Files
another-boids-in-rust/vendor/winit/src/event.rs

1184 lines
45 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//! The [`Event`] enum and assorted supporting types.
//!
//! These are sent to the closure given to [`EventLoop::run_app(...)`], where they get
//! processed and used to modify the program state. For more details, see the root-level
//! documentation.
//!
//! Some of these events represent different "parts" of a traditional event-handling loop. You could
//! approximate the basic ordering loop of [`EventLoop::run_app(...)`] like this:
//!
//! ```rust,ignore
//! let mut start_cause = StartCause::Init;
//!
//! while !elwt.exiting() {
//! app.new_events(event_loop, start_cause);
//!
//! for event in (window events, user events, device events) {
//! // This will pick the right method on the application based on the event.
//! app.handle_event(event_loop, event);
//! }
//!
//! for window_id in (redraw windows) {
//! app.window_event(event_loop, window_id, RedrawRequested);
//! }
//!
//! app.about_to_wait(event_loop);
//! start_cause = wait_if_necessary();
//! }
//!
//! app.exiting(event_loop);
//! ```
//!
//! This leaves out timing details like [`ControlFlow::WaitUntil`] but hopefully
//! describes what happens in what order.
//!
//! [`EventLoop::run_app(...)`]: crate::event_loop::EventLoop::run_app
//! [`ControlFlow::WaitUntil`]: crate::event_loop::ControlFlow::WaitUntil
use std::path::PathBuf;
use std::sync::{Mutex, Weak};
#[cfg(not(web_platform))]
use std::time::Instant;
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use smol_str::SmolStr;
#[cfg(web_platform)]
use web_time::Instant;
use crate::dpi::{PhysicalPosition, PhysicalSize};
use crate::error::ExternalError;
use crate::event_loop::AsyncRequestSerial;
use crate::keyboard::{self, ModifiersKeyState, ModifiersKeys, ModifiersState};
use crate::platform_impl;
#[cfg(doc)]
use crate::window::Window;
use crate::window::{ActivationToken, Theme, WindowId};
/// Describes a generic event.
///
/// See the module-level docs for more information on the event loop manages each event.
#[derive(Debug, Clone, PartialEq)]
pub enum Event<T: 'static> {
/// See [`ApplicationHandler::new_events`] for details.
///
/// [`ApplicationHandler::new_events`]: crate::application::ApplicationHandler::new_events
NewEvents(StartCause),
/// See [`ApplicationHandler::window_event`] for details.
///
/// [`ApplicationHandler::window_event`]: crate::application::ApplicationHandler::window_event
WindowEvent { window_id: WindowId, event: WindowEvent },
/// See [`ApplicationHandler::device_event`] for details.
///
/// [`ApplicationHandler::device_event`]: crate::application::ApplicationHandler::device_event
DeviceEvent { device_id: DeviceId, event: DeviceEvent },
/// See [`ApplicationHandler::user_event`] for details.
///
/// [`ApplicationHandler::user_event`]: crate::application::ApplicationHandler::user_event
UserEvent(T),
/// See [`ApplicationHandler::suspended`] for details.
///
/// [`ApplicationHandler::suspended`]: crate::application::ApplicationHandler::suspended
Suspended,
/// See [`ApplicationHandler::resumed`] for details.
///
/// [`ApplicationHandler::resumed`]: crate::application::ApplicationHandler::resumed
Resumed,
/// See [`ApplicationHandler::about_to_wait`] for details.
///
/// [`ApplicationHandler::about_to_wait`]: crate::application::ApplicationHandler::about_to_wait
AboutToWait,
/// See [`ApplicationHandler::exiting`] for details.
///
/// [`ApplicationHandler::exiting`]: crate::application::ApplicationHandler::exiting
LoopExiting,
/// See [`ApplicationHandler::memory_warning`] for details.
///
/// [`ApplicationHandler::memory_warning`]: crate::application::ApplicationHandler::memory_warning
MemoryWarning,
}
impl<T> Event<T> {
#[allow(clippy::result_large_err)]
pub fn map_nonuser_event<U>(self) -> Result<Event<U>, Event<T>> {
use self::Event::*;
match self {
UserEvent(_) => Err(self),
WindowEvent { window_id, event } => Ok(WindowEvent { window_id, event }),
DeviceEvent { device_id, event } => Ok(DeviceEvent { device_id, event }),
NewEvents(cause) => Ok(NewEvents(cause)),
AboutToWait => Ok(AboutToWait),
LoopExiting => Ok(LoopExiting),
Suspended => Ok(Suspended),
Resumed => Ok(Resumed),
MemoryWarning => Ok(MemoryWarning),
}
}
}
/// Describes the reason the event loop is resuming.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum StartCause {
/// Sent if the time specified by [`ControlFlow::WaitUntil`] has been reached. Contains the
/// moment the timeout was requested and the requested resume time. The actual resume time is
/// guaranteed to be equal to or after the requested resume time.
///
/// [`ControlFlow::WaitUntil`]: crate::event_loop::ControlFlow::WaitUntil
ResumeTimeReached { start: Instant, requested_resume: Instant },
/// Sent if the OS has new events to send to the window, after a wait was requested. Contains
/// the moment the wait was requested and the resume time, if requested.
WaitCancelled { start: Instant, requested_resume: Option<Instant> },
/// Sent if the event loop is being resumed after the loop's control flow was set to
/// [`ControlFlow::Poll`].
///
/// [`ControlFlow::Poll`]: crate::event_loop::ControlFlow::Poll
Poll,
/// Sent once, immediately after `run` is called. Indicates that the loop was just initialized.
Init,
}
/// Describes an event from a [`Window`].
#[derive(Debug, Clone, PartialEq)]
pub enum WindowEvent {
/// The activation token was delivered back and now could be used.
#[cfg_attr(not(any(x11_platform, wayland_platform)), allow(rustdoc::broken_intra_doc_links))]
/// Delivered in response to [`request_activation_token`].
///
/// [`request_activation_token`]: crate::platform::startup_notify::WindowExtStartupNotify::request_activation_token
ActivationTokenDone { serial: AsyncRequestSerial, token: ActivationToken },
/// The size of the window has changed. Contains the client area's new dimensions.
Resized(PhysicalSize<u32>),
/// The position of the window has changed. Contains the window's new position.
///
/// ## Platform-specific
///
/// - **iOS / Android / Web / Wayland:** Unsupported.
Moved(PhysicalPosition<i32>),
/// The window has been requested to close.
CloseRequested,
/// The window has been destroyed.
Destroyed,
/// A file has been dropped into the window.
///
/// When the user drops multiple files at once, this event will be emitted for each file
/// separately.
DroppedFile(PathBuf),
/// A file is being hovered over the window.
///
/// When the user hovers multiple files at once, this event will be emitted for each file
/// separately.
HoveredFile(PathBuf),
/// A file was hovered, but has exited the window.
///
/// There will be a single `HoveredFileCancelled` event triggered even if multiple files were
/// hovered.
HoveredFileCancelled,
/// The window gained or lost focus.
///
/// The parameter is true if the window has gained focus, and false if it has lost focus.
Focused(bool),
/// An event from the keyboard has been received.
///
/// ## Platform-specific
/// - **Windows:** The shift key overrides NumLock. In other words, while shift is held down,
/// numpad keys act as if NumLock wasn't active. When this is used, the OS sends fake key
/// events which are not marked as `is_synthetic`.
KeyboardInput {
device_id: DeviceId,
event: KeyEvent,
/// If `true`, the event was generated synthetically by winit
/// in one of the following circumstances:
///
/// * Synthetic key press events are generated for all keys pressed when a window gains
/// focus. Likewise, synthetic key release events are generated for all keys pressed when
/// a window goes out of focus. ***Currently, this is only functional on X11 and
/// Windows***
///
/// Otherwise, this value is always `false`.
is_synthetic: bool,
},
/// The keyboard modifiers have changed.
ModifiersChanged(Modifiers),
/// An event from an input method.
///
/// **Note:** You have to explicitly enable this event using [`Window::set_ime_allowed`].
///
/// ## Platform-specific
///
/// - **iOS / Android / Web / Orbital:** Unsupported.
Ime(Ime),
/// The cursor has moved on the window.
///
/// ## Platform-specific
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
CursorMoved {
device_id: DeviceId,
/// (x,y) coords in pixels relative to the top-left corner of the window. Because the range
/// of this data is limited by the display area and it may have been transformed by
/// the OS to implement effects such as cursor acceleration, it should not be used
/// to implement non-cursor-like interactions such as 3D camera control.
position: PhysicalPosition<f64>,
},
/// The cursor has entered the window.
///
/// ## Platform-specific
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
CursorEntered { device_id: DeviceId },
/// The cursor has left the window.
///
/// ## Platform-specific
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
CursorLeft { device_id: DeviceId },
/// A mouse wheel movement or touchpad scroll occurred.
MouseWheel { device_id: DeviceId, delta: MouseScrollDelta, phase: TouchPhase },
/// An mouse button press has been received.
MouseInput { device_id: DeviceId, state: ElementState, button: MouseButton },
/// Two-finger pinch gesture, often used for magnification.
///
/// ## Platform-specific
///
/// - Only available on **macOS** and **iOS**.
/// - On iOS, not recognized by default. It must be enabled when needed.
PinchGesture {
device_id: DeviceId,
/// Positive values indicate magnification (zooming in) and negative
/// values indicate shrinking (zooming out).
///
/// This value may be NaN.
delta: f64,
phase: TouchPhase,
},
/// N-finger pan gesture
///
/// ## Platform-specific
///
/// - Only available on **iOS**.
/// - On iOS, not recognized by default. It must be enabled when needed.
PanGesture {
device_id: DeviceId,
/// Change in pixels of pan gesture from last update.
delta: PhysicalPosition<f32>,
phase: TouchPhase,
},
/// Double tap gesture.
///
/// On a Mac, smart magnification is triggered by a double tap with two fingers
/// on the trackpad and is commonly used to zoom on a certain object
/// (e.g. a paragraph of a PDF) or (sort of like a toggle) to reset any zoom.
/// The gesture is also supported in Safari, Pages, etc.
///
/// The event is general enough that its generating gesture is allowed to vary
/// across platforms. It could also be generated by another device.
///
/// Unfortunately, neither [Windows](https://support.microsoft.com/en-us/windows/touch-gestures-for-windows-a9d28305-4818-a5df-4e2b-e5590f850741)
/// nor [Wayland](https://wayland.freedesktop.org/libinput/doc/latest/gestures.html)
/// support this gesture or any other gesture with the same effect.
///
/// ## Platform-specific
///
/// - Only available on **macOS 10.8** and later, and **iOS**.
/// - On iOS, not recognized by default. It must be enabled when needed.
DoubleTapGesture { device_id: DeviceId },
/// Two-finger rotation gesture.
///
/// Positive delta values indicate rotation counterclockwise and
/// negative delta values indicate rotation clockwise.
///
/// ## Platform-specific
///
/// - Only available on **macOS** and **iOS**.
/// - On iOS, not recognized by default. It must be enabled when needed.
RotationGesture {
device_id: DeviceId,
/// change in rotation in degrees
delta: f32,
phase: TouchPhase,
},
/// Touchpad pressure event.
///
/// At the moment, only supported on Apple forcetouch-capable macbooks.
/// The parameters are: pressure level (value between 0 and 1 representing how hard the
/// touchpad is being pressed) and stage (integer representing the click level).
TouchpadPressure { device_id: DeviceId, pressure: f32, stage: i64 },
/// Motion on some analog axis. May report data redundant to other, more specific events.
AxisMotion { device_id: DeviceId, axis: AxisId, value: f64 },
/// Touch event has been received
///
/// ## Platform-specific
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
/// - **macOS:** Unsupported.
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
Touch(Touch),
/// The window's scale factor has changed.
///
/// The following user actions can cause DPI changes:
///
/// * Changing the display's resolution.
/// * Changing the display's scale factor (e.g. in Control Panel on Windows).
/// * Moving the window to a display with a different scale factor.
///
/// To update the window size, use the provided [`InnerSizeWriter`] handle. By default, the
/// window is resized to the value suggested by the OS, but it can be changed to any value.
///
/// For more information about DPI in general, see the [`dpi`] crate.
ScaleFactorChanged {
scale_factor: f64,
/// Handle to update inner size during scale changes.
///
/// See [`InnerSizeWriter`] docs for more details.
inner_size_writer: InnerSizeWriter,
},
/// The system window theme has changed.
///
/// Applications might wish to react to this to change the theme of the content of the window
/// when the system changes the window theme.
///
/// This only reports a change if the window theme was not overridden by [`Window::set_theme`].
///
/// ## Platform-specific
///
/// - **iOS / Android / X11 / Wayland / Orbital:** Unsupported.
ThemeChanged(Theme),
/// The window has been occluded (completely hidden from view).
///
/// This is different to window visibility as it depends on whether the window is closed,
/// minimised, set invisible, or fully occluded by another window.
///
/// ## Platform-specific
///
/// ### iOS
///
/// On iOS, the `Occluded(false)` event is emitted in response to an
/// [`applicationWillEnterForeground`] callback which means the application should start
/// preparing its data. The `Occluded(true)` event is emitted in response to an
/// [`applicationDidEnterBackground`] callback which means the application should free
/// resources (according to the [iOS application lifecycle]).
///
/// [`applicationWillEnterForeground`]: https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1623076-applicationwillenterforeground
/// [`applicationDidEnterBackground`]: https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622997-applicationdidenterbackground
/// [iOS application lifecycle]: https://developer.apple.com/documentation/uikit/app_and_environment/managing_your_app_s_life_cycle
///
/// ### Others
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
/// - **Android / Wayland / Windows / Orbital:** Unsupported.
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
Occluded(bool),
/// Emitted when a window should be redrawn.
///
/// This gets triggered in two scenarios:
/// - The OS has performed an operation that's invalidated the window's contents (such as
/// resizing the window).
/// - The application has explicitly requested a redraw via [`Window::request_redraw`].
///
/// Winit will aggregate duplicate redraw requests into a single event, to
/// help avoid duplicating rendering work.
RedrawRequested,
}
/// Identifier of an input device.
///
/// Whenever you receive an event arising from a particular input device, this event contains a
/// `DeviceId` which identifies its origin. Note that devices may be virtual (representing an
/// on-screen cursor and keyboard focus) or physical. Virtual devices typically aggregate inputs
/// from multiple physical devices.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct DeviceId(pub(crate) platform_impl::DeviceId);
impl DeviceId {
/// Returns a dummy id, useful for unit testing.
///
/// # Notes
///
/// The only guarantee made about the return value of this function is that
/// it will always be equal to itself and to future values returned by this function.
/// No other guarantees are made. This may be equal to a real `DeviceId`.
pub const fn dummy() -> Self {
DeviceId(platform_impl::DeviceId::dummy())
}
}
/// Represents raw hardware events that are not associated with any particular window.
///
/// Useful for interactions that diverge significantly from a conventional 2D GUI, such as 3D camera
/// or first-person game controls. Many physical actions, such as mouse movement, can produce both
/// device and window events. Because window events typically arise from virtual devices
/// (corresponding to GUI cursors and keyboard focus) the device IDs may not match.
///
/// Note that these events are delivered regardless of input focus.
#[derive(Clone, Debug, PartialEq)]
pub enum DeviceEvent {
Added,
Removed,
/// Change in physical position of a pointing device.
///
/// This represents raw, unfiltered physical motion. Not to be confused with
/// [`WindowEvent::CursorMoved`].
MouseMotion {
/// (x, y) change in position in unspecified units.
///
/// Different devices may use different units.
delta: (f64, f64),
},
/// Physical scroll event
MouseWheel {
delta: MouseScrollDelta,
},
/// Motion on some analog axis. This event will be reported for all arbitrary input devices
/// that winit supports on this platform, including mouse devices. If the device is a mouse
/// device then this will be reported alongside the MouseMotion event.
Motion {
axis: AxisId,
value: f64,
},
Button {
button: ButtonId,
state: ElementState,
},
Key(RawKeyEvent),
}
/// Describes a keyboard input as a raw device event.
///
/// Note that holding down a key may produce repeated `RawKeyEvent`s. The
/// operating system doesn't provide information whether such an event is a
/// repeat or the initial keypress. An application may emulate this by, for
/// example keeping a Map/Set of pressed keys and determining whether a keypress
/// corresponds to an already pressed key.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct RawKeyEvent {
pub physical_key: keyboard::PhysicalKey,
pub state: ElementState,
}
/// Describes a keyboard input targeting a window.
#[derive(Debug, Clone, Eq, PartialEq, Hash)]
pub struct KeyEvent {
/// Represents the position of a key independent of the currently active layout.
///
/// It also uniquely identifies the physical key (i.e. it's mostly synonymous with a scancode).
/// The most prevalent use case for this is games. For example the default keys for the player
/// to move around might be the W, A, S, and D keys on a US layout. The position of these keys
/// is more important than their label, so they should map to Z, Q, S, and D on an "AZERTY"
/// layout. (This value is `KeyCode::KeyW` for the Z key on an AZERTY layout.)
///
/// ## Caveats
///
/// - Certain niche hardware will shuffle around physical key positions, e.g. a keyboard that
/// implements DVORAK in hardware (or firmware)
/// - Your application will likely have to handle keyboards which are missing keys that your
/// own keyboard has.
/// - Certain `KeyCode`s will move between a couple of different positions depending on what
/// layout the keyboard was manufactured to support.
///
/// **Because of these caveats, it is important that you provide users with a way to configure
/// most (if not all) keybinds in your application.**
///
/// ## `Fn` and `FnLock`
///
/// `Fn` and `FnLock` key events are *exceedingly unlikely* to be emitted by Winit. These keys
/// are usually handled at the hardware or OS level, and aren't surfaced to applications. If
/// you somehow see this in the wild, we'd like to know :)
pub physical_key: keyboard::PhysicalKey,
// Allowing `broken_intra_doc_links` for `logical_key`, because
// `key_without_modifiers` is not available on all platforms
#[cfg_attr(
not(any(windows_platform, macos_platform, x11_platform, wayland_platform)),
allow(rustdoc::broken_intra_doc_links)
)]
/// This value is affected by all modifiers except <kbd>Ctrl</kbd>.
///
/// This has two use cases:
/// - Allows querying whether the current input is a Dead key.
/// - Allows handling key-bindings on platforms which don't support [`key_without_modifiers`].
///
/// If you use this field (or [`key_without_modifiers`] for that matter) for keyboard
/// shortcuts, **it is important that you provide users with a way to configure your
/// application's shortcuts so you don't render your application unusable for users with an
/// incompatible keyboard layout.**
///
/// ## Platform-specific
/// - **Web:** Dead keys might be reported as the real key instead of `Dead` depending on the
/// browser/OS.
///
/// [`key_without_modifiers`]: crate::platform::modifier_supplement::KeyEventExtModifierSupplement::key_without_modifiers
pub logical_key: keyboard::Key,
/// Contains the text produced by this keypress.
///
/// In most cases this is identical to the content
/// of the `Character` variant of `logical_key`.
/// However, on Windows when a dead key was pressed earlier
/// but cannot be combined with the character from this
/// keypress, the produced text will consist of two characters:
/// the dead-key-character followed by the character resulting
/// from this keypress.
///
/// An additional difference from `logical_key` is that
/// this field stores the text representation of any key
/// that has such a representation. For example when
/// `logical_key` is `Key::Named(NamedKey::Enter)`, this field is `Some("\r")`.
///
/// This is `None` if the current keypress cannot
/// be interpreted as text.
///
/// See also: `text_with_all_modifiers()`
pub text: Option<SmolStr>,
/// Contains the location of this key on the keyboard.
///
/// Certain keys on the keyboard may appear in more than once place. For example, the "Shift"
/// key appears on the left side of the QWERTY keyboard as well as the right side. However,
/// both keys have the same symbolic value. Another example of this phenomenon is the "1"
/// key, which appears both above the "Q" key and as the "Keypad 1" key.
///
/// This field allows the user to differentiate between keys like this that have the same
/// symbolic value but different locations on the keyboard.
///
/// See the [`KeyLocation`] type for more details.
///
/// [`KeyLocation`]: crate::keyboard::KeyLocation
pub location: keyboard::KeyLocation,
/// Whether the key is being pressed or released.
///
/// See the [`ElementState`] type for more details.
pub state: ElementState,
/// Whether or not this key is a key repeat event.
///
/// On some systems, holding down a key for some period of time causes that key to be repeated
/// as though it were being pressed and released repeatedly. This field is `true` if and only
/// if this event is the result of one of those repeats.
///
/// # Example
///
/// In games, you often want to ignore repated key events - this can be
/// done by ignoring events where this property is set.
///
/// ```
/// use winit::event::{ElementState, KeyEvent, WindowEvent};
/// use winit::keyboard::{KeyCode, PhysicalKey};
/// # let window_event = WindowEvent::RedrawRequested; // To make the example compile
/// match window_event {
/// WindowEvent::KeyboardInput {
/// event:
/// KeyEvent {
/// physical_key: PhysicalKey::Code(KeyCode::KeyW),
/// state: ElementState::Pressed,
/// repeat: false,
/// ..
/// },
/// ..
/// } => {
/// // The physical key `W` was pressed, and it was not a repeat
/// },
/// _ => {}, // Handle other events
/// }
/// ```
pub repeat: bool,
/// Platform-specific key event information.
///
/// On Windows, Linux and macOS, this type contains the key without modifiers and the text with
/// all modifiers applied.
///
/// On Android, iOS, Redox and Web, this type is a no-op.
pub(crate) platform_specific: platform_impl::KeyEventExtra,
}
/// Describes keyboard modifiers event.
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq)]
pub struct Modifiers {
pub(crate) state: ModifiersState,
// NOTE: Currently pressed modifiers keys.
//
// The field providing a metadata, it shouldn't be used as a source of truth.
pub(crate) pressed_mods: ModifiersKeys,
}
impl Modifiers {
/// The state of the modifiers.
pub fn state(&self) -> ModifiersState {
self.state
}
/// The state of the left shift key.
pub fn lshift_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::LSHIFT)
}
/// The state of the right shift key.
pub fn rshift_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::RSHIFT)
}
/// The state of the left alt key.
pub fn lalt_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::LALT)
}
/// The state of the right alt key.
pub fn ralt_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::RALT)
}
/// The state of the left control key.
pub fn lcontrol_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::LCONTROL)
}
/// The state of the right control key.
pub fn rcontrol_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::RCONTROL)
}
/// The state of the left super key.
pub fn lsuper_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::LSUPER)
}
/// The state of the right super key.
pub fn rsuper_state(&self) -> ModifiersKeyState {
self.mod_state(ModifiersKeys::RSUPER)
}
fn mod_state(&self, modifier: ModifiersKeys) -> ModifiersKeyState {
if self.pressed_mods.contains(modifier) {
ModifiersKeyState::Pressed
} else {
ModifiersKeyState::Unknown
}
}
}
impl From<ModifiersState> for Modifiers {
fn from(value: ModifiersState) -> Self {
Self { state: value, pressed_mods: Default::default() }
}
}
/// Describes [input method](https://en.wikipedia.org/wiki/Input_method) events.
///
/// This is also called a "composition event".
///
/// Most keypresses using a latin-like keyboard layout simply generate a
/// [`WindowEvent::KeyboardInput`]. However, one couldn't possibly have a key for every single
/// unicode character that the user might want to type
/// - so the solution operating systems employ is to allow the user to type these using _a sequence
/// of keypresses_ instead.
///
/// A prominent example of this is accents - many keyboard layouts allow you to first click the
/// "accent key", and then the character you want to apply the accent to. In this case, some
/// platforms will generate the following event sequence:
///
/// ```ignore
/// // Press "`" key
/// Ime::Preedit("`", Some((0, 0)))
/// // Press "E" key
/// Ime::Preedit("", None) // Synthetic event generated by winit to clear preedit.
/// Ime::Commit("é")
/// ```
///
/// Additionally, certain input devices are configured to display a candidate box that allow the
/// user to select the desired character interactively. (To properly position this box, you must use
/// [`Window::set_ime_cursor_area`].)
///
/// An example of a keyboard layout which uses candidate boxes is pinyin. On a latin keyboard the
/// following event sequence could be obtained:
///
/// ```ignore
/// // Press "A" key
/// Ime::Preedit("a", Some((1, 1)))
/// // Press "B" key
/// Ime::Preedit("a b", Some((3, 3)))
/// // Press left arrow key
/// Ime::Preedit("a b", Some((1, 1)))
/// // Press space key
/// Ime::Preedit("啊b", Some((3, 3)))
/// // Press space key
/// Ime::Preedit("", None) // Synthetic event generated by winit to clear preedit.
/// Ime::Commit("啊不")
/// ```
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Ime {
/// Notifies when the IME was enabled.
///
/// After getting this event you could receive [`Preedit`][Self::Preedit] and
/// [`Commit`][Self::Commit] events. You should also start performing IME related requests
/// like [`Window::set_ime_cursor_area`].
Enabled,
/// Notifies when a new composing text should be set at the cursor position.
///
/// The value represents a pair of the preedit string and the cursor begin position and end
/// position. When it's `None`, the cursor should be hidden. When `String` is an empty string
/// this indicates that preedit was cleared.
///
/// The cursor position is byte-wise indexed.
Preedit(String, Option<(usize, usize)>),
/// Notifies when text should be inserted into the editor widget.
///
/// Right before this event winit will send empty [`Self::Preedit`] event.
Commit(String),
/// Notifies when the IME was disabled.
///
/// After receiving this event you won't get any more [`Preedit`][Self::Preedit] or
/// [`Commit`][Self::Commit] events until the next [`Enabled`][Self::Enabled] event. You should
/// also stop issuing IME related requests like [`Window::set_ime_cursor_area`] and clear
/// pending preedit text.
Disabled,
}
/// Describes touch-screen input state.
#[derive(Debug, Hash, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum TouchPhase {
Started,
Moved,
Ended,
Cancelled,
}
/// Represents a touch event
///
/// Every time the user touches the screen, a new [`TouchPhase::Started`] event with an unique
/// identifier for the finger is generated. When the finger is lifted, an [`TouchPhase::Ended`]
/// event is generated with the same finger id.
///
/// After a `Started` event has been emitted, there may be zero or more `Move`
/// events when the finger is moved or the touch pressure changes.
///
/// The finger id may be reused by the system after an `Ended` event. The user
/// should assume that a new `Started` event received with the same id has nothing
/// to do with the old finger and is a new finger.
///
/// A [`TouchPhase::Cancelled`] event is emitted when the system has canceled tracking this
/// touch, such as when the window loses focus, or on iOS if the user moves the
/// device against their face.
///
/// ## Platform-specific
///
/// - **Web:** Doesn't take into account CSS [`border`], [`padding`], or [`transform`].
/// - **macOS:** Unsupported.
///
/// [`border`]: https://developer.mozilla.org/en-US/docs/Web/CSS/border
/// [`padding`]: https://developer.mozilla.org/en-US/docs/Web/CSS/padding
/// [`transform`]: https://developer.mozilla.org/en-US/docs/Web/CSS/transform
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Touch {
pub device_id: DeviceId,
pub phase: TouchPhase,
pub location: PhysicalPosition<f64>,
/// Describes how hard the screen was pressed. May be `None` if the platform
/// does not support pressure sensitivity.
///
/// ## Platform-specific
///
/// - Only available on **iOS** 9.0+, **Windows** 8+, **Web**, and **Android**.
/// - **Android**: This will never be [None]. If the device doesn't support pressure
/// sensitivity, force will either be 0.0 or 1.0. Also see the
/// [android documentation](https://developer.android.com/reference/android/view/MotionEvent#AXIS_PRESSURE).
pub force: Option<Force>,
/// Unique identifier of a finger.
pub id: u64,
}
/// Describes the force of a touch event
#[derive(Debug, Clone, Copy, PartialEq)]
pub enum Force {
/// On iOS, the force is calibrated so that the same number corresponds to
/// roughly the same amount of pressure on the screen regardless of the
/// device.
Calibrated {
/// The force of the touch, where a value of 1.0 represents the force of
/// an average touch (predetermined by the system, not user-specific).
///
/// The force reported by Apple Pencil is measured along the axis of the
/// pencil. If you want a force perpendicular to the device, you need to
/// calculate this value using the `altitude_angle` value.
force: f64,
/// The maximum possible force for a touch.
///
/// The value of this field is sufficiently high to provide a wide
/// dynamic range for values of the `force` field.
max_possible_force: f64,
/// The altitude (in radians) of the stylus.
///
/// A value of 0 radians indicates that the stylus is parallel to the
/// surface. The value of this property is Pi/2 when the stylus is
/// perpendicular to the surface.
altitude_angle: Option<f64>,
},
/// If the platform reports the force as normalized, we have no way of
/// knowing how much pressure 1.0 corresponds to we know it's the maximum
/// amount of force, but as to how much force, you might either have to
/// press really really hard, or not hard at all, depending on the device.
Normalized(f64),
}
impl Force {
/// Returns the force normalized to the range between 0.0 and 1.0 inclusive.
///
/// Instead of normalizing the force, you should prefer to handle
/// [`Force::Calibrated`] so that the amount of force the user has to apply is
/// consistent across devices.
pub fn normalized(&self) -> f64 {
match self {
Force::Calibrated { force, max_possible_force, altitude_angle } => {
let force = match altitude_angle {
Some(altitude_angle) => force / altitude_angle.sin(),
None => *force,
};
force / max_possible_force
},
Force::Normalized(force) => *force,
}
}
}
/// Identifier for a specific analog axis on some device.
pub type AxisId = u32;
/// Identifier for a specific button on some device.
pub type ButtonId = u32;
/// Describes the input state of a key.
#[derive(Debug, Hash, PartialEq, Eq, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum ElementState {
Pressed,
Released,
}
impl ElementState {
/// True if `self == Pressed`.
pub fn is_pressed(self) -> bool {
self == ElementState::Pressed
}
}
/// Describes a button of a mouse controller.
///
/// ## Platform-specific
///
/// **macOS:** `Back` and `Forward` might not work with all hardware.
/// **Orbital:** `Back` and `Forward` are unsupported due to orbital not supporting them.
#[derive(Debug, Hash, PartialEq, Eq, PartialOrd, Ord, Clone, Copy)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum MouseButton {
Left,
Right,
Middle,
Back,
Forward,
Other(u16),
}
/// Describes a difference in the mouse scroll wheel state.
#[derive(Debug, Clone, Copy, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum MouseScrollDelta {
/// Amount in lines or rows to scroll in the horizontal
/// and vertical directions.
///
/// Positive values indicate that the content that is being scrolled should move
/// right and down (revealing more content left and up).
LineDelta(f32, f32),
/// Amount in pixels to scroll in the horizontal and
/// vertical direction.
///
/// Scroll events are expressed as a `PixelDelta` if
/// supported by the device (eg. a touchpad) and
/// platform.
///
/// Positive values indicate that the content being scrolled should
/// move right/down.
///
/// For a 'natural scrolling' touch pad (that acts like a touch screen)
/// this means moving your fingers right and down should give positive values,
/// and move the content right and down (to reveal more things left and up).
PixelDelta(PhysicalPosition<f64>),
}
/// Handle to synchronously change the size of the window from the
/// [`WindowEvent`].
#[derive(Debug, Clone)]
pub struct InnerSizeWriter {
pub(crate) new_inner_size: Weak<Mutex<PhysicalSize<u32>>>,
}
impl InnerSizeWriter {
#[cfg(not(orbital_platform))]
pub(crate) fn new(new_inner_size: Weak<Mutex<PhysicalSize<u32>>>) -> Self {
Self { new_inner_size }
}
/// Try to request inner size which will be set synchronously on the window.
pub fn request_inner_size(
&mut self,
new_inner_size: PhysicalSize<u32>,
) -> Result<(), ExternalError> {
if let Some(inner) = self.new_inner_size.upgrade() {
*inner.lock().unwrap() = new_inner_size;
Ok(())
} else {
Err(ExternalError::Ignored)
}
}
}
impl PartialEq for InnerSizeWriter {
fn eq(&self, other: &Self) -> bool {
self.new_inner_size.as_ptr() == other.new_inner_size.as_ptr()
}
}
#[cfg(test)]
mod tests {
use crate::dpi::PhysicalPosition;
use crate::event;
use std::collections::{BTreeSet, HashSet};
macro_rules! foreach_event {
($closure:expr) => {{
#[allow(unused_mut)]
let mut x = $closure;
let did = event::DeviceId::dummy();
#[allow(deprecated)]
{
use crate::event::Event::*;
use crate::event::Ime::Enabled;
use crate::event::WindowEvent::*;
use crate::window::WindowId;
// Mainline events.
let wid = WindowId::dummy();
x(UserEvent(()));
x(NewEvents(event::StartCause::Init));
x(AboutToWait);
x(LoopExiting);
x(Suspended);
x(Resumed);
// Window events.
let with_window_event = |wev| x(WindowEvent { window_id: wid, event: wev });
with_window_event(CloseRequested);
with_window_event(Destroyed);
with_window_event(Focused(true));
with_window_event(Moved((0, 0).into()));
with_window_event(Resized((0, 0).into()));
with_window_event(DroppedFile("x.txt".into()));
with_window_event(HoveredFile("x.txt".into()));
with_window_event(HoveredFileCancelled);
with_window_event(Ime(Enabled));
with_window_event(CursorMoved { device_id: did, position: (0, 0).into() });
with_window_event(ModifiersChanged(event::Modifiers::default()));
with_window_event(CursorEntered { device_id: did });
with_window_event(CursorLeft { device_id: did });
with_window_event(MouseWheel {
device_id: did,
delta: event::MouseScrollDelta::LineDelta(0.0, 0.0),
phase: event::TouchPhase::Started,
});
with_window_event(MouseInput {
device_id: did,
state: event::ElementState::Pressed,
button: event::MouseButton::Other(0),
});
with_window_event(PinchGesture {
device_id: did,
delta: 0.0,
phase: event::TouchPhase::Started,
});
with_window_event(DoubleTapGesture { device_id: did });
with_window_event(RotationGesture {
device_id: did,
delta: 0.0,
phase: event::TouchPhase::Started,
});
with_window_event(PanGesture {
device_id: did,
delta: PhysicalPosition::<f32>::new(0.0, 0.0),
phase: event::TouchPhase::Started,
});
with_window_event(TouchpadPressure { device_id: did, pressure: 0.0, stage: 0 });
with_window_event(AxisMotion { device_id: did, axis: 0, value: 0.0 });
with_window_event(Touch(event::Touch {
device_id: did,
phase: event::TouchPhase::Started,
location: (0.0, 0.0).into(),
id: 0,
force: Some(event::Force::Normalized(0.0)),
}));
with_window_event(ThemeChanged(crate::window::Theme::Light));
with_window_event(Occluded(true));
}
#[allow(deprecated)]
{
use event::DeviceEvent::*;
let with_device_event =
|dev_ev| x(event::Event::DeviceEvent { device_id: did, event: dev_ev });
with_device_event(Added);
with_device_event(Removed);
with_device_event(MouseMotion { delta: (0.0, 0.0).into() });
with_device_event(MouseWheel {
delta: event::MouseScrollDelta::LineDelta(0.0, 0.0),
});
with_device_event(Motion { axis: 0, value: 0.0 });
with_device_event(Button { button: 0, state: event::ElementState::Pressed });
}
}};
}
#[allow(clippy::redundant_clone)]
#[test]
fn test_event_clone() {
foreach_event!(|event: event::Event<()>| {
let event2 = event.clone();
assert_eq!(event, event2);
})
}
#[test]
fn test_map_nonuser_event() {
foreach_event!(|event: event::Event<()>| {
let is_user = matches!(event, event::Event::UserEvent(()));
let event2 = event.map_nonuser_event::<()>();
if is_user {
assert_eq!(event2, Err(event::Event::UserEvent(())));
} else {
assert!(event2.is_ok());
}
})
}
#[test]
fn test_force_normalize() {
let force = event::Force::Normalized(0.0);
assert_eq!(force.normalized(), 0.0);
let force2 =
event::Force::Calibrated { force: 5.0, max_possible_force: 2.5, altitude_angle: None };
assert_eq!(force2.normalized(), 2.0);
let force3 = event::Force::Calibrated {
force: 5.0,
max_possible_force: 2.5,
altitude_angle: Some(std::f64::consts::PI / 2.0),
};
assert_eq!(force3.normalized(), 2.0);
}
#[allow(clippy::clone_on_copy)]
#[test]
fn ensure_attrs_do_not_panic() {
foreach_event!(|event: event::Event<()>| {
let _ = format!("{event:?}");
});
let _ = event::StartCause::Init.clone();
let did = crate::event::DeviceId::dummy().clone();
HashSet::new().insert(did);
let mut set = [did, did, did];
set.sort_unstable();
let mut set2 = BTreeSet::new();
set2.insert(did);
set2.insert(did);
HashSet::new().insert(event::TouchPhase::Started.clone());
HashSet::new().insert(event::MouseButton::Left.clone());
HashSet::new().insert(event::Ime::Enabled);
let _ = event::Touch {
device_id: did,
phase: event::TouchPhase::Started,
location: (0.0, 0.0).into(),
id: 0,
force: Some(event::Force::Normalized(0.0)),
}
.clone();
let _ =
event::Force::Calibrated { force: 0.0, max_possible_force: 0.0, altitude_angle: None }
.clone();
}
}