// Copyright 2018 Developers of the Rand project. // Copyright 2013 The Rust Project Developers. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! The dirichlet distribution. #![cfg(feature = "alloc")] use num_traits::Float; use crate::{Distribution, Exp1, Gamma, Open01, StandardNormal}; use rand::Rng; use core::fmt; use alloc::{boxed::Box, vec, vec::Vec}; /// The Dirichlet distribution `Dirichlet(alpha)`. /// /// The Dirichlet distribution is a family of continuous multivariate /// probability distributions parameterized by a vector alpha of positive reals. /// It is a multivariate generalization of the beta distribution. /// /// # Example /// /// ``` /// use rand::prelude::*; /// use rand_distr::Dirichlet; /// /// let dirichlet = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); /// let samples = dirichlet.sample(&mut rand::thread_rng()); /// println!("{:?} is from a Dirichlet([1.0, 2.0, 3.0]) distribution", samples); /// ``` #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] #[derive(Clone, Debug)] #[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))] pub struct Dirichlet where F: Float, StandardNormal: Distribution, Exp1: Distribution, Open01: Distribution, { /// Concentration parameters (alpha) alpha: Box<[F]>, } /// Error type returned from `Dirchlet::new`. #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub enum Error { /// `alpha.len() < 2`. AlphaTooShort, /// `alpha <= 0.0` or `nan`. AlphaTooSmall, /// `size < 2`. SizeTooSmall, } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.write_str(match self { Error::AlphaTooShort | Error::SizeTooSmall => { "less than 2 dimensions in Dirichlet distribution" } Error::AlphaTooSmall => "alpha is not positive in Dirichlet distribution", }) } } #[cfg(feature = "std")] #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))] impl std::error::Error for Error {} impl Dirichlet where F: Float, StandardNormal: Distribution, Exp1: Distribution, Open01: Distribution, { /// Construct a new `Dirichlet` with the given alpha parameter `alpha`. /// /// Requires `alpha.len() >= 2`. #[inline] pub fn new(alpha: &[F]) -> Result, Error> { if alpha.len() < 2 { return Err(Error::AlphaTooShort); } for &ai in alpha.iter() { if !(ai > F::zero()) { return Err(Error::AlphaTooSmall); } } Ok(Dirichlet { alpha: alpha.to_vec().into_boxed_slice() }) } /// Construct a new `Dirichlet` with the given shape parameter `alpha` and `size`. /// /// Requires `size >= 2`. #[inline] pub fn new_with_size(alpha: F, size: usize) -> Result, Error> { if !(alpha > F::zero()) { return Err(Error::AlphaTooSmall); } if size < 2 { return Err(Error::SizeTooSmall); } Ok(Dirichlet { alpha: vec![alpha; size].into_boxed_slice(), }) } } impl Distribution> for Dirichlet where F: Float, StandardNormal: Distribution, Exp1: Distribution, Open01: Distribution, { fn sample(&self, rng: &mut R) -> Vec { let n = self.alpha.len(); let mut samples = vec![F::zero(); n]; let mut sum = F::zero(); for (s, &a) in samples.iter_mut().zip(self.alpha.iter()) { let g = Gamma::new(a, F::one()).unwrap(); *s = g.sample(rng); sum = sum + (*s); } let invacc = F::one() / sum; for s in samples.iter_mut() { *s = (*s)*invacc; } samples } } #[cfg(test)] mod test { use super::*; #[test] fn test_dirichlet() { let d = Dirichlet::new(&[1.0, 2.0, 3.0]).unwrap(); let mut rng = crate::test::rng(221); let samples = d.sample(&mut rng); let _: Vec = samples .into_iter() .map(|x| { assert!(x > 0.0); x }) .collect(); } #[test] fn test_dirichlet_with_param() { let alpha = 0.5f64; let size = 2; let d = Dirichlet::new_with_size(alpha, size).unwrap(); let mut rng = crate::test::rng(221); let samples = d.sample(&mut rng); let _: Vec = samples .into_iter() .map(|x| { assert!(x > 0.0); x }) .collect(); } #[test] #[should_panic] fn test_dirichlet_invalid_length() { Dirichlet::new_with_size(0.5f64, 1).unwrap(); } #[test] #[should_panic] fn test_dirichlet_invalid_alpha() { Dirichlet::new_with_size(0.0f64, 2).unwrap(); } }