/* * // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved. * // * // Redistribution and use in source and binary forms, with or without modification, * // are permitted provided that the following conditions are met: * // * // 1. Redistributions of source code must retain the above copyright notice, this * // list of conditions and the following disclaimer. * // * // 2. Redistributions in binary form must reproduce the above copyright notice, * // this list of conditions and the following disclaimer in the documentation * // and/or other materials provided with the distribution. * // * // 3. Neither the name of the copyright holder nor the names of its * // contributors may be used to endorse or promote products derived from * // this software without specific prior written permission. * // * // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ use crate::dyadic_float::{DyadicFloat128, DyadicSign}; use crate::round::RoundFinite; use crate::sincos_reduce_tables::ONE_TWENTY_EIGHT_OVER_PI; pub(crate) fn range_reduction_small_f128(x: f64) -> DyadicFloat128 { const PI_OVER_128_F128: DyadicFloat128 = DyadicFloat128 { sign: DyadicSign::Pos, exponent: -133, mantissa: 0xc90f_daa2_2168_c234_c4c6_628b_80dc_1cd1_u128, }; const ONE_TWENTY_EIGHT_OVER_PI_D: f64 = f64::from_bits(0x40445f306dc9c883); let prod_hi = x * ONE_TWENTY_EIGHT_OVER_PI_D; let kd = prod_hi.round_finite(); let mk_f128 = DyadicFloat128::new_from_f64(-kd); let x_f128 = DyadicFloat128::new_from_f64(x); let over_pi3 = ONE_TWENTY_EIGHT_OVER_PI[3]; let p_hi = x_f128.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.0))); let p_mid = x_f128.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.1))); let p_lo = x_f128.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.2))); let s_hi = p_hi.quick_add(&mk_f128); let s_lo = p_mid.quick_add(&p_lo); let y = s_hi.quick_add(&s_lo); y.quick_mul(&PI_OVER_128_F128) } pub(crate) fn range_reduction_small_f128_f128(x: DyadicFloat128) -> (DyadicFloat128, i64) { const PI_OVER_128_F128: DyadicFloat128 = DyadicFloat128 { sign: DyadicSign::Pos, exponent: -133, mantissa: 0xc90f_daa2_2168_c234_c4c6_628b_80dc_1cd1_u128, }; const ONE_TWENTY_EIGHT_OVER_PI_D: f64 = f64::from_bits(0x40445f306dc9c883); let prod_hi = x.fast_as_f64() * ONE_TWENTY_EIGHT_OVER_PI_D; let kd = prod_hi.round_finite(); let mk_f128 = DyadicFloat128::new_from_f64(-kd); let over_pi3 = ONE_TWENTY_EIGHT_OVER_PI[3]; let p_hi = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.0))); let p_mid = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.1))); let p_lo = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.2))); let p_lo_lo = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.3))); let s_hi = p_hi.quick_add(&mk_f128); let s_lo = p_mid.quick_add(&p_lo); let y = (s_hi + s_lo) + p_lo_lo; (y.quick_mul(&PI_OVER_128_F128), kd as i64) } // pub(crate) fn range_reduction_small_f128_f128(x: DyadicFloat128) -> (DyadicFloat128, u64) { // const PI_OVER_128_F128: DyadicFloat128 = DyadicFloat128 { // sign: DyadicSign::Pos, // exponent: -133, // mantissa: 0xc90f_daa2_2168_c234_c4c6_628b_80dc_1cd1_u128, // }; // const ONE_TWENTY_EIGHT_OVER_PI_D: f64 = f64::from_bits(0x40445f306dc9c883); // let prod_hi = x.fast_as_f64() * ONE_TWENTY_EIGHT_OVER_PI_D; // let kd = prod_hi.round(); // // let mk_f128 = DyadicFloat128::new_from_f64(-kd); // let over_pi3 = ONE_TWENTY_EIGHT_OVER_PI[3]; // let p_hi = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.0))); // let p_mid = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.1))); // let p_lo = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.2))); // let p_lo_lo = x.quick_mul(&DyadicFloat128::new_from_f64(f64::from_bits(over_pi3.3))); // let s_hi = p_hi.quick_add(&mk_f128); // let s_lo = p_mid.quick_add(&p_lo); // let s_lo_lo = p_lo_lo.quick_add(&p_lo_lo); // let y = s_hi.quick_add(&s_lo).quick_add(&s_lo_lo); // (y.quick_mul(&PI_OVER_128_F128), (kd as i64) as u64) // } pub(crate) struct SinCosDyadic { pub(crate) v_sin: DyadicFloat128, pub(crate) v_cos: DyadicFloat128, } #[cold] pub(crate) fn sincos_eval_dyadic(u: &DyadicFloat128) -> SinCosDyadic { let u_sq = u.quick_mul(u); // sin(u) ~ x - x^3/3! + x^5/5! - x^7/7! + x^9/9! - x^11/11! + x^13/13! static SIN_COEFFS: [DyadicFloat128; 7] = [ DyadicFloat128 { sign: DyadicSign::Pos, exponent: -127, mantissa: 0x80000000_00000000_00000000_00000000_u128, }, // 1 DyadicFloat128 { sign: DyadicSign::Neg, exponent: -130, mantissa: 0xaaaaaaaa_aaaaaaaa_aaaaaaaa_aaaaaaab_u128, }, // -1/3! DyadicFloat128 { sign: DyadicSign::Pos, exponent: -134, mantissa: 0x88888888_88888888_88888888_88888889_u128, }, // 1/5! DyadicFloat128 { sign: DyadicSign::Neg, exponent: -140, mantissa: 0xd00d00d0_0d00d00d_00d00d00_d00d00d0_u128, }, // -1/7! DyadicFloat128 { sign: DyadicSign::Pos, exponent: -146, mantissa: 0xb8ef1d2a_b6399c7d_560e4472_800b8ef2_u128, }, // 1/9! DyadicFloat128 { sign: DyadicSign::Neg, exponent: -153, mantissa: 0xd7322b3f_aa271c7f_3a3f25c1_bee38f10_u128, }, // -1/11! DyadicFloat128 { sign: DyadicSign::Pos, exponent: -160, mantissa: 0xb092309d_43684be5_1c198e91_d7b4269e_u128, }, // 1/13! ]; // cos(u) ~ 1 - x^2/2 + x^4/4! - x^6/6! + x^8/8! - x^10/10! + x^12/12! static COS_COEFFS: [DyadicFloat128; 7] = [ DyadicFloat128 { sign: DyadicSign::Pos, exponent: -127, mantissa: 0x80000000_00000000_00000000_00000000_u128, }, // 1.0 DyadicFloat128 { sign: DyadicSign::Neg, exponent: -128, mantissa: 0x80000000_00000000_00000000_00000000_u128, }, // 1/2 DyadicFloat128 { sign: DyadicSign::Pos, exponent: -132, mantissa: 0xaaaaaaaa_aaaaaaaa_aaaaaaaa_aaaaaaab_u128, }, // 1/4! DyadicFloat128 { sign: DyadicSign::Neg, exponent: -137, mantissa: 0xb60b60b6_0b60b60b_60b60b60_b60b60b6_u128, }, // 1/6! DyadicFloat128 { sign: DyadicSign::Pos, exponent: -143, mantissa: 0xd00d00d0_0d00d00d_00d00d00_d00d00d0_u128, }, // 1/8! DyadicFloat128 { sign: DyadicSign::Neg, exponent: -149, mantissa: 0x93f27dbb_c4fae397_780b69f5_333c725b_u128, }, // 1/10! DyadicFloat128 { sign: DyadicSign::Pos, exponent: -156, mantissa: 0x8f76c77f_c6c4bdaa_26d4c3d6_7f425f60_u128, }, // 1/12! ]; let mut sin_u = SIN_COEFFS[6]; for i in (0..7).rev() { sin_u = sin_u * u_sq + SIN_COEFFS[i]; } sin_u = sin_u * *u; let mut cos_u = COS_COEFFS[6]; for i in (0..7).rev() { cos_u = cos_u * u_sq + COS_COEFFS[i]; } SinCosDyadic { v_sin: sin_u, v_cos: cos_u, } } /* Sage math: # Sin K PI over 128 R = RealField(128) π = R.pi() def format_hex(value): l = hex(value)[2:] n = 4 x = [l[i:i + n] for i in range(0, len(l), n)] return "0x" + "_".join(x) + "_u128" def print_dyadic(value): (s, m, e) = RealField(128)(value).sign_mantissa_exponent(); print("DyadicFloat128 {") print(f" sign: DyadicSign::{'Pos' if s >= 0 else 'Neg'},") print(f" exponent: {e},") print(f" mantissa: {format_hex(m)},") print("},") # Generate array entries print("pub(crate) static SIN_K_PI_OVER_128_F128: [DyadicFloat128; 65] = [") for k in range(65): value = R(k) * π / 128 print_dyadic(value.sin()) print("];") */ pub(crate) static SIN_K_PI_OVER_128_F128: [DyadicFloat128; 65] = [ DyadicFloat128 { sign: DyadicSign::Pos, exponent: 0, mantissa: 0x0_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -133, mantissa: 0xc90a_afbd_1b33_efc9_c539_edcb_fda0_cf2c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -132, mantissa: 0xc8fb_2f88_6ec0_9f37_6a17_954b_2b7c_5171_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -131, mantissa: 0x96a9_0496_70cf_ae65_f775_7409_4d3c_35c4_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -131, mantissa: 0xc8bd_35e1_4da1_5f0e_c739_6c89_4bbf_7389_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -131, mantissa: 0xfab2_72b5_4b98_71a2_7047_29ae_56d7_8a37_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -130, mantissa: 0x9640_8374_7309_d113_000a_89a1_1e07_c1ff_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -130, mantissa: 0xaf10_a224_59fe_32a6_3fee_f3bb_58b1_f10d_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -130, mantissa: 0xc7c5_c1e3_4d30_55b2_5cc8_c00e_4fcc_d850_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -130, mantissa: 0xe05c_1353_f27b_17e5_0ebc_61ad_e6ca_83cc_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -130, mantissa: 0xf8cf_cbd9_0af8_d57a_4221_dc4b_a772_598d_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0x888e_9315_8fb3_bb04_9841_56f5_5334_4306_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0x94a0_3176_acf8_2d45_ae4b_a773_da6b_f754_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xa09a_e4a0_bb30_0a19_2f89_5f44_a303_cc0b_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xac7c_d3ad_58fe_e7f0_811f_9539_84ef_f83e_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xb844_2987_d22c_f576_9cc3_ef36_746d_e3b8_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xc3ef_1535_754b_168d_3122_c2a5_9efd_dc37_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xcf7b_ca1d_476c_516d_a812_90bd_baad_62e4_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xdae8_804f_0ae6_015b_362c_b974_182e_3030_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xe633_74c9_8e22_f0b4_2872_ce1b_fc7a_d1cc_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xf15a_e9c0_37b1_d8f0_6c48_e9e3_420b_0f1d_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -129, mantissa: 0xfc5d_26df_c4d5_cfda_27c0_7c91_1290_b8d1_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x839c_3cc9_17ff_6cb4_bfd7_9717_f288_0abf_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x88f5_9aa0_da59_1421_b892_ca83_61d8_c84c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x8e39_d9cd_7346_4364_bba4_cfec_bff5_4868_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x9368_2a66_e896_f544_b178_2191_1e71_c16e_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x987f_bfe7_0b81_a708_19ce_c845_ac87_a5c6_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0x9d7f_d149_0285_c9e3_e25e_3954_9638_ae67_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xa267_9928_48ee_b0c0_3b51_67ee_359a_234e_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xa736_55df_1f2f_489e_149f_6e75_9934_68a2_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xabeb_49a4_6764_fd15_1bec_da80_89c1_a94c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xb085_baa8_e966_f6da_e4ca_d00d_5c94_bcd1_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xb504_f333_f9de_6484_597d_89b3_754a_be9f_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xb968_41bf_7ffc_b21a_9de1_e3b2_2b8b_f4db_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xbdae_f913_557d_76f0_ac85_320f_528d_6d5c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xc1d8_705f_fcbb_6e90_bdf0_715c_b8b2_0bd7_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xc5e4_0358_a8ba_05a7_43da_25d9_9267_326b_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xc9d1_124c_931f_da7a_8335_241b_e169_3225_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xcd9f_023f_9c3a_059e_23af_31db_7179_a4a9_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xd14d_3d02_313c_0eed_744f_ea20_e8ab_ef92_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xd4db_3148_750d_1819_f630_e8b6_dac8_3e68_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xd848_52c0_a80f_fcdb_24b9_fe00_6635_74a4_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xdb94_1a28_cb71_ec87_2c19_b632_53da_43fb_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xdebe_0563_7ca9_4cfb_4b19_aa71_fec3_ae6c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xe1c5_978c_05ed_8691_f4e8_a837_2f8c_5810_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xe4aa_5909_a08f_a7b4_1227_85ae_67f5_515c_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xe76b_d7a1_e63b_9786_1251_2952_9d48_a92f_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xea09_a68a_6e49_cd62_15ad_45b4_a1b5_e823_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xec83_5e79_946a_3145_7e61_0231_ac1d_6181_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xeed8_9db6_6611_e307_86f8_c20f_b664_b01b_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf109_0827_b437_25fd_6712_7db3_5b28_7315_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf314_4762_4708_8f74_a548_6bdc_455d_56a3_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf4fa_0ab6_316e_d2ec_163c_5c7f_03b7_18c5_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf6ba_073b_424b_19e8_2c79_1f59_cc1f_fc23_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf853_f7dc_9186_b952_c7ad_c6b4_9888_91ba_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xf9c7_9d63_272c_4628_4504_ae08_d19b_2981_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xfb14_be7f_bae5_8156_2172_a361_fd2a_722f_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xfc3b_27d3_8a5d_49ab_2567_78ff_cb5c_1769_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xfd3a_abf8_4528_b50b_eae6_bd95_1c1d_abbd_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xfe13_2387_0cfe_9a3d_90cd_1d95_9db6_74ef_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xfec4_6d1e_8929_2cf0_4139_0efd_c726_e9ef_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xff4e_6d68_0c41_d0a9_0f66_8633_f1ab_858a_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xffb1_0f1b_cb6b_ef1d_421e_8eda_af59_453e_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -128, mantissa: 0xffec_4304_2668_65d9_5657_5523_6696_1732_u128, }, DyadicFloat128 { sign: DyadicSign::Pos, exponent: -127, mantissa: 0x8000_0000_0000_0000_0000_0000_0000_0000_u128, }, ];