add(128) & 255) as usize]; let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize]; let msin_k = DoubleDouble::from_bit_pair(sk); let cos_k = DoubleDouble::from_bit_pair(ck); let cos_k_cos_y = DoubleDouble::quick_mult(sin_cos.v_cos, cos_k); let cos_k_msin_y = DoubleDouble::quick_mult(sin_cos.v_sin, msin_k); // cos_k_cos_y is always >> cos_k_msin_y let mut rr = DoubleDouble::from_exact_add(cos_k_cos_y.hi, cos_k_msin_y.hi); rr.lo += cos_k_cos_y.lo + cos_k_msin_y.lo; rr } pub(crate) fn sin_f128_small(z: DyadicFloat128) -> DyadicFloat128 { let (u_f128, k) = range_reduction_small_f128_f128(z); let sin_cos = sincos_eval_dyadic(&u_f128); // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let sin_k_f128 = get_sin_k_rational(k as u64); let cos_k_f128 = get_sin_k_rational((k as u64).wrapping_add(64)); // sin(x) = sin(k * pi/128 + u) // = sin(u) * cos(k*pi/128) + cos(u) * sin(k*pi/128) (sin_k_f128 * sin_cos.v_cos) + (cos_k_f128 * sin_cos.v_sin) } pub(crate) fn cos_f128_small(z: DyadicFloat128) -> DyadicFloat128 { let (u_f128, k) = range_reduction_small_f128_f128(z); let sin_cos = sincos_eval_dyadic(&u_f128); // -sin(k * pi/128) = sin((k + 128) * pi/128) // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128). let msin_k_f128 = get_sin_k_rational((k as u64).wrapping_add(128)); let cos_k_f128 = get_sin_k_rational((k as u64).wrapping_add(64)); // cos(x) = cos((k * pi/128 + u) // = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128) (cos_k_f128 * sin_cos.v_cos) + (msin_k_f128 * sin_cos.v_sin) } #[inline] pub(crate) fn sincos_eval_dd(u: DoubleDouble) -> SinCos { const SIN_C: [(u64, u64); 5] = [ (0x0000000000000000, 0x3ff0000000000000), (0xbc65555555555555, 0xbfc5555555555555), (0x3c01111111111111, 0x3f81111111111111), (0xbb6a01a01a01a01a, 0xbf2a01a01a01a01a), (0xbb6c154f8ddc6c00, 0x3ec71de3a556c734), ]; let x2 = DoubleDouble::quick_mult(u, u); let mut p = DoubleDouble::quick_mul_add( x2, DoubleDouble::from_bit_pair(SIN_C[4]), DoubleDouble::from_bit_pair(SIN_C[3]), ); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[2])); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[1])); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(SIN_C[0])); let sin_u = DoubleDouble::quick_mult(p, u); const COS_C: [(u64, u64); 5] = [ (0x0000000000000000, 0x3ff0000000000000), (0x0000000000000000, 0xbfe0000000000000), (0x3c45555555555555, 0x3fa5555555555555), (0x3bef49f49f49f49f, 0xbf56c16c16c16c17), (0x3b3a01a01a01a01a, 0x3efa01a01a01a01a), ]; let mut p = DoubleDouble::quick_mul_add( x2, DoubleDouble::from_bit_pair(COS_C[4]), DoubleDouble::from_bit_pair(COS_C[3]), ); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[2])); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[1])); p = DoubleDouble::quick_mul_add(x2, p, DoubleDouble::from_bit_pair(COS_C[0])); let cos_u = p; SinCos { v_sin: sin_u, v_cos: cos_u, err: 0., } } #[inline] pub(crate) fn range_reduction_small_dd(x: DoubleDouble) -> (DoubleDouble, i64) { const MPI_OVER_128: [u64; 5] = [ 0xbf9921fb54400000, 0xbd70b4611a600000, 0xbb43198a2e000000, 0xb91b839a25200000, 0xb6b2704453400000, ]; const ONE_TWENTY_EIGHT_OVER_PI_D: f64 = f64::from_bits(0x40445f306dc9c883); let prod_hi = DoubleDouble::quick_mult_f64(x, ONE_TWENTY_EIGHT_OVER_PI_D); let kd = prod_hi.to_f64().round_finite(); let p_hi = f64::from_bits(MPI_OVER_128[0]); // hi let p_mid = f64::from_bits(MPI_OVER_128[1]); // mid let p_lo = f64::from_bits(MPI_OVER_128[2]); // lo let p_lo_lo = f64::from_bits(MPI_OVER_128[3]); // lo_lo let mut q = DoubleDouble::f64_mul_f64_add(kd, p_hi, x); q = DoubleDouble::f64_mul_f64_add(kd, p_mid, q); q = DoubleDouble::f64_mul_f64_add(kd, p_lo, q); q = DoubleDouble::f64_mul_f64_add(kd, p_lo_lo, q); (q, unsafe { kd.to_int_unchecked::() }) }