Files

1258 lines
40 KiB
Rust
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// THIS FILE IS AUTOGENERATED.
// Any changes to this file will be overwritten.
// For more information about how codegen works, see font-codegen/README.md
#[allow(unused_imports)]
use crate::codegen_prelude::*;
/// The [glyf (Glyph Data)](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf) table
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct GlyfMarker {}
impl GlyfMarker {}
impl TopLevelTable for Glyf<'_> {
/// `glyf`
const TAG: Tag = Tag::new(b"glyf");
}
impl<'a> FontRead<'a> for Glyf<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let cursor = data.cursor();
cursor.finish(GlyfMarker {})
}
}
/// The [glyf (Glyph Data)](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf) table
pub type Glyf<'a> = TableRef<'a, GlyfMarker>;
#[allow(clippy::needless_lifetimes)]
impl<'a> Glyf<'a> {}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for Glyf<'a> {
fn type_name(&self) -> &str {
"Glyf"
}
#[allow(unused_variables)]
#[allow(clippy::match_single_binding)]
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
#[allow(clippy::needless_lifetimes)]
impl<'a> std::fmt::Debug for Glyf<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// The [Glyph Header](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct SimpleGlyphMarker {
end_pts_of_contours_byte_len: usize,
instructions_byte_len: usize,
glyph_data_byte_len: usize,
}
impl SimpleGlyphMarker {
pub fn number_of_contours_byte_range(&self) -> Range<usize> {
let start = 0;
start..start + i16::RAW_BYTE_LEN
}
pub fn x_min_byte_range(&self) -> Range<usize> {
let start = self.number_of_contours_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn y_min_byte_range(&self) -> Range<usize> {
let start = self.x_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn x_max_byte_range(&self) -> Range<usize> {
let start = self.y_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn y_max_byte_range(&self) -> Range<usize> {
let start = self.x_max_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn end_pts_of_contours_byte_range(&self) -> Range<usize> {
let start = self.y_max_byte_range().end;
start..start + self.end_pts_of_contours_byte_len
}
pub fn instruction_length_byte_range(&self) -> Range<usize> {
let start = self.end_pts_of_contours_byte_range().end;
start..start + u16::RAW_BYTE_LEN
}
pub fn instructions_byte_range(&self) -> Range<usize> {
let start = self.instruction_length_byte_range().end;
start..start + self.instructions_byte_len
}
pub fn glyph_data_byte_range(&self) -> Range<usize> {
let start = self.instructions_byte_range().end;
start..start + self.glyph_data_byte_len
}
}
impl MinByteRange for SimpleGlyphMarker {
fn min_byte_range(&self) -> Range<usize> {
0..self.glyph_data_byte_range().end
}
}
impl<'a> FontRead<'a> for SimpleGlyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let mut cursor = data.cursor();
let number_of_contours: i16 = cursor.read()?;
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
let end_pts_of_contours_byte_len = (number_of_contours as usize)
.checked_mul(u16::RAW_BYTE_LEN)
.ok_or(ReadError::OutOfBounds)?;
cursor.advance_by(end_pts_of_contours_byte_len);
let instruction_length: u16 = cursor.read()?;
let instructions_byte_len = (instruction_length as usize)
.checked_mul(u8::RAW_BYTE_LEN)
.ok_or(ReadError::OutOfBounds)?;
cursor.advance_by(instructions_byte_len);
let glyph_data_byte_len = cursor.remaining_bytes() / u8::RAW_BYTE_LEN * u8::RAW_BYTE_LEN;
cursor.advance_by(glyph_data_byte_len);
cursor.finish(SimpleGlyphMarker {
end_pts_of_contours_byte_len,
instructions_byte_len,
glyph_data_byte_len,
})
}
}
/// The [Glyph Header](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
pub type SimpleGlyph<'a> = TableRef<'a, SimpleGlyphMarker>;
#[allow(clippy::needless_lifetimes)]
impl<'a> SimpleGlyph<'a> {
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
let range = self.shape.number_of_contours_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
let range = self.shape.x_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
let range = self.shape.y_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
let range = self.shape.x_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
let range = self.shape.y_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Array of point indices for the last point of each contour,
/// in increasing numeric order
pub fn end_pts_of_contours(&self) -> &'a [BigEndian<u16>] {
let range = self.shape.end_pts_of_contours_byte_range();
self.data.read_array(range).unwrap()
}
/// Total number of bytes for instructions. If instructionLength is
/// zero, no instructions are present for this glyph, and this
/// field is followed directly by the flags field.
pub fn instruction_length(&self) -> u16 {
let range = self.shape.instruction_length_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Array of instruction byte code for the glyph.
pub fn instructions(&self) -> &'a [u8] {
let range = self.shape.instructions_byte_range();
self.data.read_array(range).unwrap()
}
/// the raw data for flags & x/y coordinates
pub fn glyph_data(&self) -> &'a [u8] {
let range = self.shape.glyph_data_byte_range();
self.data.read_array(range).unwrap()
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for SimpleGlyph<'a> {
fn type_name(&self) -> &str {
"SimpleGlyph"
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
0usize => Some(Field::new("number_of_contours", self.number_of_contours())),
1usize => Some(Field::new("x_min", self.x_min())),
2usize => Some(Field::new("y_min", self.y_min())),
3usize => Some(Field::new("x_max", self.x_max())),
4usize => Some(Field::new("y_max", self.y_max())),
5usize => Some(Field::new(
"end_pts_of_contours",
self.end_pts_of_contours(),
)),
6usize => Some(Field::new("instruction_length", self.instruction_length())),
7usize => Some(Field::new("instructions", self.instructions())),
8usize => Some(Field::new("glyph_data", self.glyph_data())),
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
#[allow(clippy::needless_lifetimes)]
impl<'a> std::fmt::Debug for SimpleGlyph<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// Flags used in [SimpleGlyph]
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash, bytemuck :: AnyBitPattern)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct SimpleGlyphFlags {
bits: u8,
}
impl SimpleGlyphFlags {
/// Bit 0: If set, the point is on the curve; otherwise, it is off
/// the curve.
pub const ON_CURVE_POINT: Self = Self { bits: 0x01 };
/// Bit 1: If set, the corresponding x-coordinate is 1 byte long,
/// and the sign is determined by the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag. If not set, its
/// interpretation depends on the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag: If that other flag
/// is set, the x-coordinate is the same as the previous
/// x-coordinate, and no element is added to the xCoordinates
/// array. If both flags are not set, the corresponding element in
/// the xCoordinates array is two bytes and interpreted as a signed
/// integer. See the description of the
/// X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR flag for additional
/// information.
pub const X_SHORT_VECTOR: Self = Self { bits: 0x02 };
/// Bit 2: If set, the corresponding y-coordinate is 1 byte long,
/// and the sign is determined by the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag. If not set, its
/// interpretation depends on the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag: If that other flag
/// is set, the y-coordinate is the same as the previous
/// y-coordinate, and no element is added to the yCoordinates
/// array. If both flags are not set, the corresponding element in
/// the yCoordinates array is two bytes and interpreted as a signed
/// integer. See the description of the
/// Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR flag for additional
/// information.
pub const Y_SHORT_VECTOR: Self = Self { bits: 0x04 };
/// Bit 3: If set, the next byte (read as unsigned) specifies the
/// number of additional times this flag byte is to be repeated in
/// the logical flags array — that is, the number of additional
/// logical flag entries inserted after this entry. (In the
/// expanded logical array, this bit is ignored.) In this way, the
/// number of flags listed can be smaller than the number of points
/// in the glyph description.
pub const REPEAT_FLAG: Self = Self { bits: 0x08 };
/// Bit 4: This flag has two meanings, depending on how the
/// X_SHORT_VECTOR flag is set. If X_SHORT_VECTOR is set, this bit
/// describes the sign of the value, with 1 equalling positive and
/// 0 negative. If X_SHORT_VECTOR is not set and this bit is set,
/// then the current x-coordinate is the same as the previous
/// x-coordinate. If X_SHORT_VECTOR is not set and this bit is also
/// not set, the current x-coordinate is a signed 16-bit delta
/// vector.
pub const X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR: Self = Self { bits: 0x10 };
/// Bit 5: This flag has two meanings, depending on how the
/// Y_SHORT_VECTOR flag is set. If Y_SHORT_VECTOR is set, this bit
/// describes the sign of the value, with 1 equalling positive and
/// 0 negative. If Y_SHORT_VECTOR is not set and this bit is set,
/// then the current y-coordinate is the same as the previous
/// y-coordinate. If Y_SHORT_VECTOR is not set and this bit is also
/// not set, the current y-coordinate is a signed 16-bit delta
/// vector.
pub const Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR: Self = Self { bits: 0x20 };
/// Bit 6: If set, contours in the glyph description may overlap.
/// Use of this flag is not required in OpenType — that is, it is
/// valid to have contours overlap without having this flag set. It
/// may affect behaviors in some platforms, however. (See the
/// discussion of “Overlapping contours” in Apples
/// specification for details regarding behavior in Apple
/// platforms.) When used, it must be set on the first flag byte
/// for the glyph. See additional details below.
pub const OVERLAP_SIMPLE: Self = Self { bits: 0x40 };
/// Bit 7: Off-curve point belongs to a cubic-Bezier segment
///
/// * [Spec](https://github.com/harfbuzz/boring-expansion-spec/blob/main/glyf1-cubicOutlines.md)
/// * [harfbuzz](https://github.com/harfbuzz/harfbuzz/blob/c1ca46e4ebb6457dfe00a5441d52a4a66134ac58/src/OT/glyf/SimpleGlyph.hh#L23)
pub const CUBIC: Self = Self { bits: 0x80 };
}
impl SimpleGlyphFlags {
/// Returns an empty set of flags.
#[inline]
pub const fn empty() -> Self {
Self { bits: 0 }
}
/// Returns the set containing all flags.
#[inline]
pub const fn all() -> Self {
Self {
bits: Self::ON_CURVE_POINT.bits
| Self::X_SHORT_VECTOR.bits
| Self::Y_SHORT_VECTOR.bits
| Self::REPEAT_FLAG.bits
| Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR.bits
| Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR.bits
| Self::OVERLAP_SIMPLE.bits
| Self::CUBIC.bits,
}
}
/// Returns the raw value of the flags currently stored.
#[inline]
pub const fn bits(&self) -> u8 {
self.bits
}
/// Convert from underlying bit representation, unless that
/// representation contains bits that do not correspond to a flag.
#[inline]
pub const fn from_bits(bits: u8) -> Option<Self> {
if (bits & !Self::all().bits()) == 0 {
Some(Self { bits })
} else {
None
}
}
/// Convert from underlying bit representation, dropping any bits
/// that do not correspond to flags.
#[inline]
pub const fn from_bits_truncate(bits: u8) -> Self {
Self {
bits: bits & Self::all().bits,
}
}
/// Returns `true` if no flags are currently stored.
#[inline]
pub const fn is_empty(&self) -> bool {
self.bits() == Self::empty().bits()
}
/// Returns `true` if there are flags common to both `self` and `other`.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
!(Self {
bits: self.bits & other.bits,
})
.is_empty()
}
/// Returns `true` if all of the flags in `other` are contained within `self`.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
(self.bits & other.bits) == other.bits
}
/// Inserts the specified flags in-place.
#[inline]
pub fn insert(&mut self, other: Self) {
self.bits |= other.bits;
}
/// Removes the specified flags in-place.
#[inline]
pub fn remove(&mut self, other: Self) {
self.bits &= !other.bits;
}
/// Toggles the specified flags in-place.
#[inline]
pub fn toggle(&mut self, other: Self) {
self.bits ^= other.bits;
}
/// Returns the intersection between the flags in `self` and
/// `other`.
///
/// Specifically, the returned set contains only the flags which are
/// present in *both* `self` *and* `other`.
///
/// This is equivalent to using the `&` operator (e.g.
/// [`ops::BitAnd`]), as in `flags & other`.
///
/// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
/// Returns the union of between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags which are
/// present in *either* `self` *or* `other`, including any which are
/// present in both.
///
/// This is equivalent to using the `|` operator (e.g.
/// [`ops::BitOr`]), as in `flags | other`.
///
/// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self {
bits: self.bits | other.bits,
}
}
/// Returns the difference between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags present in
/// `self`, except for the ones present in `other`.
///
/// It is also conceptually equivalent to the "bit-clear" operation:
/// `flags & !other` (and this syntax is also supported).
///
/// This is equivalent to using the `-` operator (e.g.
/// [`ops::Sub`]), as in `flags - other`.
///
/// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::BitOr for SimpleGlyphFlags {
type Output = Self;
/// Returns the union of the two sets of flags.
#[inline]
fn bitor(self, other: SimpleGlyphFlags) -> Self {
Self {
bits: self.bits | other.bits,
}
}
}
impl std::ops::BitOrAssign for SimpleGlyphFlags {
/// Adds the set of flags.
#[inline]
fn bitor_assign(&mut self, other: Self) {
self.bits |= other.bits;
}
}
impl std::ops::BitXor for SimpleGlyphFlags {
type Output = Self;
/// Returns the left flags, but with all the right flags toggled.
#[inline]
fn bitxor(self, other: Self) -> Self {
Self {
bits: self.bits ^ other.bits,
}
}
}
impl std::ops::BitXorAssign for SimpleGlyphFlags {
/// Toggles the set of flags.
#[inline]
fn bitxor_assign(&mut self, other: Self) {
self.bits ^= other.bits;
}
}
impl std::ops::BitAnd for SimpleGlyphFlags {
type Output = Self;
/// Returns the intersection between the two sets of flags.
#[inline]
fn bitand(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
}
impl std::ops::BitAndAssign for SimpleGlyphFlags {
/// Disables all flags disabled in the set.
#[inline]
fn bitand_assign(&mut self, other: Self) {
self.bits &= other.bits;
}
}
impl std::ops::Sub for SimpleGlyphFlags {
type Output = Self;
/// Returns the set difference of the two sets of flags.
#[inline]
fn sub(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::SubAssign for SimpleGlyphFlags {
/// Disables all flags enabled in the set.
#[inline]
fn sub_assign(&mut self, other: Self) {
self.bits &= !other.bits;
}
}
impl std::ops::Not for SimpleGlyphFlags {
type Output = Self;
/// Returns the complement of this set of flags.
#[inline]
fn not(self) -> Self {
Self { bits: !self.bits } & Self::all()
}
}
impl std::fmt::Debug for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let members: &[(&str, Self)] = &[
("ON_CURVE_POINT", Self::ON_CURVE_POINT),
("X_SHORT_VECTOR", Self::X_SHORT_VECTOR),
("Y_SHORT_VECTOR", Self::Y_SHORT_VECTOR),
("REPEAT_FLAG", Self::REPEAT_FLAG),
(
"X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR",
Self::X_IS_SAME_OR_POSITIVE_X_SHORT_VECTOR,
),
(
"Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR",
Self::Y_IS_SAME_OR_POSITIVE_Y_SHORT_VECTOR,
),
("OVERLAP_SIMPLE", Self::OVERLAP_SIMPLE),
("CUBIC", Self::CUBIC),
];
let mut first = true;
for (name, value) in members {
if self.contains(*value) {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str(name)?;
}
}
if first {
f.write_str("(empty)")?;
}
Ok(())
}
}
impl std::fmt::Binary for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Binary::fmt(&self.bits, f)
}
}
impl std::fmt::Octal for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Octal::fmt(&self.bits, f)
}
}
impl std::fmt::LowerHex for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::LowerHex::fmt(&self.bits, f)
}
}
impl std::fmt::UpperHex for SimpleGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::UpperHex::fmt(&self.bits, f)
}
}
impl font_types::Scalar for SimpleGlyphFlags {
type Raw = <u8 as font_types::Scalar>::Raw;
fn to_raw(self) -> Self::Raw {
self.bits().to_raw()
}
fn from_raw(raw: Self::Raw) -> Self {
let t = <u8>::from_raw(raw);
Self::from_bits_truncate(t)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> From<SimpleGlyphFlags> for FieldType<'a> {
fn from(src: SimpleGlyphFlags) -> FieldType<'a> {
src.bits().into()
}
}
/// [CompositeGlyph](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
#[derive(Debug, Clone, Copy)]
#[doc(hidden)]
pub struct CompositeGlyphMarker {
component_data_byte_len: usize,
}
impl CompositeGlyphMarker {
pub fn number_of_contours_byte_range(&self) -> Range<usize> {
let start = 0;
start..start + i16::RAW_BYTE_LEN
}
pub fn x_min_byte_range(&self) -> Range<usize> {
let start = self.number_of_contours_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn y_min_byte_range(&self) -> Range<usize> {
let start = self.x_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn x_max_byte_range(&self) -> Range<usize> {
let start = self.y_min_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn y_max_byte_range(&self) -> Range<usize> {
let start = self.x_max_byte_range().end;
start..start + i16::RAW_BYTE_LEN
}
pub fn component_data_byte_range(&self) -> Range<usize> {
let start = self.y_max_byte_range().end;
start..start + self.component_data_byte_len
}
}
impl MinByteRange for CompositeGlyphMarker {
fn min_byte_range(&self) -> Range<usize> {
0..self.component_data_byte_range().end
}
}
impl<'a> FontRead<'a> for CompositeGlyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let mut cursor = data.cursor();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
cursor.advance::<i16>();
let component_data_byte_len =
cursor.remaining_bytes() / u8::RAW_BYTE_LEN * u8::RAW_BYTE_LEN;
cursor.advance_by(component_data_byte_len);
cursor.finish(CompositeGlyphMarker {
component_data_byte_len,
})
}
}
/// [CompositeGlyph](https://docs.microsoft.com/en-us/typography/opentype/spec/glyf#glyph-headers)
pub type CompositeGlyph<'a> = TableRef<'a, CompositeGlyphMarker>;
#[allow(clippy::needless_lifetimes)]
impl<'a> CompositeGlyph<'a> {
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
let range = self.shape.number_of_contours_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
let range = self.shape.x_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
let range = self.shape.y_min_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
let range = self.shape.x_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
let range = self.shape.y_max_byte_range();
self.data.read_at(range.start).unwrap()
}
/// component flag
/// glyph index of component
pub fn component_data(&self) -> &'a [u8] {
let range = self.shape.component_data_byte_range();
self.data.read_array(range).unwrap()
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for CompositeGlyph<'a> {
fn type_name(&self) -> &str {
"CompositeGlyph"
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
match idx {
0usize => Some(Field::new("number_of_contours", self.number_of_contours())),
1usize => Some(Field::new("x_min", self.x_min())),
2usize => Some(Field::new("y_min", self.y_min())),
3usize => Some(Field::new("x_max", self.x_max())),
4usize => Some(Field::new("y_max", self.y_max())),
5usize => Some(Field::new("component_data", self.component_data())),
_ => None,
}
}
}
#[cfg(feature = "experimental_traverse")]
#[allow(clippy::needless_lifetimes)]
impl<'a> std::fmt::Debug for CompositeGlyph<'a> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
(self as &dyn SomeTable<'a>).fmt(f)
}
}
/// Flags used in [CompositeGlyph]
#[derive(Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash, bytemuck :: AnyBitPattern)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(transparent)]
pub struct CompositeGlyphFlags {
bits: u16,
}
impl CompositeGlyphFlags {
/// Bit 0: If this is set, the arguments are 16-bit (uint16 or
/// int16); otherwise, they are bytes (uint8 or int8).
pub const ARG_1_AND_2_ARE_WORDS: Self = Self { bits: 0x0001 };
/// Bit 1: If this is set, the arguments are signed xy values,
/// otherwise, they are unsigned point numbers.
pub const ARGS_ARE_XY_VALUES: Self = Self { bits: 0x0002 };
/// Bit 2: If set and ARGS_ARE_XY_VALUES is also set, the xy values
/// are rounded to the nearest grid line. Ignored if
/// ARGS_ARE_XY_VALUES is not set.
pub const ROUND_XY_TO_GRID: Self = Self { bits: 0x0004 };
/// Bit 3: This indicates that there is a simple scale for the
/// component. Otherwise, scale = 1.0.
pub const WE_HAVE_A_SCALE: Self = Self { bits: 0x0008 };
/// Bit 5: Indicates at least one more glyph after this one.
pub const MORE_COMPONENTS: Self = Self { bits: 0x0020 };
/// Bit 6: The x direction will use a different scale from the y
/// direction.
pub const WE_HAVE_AN_X_AND_Y_SCALE: Self = Self { bits: 0x0040 };
/// Bit 7: There is a 2 by 2 transformation that will be used to
/// scale the component.
pub const WE_HAVE_A_TWO_BY_TWO: Self = Self { bits: 0x0080 };
/// Bit 8: Following the last component are instructions for the
/// composite character.
pub const WE_HAVE_INSTRUCTIONS: Self = Self { bits: 0x0100 };
/// Bit 9: If set, this forces the aw and lsb (and rsb) for the
/// composite to be equal to those from this component glyph. This
/// works for hinted and unhinted glyphs.
pub const USE_MY_METRICS: Self = Self { bits: 0x0200 };
/// Bit 10: If set, the components of the compound glyph overlap.
/// Use of this flag is not required in OpenType — that is, it is
/// valid to have components overlap without having this flag set.
/// It may affect behaviors in some platforms, however. (See
/// Apples specification for details regarding behavior in Apple
/// platforms.) When used, it must be set on the flag word for the
/// first component. See additional remarks, above, for the similar
/// OVERLAP_SIMPLE flag used in simple-glyph descriptions.
pub const OVERLAP_COMPOUND: Self = Self { bits: 0x0400 };
/// Bit 11: The composite is designed to have the component offset
/// scaled. Ignored if ARGS_ARE_XY_VALUES is not set.
pub const SCALED_COMPONENT_OFFSET: Self = Self { bits: 0x0800 };
/// Bit 12: The composite is designed not to have the component
/// offset scaled. Ignored if ARGS_ARE_XY_VALUES is not set.
pub const UNSCALED_COMPONENT_OFFSET: Self = Self { bits: 0x1000 };
}
impl CompositeGlyphFlags {
/// Returns an empty set of flags.
#[inline]
pub const fn empty() -> Self {
Self { bits: 0 }
}
/// Returns the set containing all flags.
#[inline]
pub const fn all() -> Self {
Self {
bits: Self::ARG_1_AND_2_ARE_WORDS.bits
| Self::ARGS_ARE_XY_VALUES.bits
| Self::ROUND_XY_TO_GRID.bits
| Self::WE_HAVE_A_SCALE.bits
| Self::MORE_COMPONENTS.bits
| Self::WE_HAVE_AN_X_AND_Y_SCALE.bits
| Self::WE_HAVE_A_TWO_BY_TWO.bits
| Self::WE_HAVE_INSTRUCTIONS.bits
| Self::USE_MY_METRICS.bits
| Self::OVERLAP_COMPOUND.bits
| Self::SCALED_COMPONENT_OFFSET.bits
| Self::UNSCALED_COMPONENT_OFFSET.bits,
}
}
/// Returns the raw value of the flags currently stored.
#[inline]
pub const fn bits(&self) -> u16 {
self.bits
}
/// Convert from underlying bit representation, unless that
/// representation contains bits that do not correspond to a flag.
#[inline]
pub const fn from_bits(bits: u16) -> Option<Self> {
if (bits & !Self::all().bits()) == 0 {
Some(Self { bits })
} else {
None
}
}
/// Convert from underlying bit representation, dropping any bits
/// that do not correspond to flags.
#[inline]
pub const fn from_bits_truncate(bits: u16) -> Self {
Self {
bits: bits & Self::all().bits,
}
}
/// Returns `true` if no flags are currently stored.
#[inline]
pub const fn is_empty(&self) -> bool {
self.bits() == Self::empty().bits()
}
/// Returns `true` if there are flags common to both `self` and `other`.
#[inline]
pub const fn intersects(&self, other: Self) -> bool {
!(Self {
bits: self.bits & other.bits,
})
.is_empty()
}
/// Returns `true` if all of the flags in `other` are contained within `self`.
#[inline]
pub const fn contains(&self, other: Self) -> bool {
(self.bits & other.bits) == other.bits
}
/// Inserts the specified flags in-place.
#[inline]
pub fn insert(&mut self, other: Self) {
self.bits |= other.bits;
}
/// Removes the specified flags in-place.
#[inline]
pub fn remove(&mut self, other: Self) {
self.bits &= !other.bits;
}
/// Toggles the specified flags in-place.
#[inline]
pub fn toggle(&mut self, other: Self) {
self.bits ^= other.bits;
}
/// Returns the intersection between the flags in `self` and
/// `other`.
///
/// Specifically, the returned set contains only the flags which are
/// present in *both* `self` *and* `other`.
///
/// This is equivalent to using the `&` operator (e.g.
/// [`ops::BitAnd`]), as in `flags & other`.
///
/// [`ops::BitAnd`]: https://doc.rust-lang.org/std/ops/trait.BitAnd.html
#[inline]
#[must_use]
pub const fn intersection(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
/// Returns the union of between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags which are
/// present in *either* `self` *or* `other`, including any which are
/// present in both.
///
/// This is equivalent to using the `|` operator (e.g.
/// [`ops::BitOr`]), as in `flags | other`.
///
/// [`ops::BitOr`]: https://doc.rust-lang.org/std/ops/trait.BitOr.html
#[inline]
#[must_use]
pub const fn union(self, other: Self) -> Self {
Self {
bits: self.bits | other.bits,
}
}
/// Returns the difference between the flags in `self` and `other`.
///
/// Specifically, the returned set contains all flags present in
/// `self`, except for the ones present in `other`.
///
/// It is also conceptually equivalent to the "bit-clear" operation:
/// `flags & !other` (and this syntax is also supported).
///
/// This is equivalent to using the `-` operator (e.g.
/// [`ops::Sub`]), as in `flags - other`.
///
/// [`ops::Sub`]: https://doc.rust-lang.org/std/ops/trait.Sub.html
#[inline]
#[must_use]
pub const fn difference(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::BitOr for CompositeGlyphFlags {
type Output = Self;
/// Returns the union of the two sets of flags.
#[inline]
fn bitor(self, other: CompositeGlyphFlags) -> Self {
Self {
bits: self.bits | other.bits,
}
}
}
impl std::ops::BitOrAssign for CompositeGlyphFlags {
/// Adds the set of flags.
#[inline]
fn bitor_assign(&mut self, other: Self) {
self.bits |= other.bits;
}
}
impl std::ops::BitXor for CompositeGlyphFlags {
type Output = Self;
/// Returns the left flags, but with all the right flags toggled.
#[inline]
fn bitxor(self, other: Self) -> Self {
Self {
bits: self.bits ^ other.bits,
}
}
}
impl std::ops::BitXorAssign for CompositeGlyphFlags {
/// Toggles the set of flags.
#[inline]
fn bitxor_assign(&mut self, other: Self) {
self.bits ^= other.bits;
}
}
impl std::ops::BitAnd for CompositeGlyphFlags {
type Output = Self;
/// Returns the intersection between the two sets of flags.
#[inline]
fn bitand(self, other: Self) -> Self {
Self {
bits: self.bits & other.bits,
}
}
}
impl std::ops::BitAndAssign for CompositeGlyphFlags {
/// Disables all flags disabled in the set.
#[inline]
fn bitand_assign(&mut self, other: Self) {
self.bits &= other.bits;
}
}
impl std::ops::Sub for CompositeGlyphFlags {
type Output = Self;
/// Returns the set difference of the two sets of flags.
#[inline]
fn sub(self, other: Self) -> Self {
Self {
bits: self.bits & !other.bits,
}
}
}
impl std::ops::SubAssign for CompositeGlyphFlags {
/// Disables all flags enabled in the set.
#[inline]
fn sub_assign(&mut self, other: Self) {
self.bits &= !other.bits;
}
}
impl std::ops::Not for CompositeGlyphFlags {
type Output = Self;
/// Returns the complement of this set of flags.
#[inline]
fn not(self) -> Self {
Self { bits: !self.bits } & Self::all()
}
}
impl std::fmt::Debug for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
let members: &[(&str, Self)] = &[
("ARG_1_AND_2_ARE_WORDS", Self::ARG_1_AND_2_ARE_WORDS),
("ARGS_ARE_XY_VALUES", Self::ARGS_ARE_XY_VALUES),
("ROUND_XY_TO_GRID", Self::ROUND_XY_TO_GRID),
("WE_HAVE_A_SCALE", Self::WE_HAVE_A_SCALE),
("MORE_COMPONENTS", Self::MORE_COMPONENTS),
("WE_HAVE_AN_X_AND_Y_SCALE", Self::WE_HAVE_AN_X_AND_Y_SCALE),
("WE_HAVE_A_TWO_BY_TWO", Self::WE_HAVE_A_TWO_BY_TWO),
("WE_HAVE_INSTRUCTIONS", Self::WE_HAVE_INSTRUCTIONS),
("USE_MY_METRICS", Self::USE_MY_METRICS),
("OVERLAP_COMPOUND", Self::OVERLAP_COMPOUND),
("SCALED_COMPONENT_OFFSET", Self::SCALED_COMPONENT_OFFSET),
("UNSCALED_COMPONENT_OFFSET", Self::UNSCALED_COMPONENT_OFFSET),
];
let mut first = true;
for (name, value) in members {
if self.contains(*value) {
if !first {
f.write_str(" | ")?;
}
first = false;
f.write_str(name)?;
}
}
if first {
f.write_str("(empty)")?;
}
Ok(())
}
}
impl std::fmt::Binary for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Binary::fmt(&self.bits, f)
}
}
impl std::fmt::Octal for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::Octal::fmt(&self.bits, f)
}
}
impl std::fmt::LowerHex for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::LowerHex::fmt(&self.bits, f)
}
}
impl std::fmt::UpperHex for CompositeGlyphFlags {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
std::fmt::UpperHex::fmt(&self.bits, f)
}
}
impl font_types::Scalar for CompositeGlyphFlags {
type Raw = <u16 as font_types::Scalar>::Raw;
fn to_raw(self) -> Self::Raw {
self.bits().to_raw()
}
fn from_raw(raw: Self::Raw) -> Self {
let t = <u16>::from_raw(raw);
Self::from_bits_truncate(t)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> From<CompositeGlyphFlags> for FieldType<'a> {
fn from(src: CompositeGlyphFlags) -> FieldType<'a> {
src.bits().into()
}
}
/// Simple or composite glyph.
#[derive(Clone)]
pub enum Glyph<'a> {
Simple(SimpleGlyph<'a>),
Composite(CompositeGlyph<'a>),
}
impl<'a> Glyph<'a> {
///Return the `FontData` used to resolve offsets for this table.
pub fn offset_data(&self) -> FontData<'a> {
match self {
Self::Simple(item) => item.offset_data(),
Self::Composite(item) => item.offset_data(),
}
}
/// If the number of contours is greater than or equal to zero,
/// this is a simple glyph. If negative, this is a composite glyph
/// — the value -1 should be used for composite glyphs.
pub fn number_of_contours(&self) -> i16 {
match self {
Self::Simple(item) => item.number_of_contours(),
Self::Composite(item) => item.number_of_contours(),
}
}
/// Minimum x for coordinate data.
pub fn x_min(&self) -> i16 {
match self {
Self::Simple(item) => item.x_min(),
Self::Composite(item) => item.x_min(),
}
}
/// Minimum y for coordinate data.
pub fn y_min(&self) -> i16 {
match self {
Self::Simple(item) => item.y_min(),
Self::Composite(item) => item.y_min(),
}
}
/// Maximum x for coordinate data.
pub fn x_max(&self) -> i16 {
match self {
Self::Simple(item) => item.x_max(),
Self::Composite(item) => item.x_max(),
}
}
/// Maximum y for coordinate data.
pub fn y_max(&self) -> i16 {
match self {
Self::Simple(item) => item.y_max(),
Self::Composite(item) => item.y_max(),
}
}
}
impl<'a> FontRead<'a> for Glyph<'a> {
fn read(data: FontData<'a>) -> Result<Self, ReadError> {
let format: i16 = data.read_at(0usize)?;
#[allow(clippy::redundant_guards)]
match format {
format if format >= 0 => Ok(Self::Simple(FontRead::read(data)?)),
format if format < 0 => Ok(Self::Composite(FontRead::read(data)?)),
other => Err(ReadError::InvalidFormat(other.into())),
}
}
}
impl MinByteRange for Glyph<'_> {
fn min_byte_range(&self) -> Range<usize> {
match self {
Self::Simple(item) => item.min_byte_range(),
Self::Composite(item) => item.min_byte_range(),
}
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> Glyph<'a> {
fn dyn_inner<'b>(&'b self) -> &'b dyn SomeTable<'a> {
match self {
Self::Simple(table) => table,
Self::Composite(table) => table,
}
}
}
#[cfg(feature = "experimental_traverse")]
impl std::fmt::Debug for Glyph<'_> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.dyn_inner().fmt(f)
}
}
#[cfg(feature = "experimental_traverse")]
impl<'a> SomeTable<'a> for Glyph<'a> {
fn type_name(&self) -> &str {
self.dyn_inner().type_name()
}
fn get_field(&self, idx: usize) -> Option<Field<'a>> {
self.dyn_inner().get_field(idx)
}
}