Files
another-boids-in-rust/vendor/gltf-json/src/root.rs

503 lines
14 KiB
Rust

use crate::buffer;
use crate::extensions;
use crate::texture;
use crate::validation;
use gltf_derive::Validate;
use serde_derive::{Deserialize, Serialize};
use std::{self, fmt, io, marker};
use crate::path::Path;
use crate::{
Accessor, Animation, Asset, Buffer, Camera, Error, Extras, Image, Material, Mesh, Node, Scene,
Skin, Texture, Value,
};
use validation::Validate;
// TODO: As a breaking change, simplify by replacing uses of `Get<T>` with `AsRef<[T]>`.
/// Helper trait for retrieving top-level objects by a universal identifier.
pub trait Get<T> {
/// Retrieves a single value at the given index.
fn get(&self, id: Index<T>) -> Option<&T>;
}
/// Represents an offset into a vector of type `T` owned by the root glTF object.
///
/// This type may be used with the following functions:
///
/// * [`Root::get()`] to retrieve objects from [`Root`].
/// * [`Root::push()`] to add new objects to [`Root`].
pub struct Index<T>(u32, marker::PhantomData<fn() -> T>);
impl<T> Index<T> {
/// Given a vector of glTF objects, call [`Vec::push()`] to insert it into the vector,
/// then return an [`Index`] for it.
///
/// This allows you to easily obtain [`Index`] values with the correct index and type when
/// creating a glTF asset. Note that for [`Root`], you can call [`Root::push()`] without
/// needing to retrieve the correct vector first.
///
/// # Panics
///
/// Panics if the vector has [`u32::MAX`] or more elements, in which case an `Index` cannot be
/// created.
pub fn push(vec: &mut Vec<T>, value: T) -> Index<T> {
let len = vec.len();
let Ok(index): Result<u32, _> = len.try_into() else {
panic!(
"glTF vector of {ty} has {len} elements, which exceeds the Index limit",
ty = std::any::type_name::<T>(),
);
};
vec.push(value);
Index::new(index)
}
}
/// The root object of a glTF 2.0 asset.
#[derive(Clone, Debug, Default, Deserialize, Serialize, Validate)]
#[gltf(validate_hook = "root_validate_hook")]
pub struct Root {
/// An array of accessors.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub accessors: Vec<Accessor>,
/// An array of keyframe animations.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub animations: Vec<Animation>,
/// Metadata about the glTF asset.
pub asset: Asset,
/// An array of buffers.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub buffers: Vec<Buffer>,
/// An array of buffer views.
#[serde(default, rename = "bufferViews")]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub buffer_views: Vec<buffer::View>,
/// The default scene.
#[serde(skip_serializing_if = "Option::is_none")]
pub scene: Option<Index<Scene>>,
/// Extension specific data.
#[serde(default, skip_serializing_if = "Option::is_none")]
pub extensions: Option<extensions::root::Root>,
/// Optional application specific data.
#[serde(default)]
#[cfg_attr(feature = "extras", serde(skip_serializing_if = "Option::is_none"))]
#[cfg_attr(not(feature = "extras"), serde(skip_serializing))]
pub extras: Extras,
/// Names of glTF extensions used somewhere in this asset.
#[serde(default, rename = "extensionsUsed")]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub extensions_used: Vec<String>,
/// Names of glTF extensions required to properly load this asset.
#[serde(default, rename = "extensionsRequired")]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub extensions_required: Vec<String>,
/// An array of cameras.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub cameras: Vec<Camera>,
/// An array of images.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub images: Vec<Image>,
/// An array of materials.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub materials: Vec<Material>,
/// An array of meshes.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub meshes: Vec<Mesh>,
/// An array of nodes.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub nodes: Vec<Node>,
/// An array of samplers.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub samplers: Vec<texture::Sampler>,
/// An array of scenes.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub scenes: Vec<Scene>,
/// An array of skins.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub skins: Vec<Skin>,
/// An array of textures.
#[serde(default)]
#[serde(skip_serializing_if = "Vec::is_empty")]
pub textures: Vec<Texture>,
}
fn root_validate_hook<P, R>(root: &Root, _also_root: &Root, path: P, report: &mut R)
where
P: Fn() -> Path,
R: FnMut(&dyn Fn() -> Path, crate::validation::Error),
{
for (i, ext) in root.extensions_required.iter().enumerate() {
if !crate::extensions::ENABLED_EXTENSIONS.contains(&ext.as_str()) {
report(
&|| {
path()
.field("extensionsRequired")
.index(i)
.value_str(ext.as_str())
},
crate::validation::Error::Unsupported,
);
}
}
}
impl Root {
/// Returns a single item from the root object.
pub fn get<T>(&self, index: Index<T>) -> Option<&T>
where
Self: Get<T>,
{
(self as &dyn Get<T>).get(index)
}
/// Insert the given value into this (as via [`Vec::push()`]), then return the [`Index`] to it.
///
/// This allows you to easily obtain [`Index`] values with the correct index and type when
/// creating a glTF asset.
///
/// If you have a mutable borrow conflict when using this method, consider using the more
/// explicit [`Index::push()`] method, passing it only the necessary vector.
///
/// # Panics
///
/// Panics if there are already [`u32::MAX`] or more elements of this type,
/// in which case an `Index` cannot be created.
#[track_caller]
pub fn push<T>(&mut self, value: T) -> Index<T>
where
Self: AsMut<Vec<T>>,
{
Index::push(self.as_mut(), value)
}
/// Deserialize from a JSON string slice.
#[allow(clippy::should_implement_trait)]
pub fn from_str(str_: &str) -> Result<Self, Error> {
serde_json::from_str(str_)
}
/// Deserialize from a JSON byte slice.
pub fn from_slice(slice: &[u8]) -> Result<Self, Error> {
serde_json::from_slice(slice)
}
/// Deserialize from a stream of JSON.
pub fn from_reader<R>(reader: R) -> Result<Self, Error>
where
R: io::Read,
{
serde_json::from_reader(reader)
}
/// Serialize as a `String` of JSON.
pub fn to_string(&self) -> Result<String, Error> {
serde_json::to_string(self)
}
/// Serialize as a pretty-printed `String` of JSON.
pub fn to_string_pretty(&self) -> Result<String, Error> {
serde_json::to_string_pretty(self)
}
/// Serialize as a generic JSON value.
pub fn to_value(&self) -> Result<Value, Error> {
serde_json::to_value(self)
}
/// Serialize as a JSON byte vector.
pub fn to_vec(&self) -> Result<Vec<u8>, Error> {
serde_json::to_vec(self)
}
/// Serialize as a pretty-printed JSON byte vector.
pub fn to_vec_pretty(&self) -> Result<Vec<u8>, Error> {
serde_json::to_vec_pretty(self)
}
/// Serialize as a JSON byte writertor.
pub fn to_writer<W>(&self, writer: W) -> Result<(), Error>
where
W: io::Write,
{
serde_json::to_writer(writer, self)
}
/// Serialize as a pretty-printed JSON byte writertor.
pub fn to_writer_pretty<W>(&self, writer: W) -> Result<(), Error>
where
W: io::Write,
{
serde_json::to_writer_pretty(writer, self)
}
}
impl<T> Index<T> {
/// Creates a new `Index` representing an offset into an array containing `T`.
pub fn new(value: u32) -> Self {
Index(value, std::marker::PhantomData)
}
/// Returns the internal offset value.
pub fn value(&self) -> usize {
self.0 as usize
}
}
impl<T> serde::Serialize for Index<T> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: ::serde::Serializer,
{
serializer.serialize_u64(self.value() as u64)
}
}
impl<'de, T> serde::Deserialize<'de> for Index<T> {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
struct Visitor<T>(marker::PhantomData<T>);
impl<'de, T> serde::de::Visitor<'de> for Visitor<T> {
type Value = Index<T>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
formatter.write_str("index into child of root")
}
fn visit_u64<E>(self, value: u64) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(Index::new(value as u32))
}
}
deserializer.deserialize_u64(Visitor::<T>(marker::PhantomData))
}
}
impl<T> Clone for Index<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T> Copy for Index<T> {}
impl<T> Ord for Index<T> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.cmp(&other.0)
}
}
impl<T> PartialOrd for Index<T> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl<T> Eq for Index<T> {}
impl<T> PartialEq for Index<T> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<T> std::hash::Hash for Index<T> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state);
}
}
impl<T> fmt::Debug for Index<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> fmt::Display for Index<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T: Validate> Validate for Index<T>
where
Root: Get<T>,
{
fn validate<P, R>(&self, root: &Root, path: P, report: &mut R)
where
P: Fn() -> Path,
R: FnMut(&dyn Fn() -> Path, validation::Error),
{
if root.get(*self).is_none() {
report(&path, validation::Error::IndexOutOfBounds);
}
}
}
macro_rules! impl_get {
($ty:ty, $field:ident) => {
impl<'a> Get<$ty> for Root {
fn get(&self, index: Index<$ty>) -> Option<&$ty> {
self.$field.get(index.value())
}
}
impl AsRef<[$ty]> for Root {
fn as_ref(&self) -> &[$ty] {
&self.$field
}
}
impl AsMut<Vec<$ty>> for Root {
fn as_mut(&mut self) -> &mut Vec<$ty> {
&mut self.$field
}
}
};
}
impl_get!(Accessor, accessors);
impl_get!(Animation, animations);
impl_get!(Buffer, buffers);
impl_get!(buffer::View, buffer_views);
impl_get!(Camera, cameras);
impl_get!(Image, images);
impl_get!(Material, materials);
impl_get!(Mesh, meshes);
impl_get!(Node, nodes);
impl_get!(texture::Sampler, samplers);
impl_get!(Scene, scenes);
impl_get!(Skin, skins);
impl_get!(Texture, textures);
#[cfg(test)]
mod tests {
use super::*;
use std::collections::HashSet;
#[test]
fn index_is_partialeq() {
assert_eq!(Index::<Node>::new(1), Index::new(1));
assert_ne!(Index::<Node>::new(1), Index::new(2));
}
#[test]
fn index_is_hash() {
let set = HashSet::from([Index::<Node>::new(1), Index::new(1234)]);
assert!(set.contains(&Index::new(1234)));
assert!(!set.contains(&Index::new(999)));
assert_eq!(set.len(), 2);
}
#[test]
fn index_is_ord() {
assert!(Index::<Node>::new(1) < Index::new(1234));
}
fn _index_is_send_sync()
where
Index<Material>: Send + Sync,
{
}
#[test]
fn index_push() {
let some_object = "hello";
let mut vec = Vec::new();
assert_eq!(Index::push(&mut vec, some_object), Index::new(0));
assert_eq!(Index::push(&mut vec, some_object), Index::new(1));
}
#[test]
fn root_push() {
let some_object = Buffer {
byte_length: validation::USize64(1),
#[cfg(feature = "names")]
name: None,
uri: None,
extensions: None,
extras: Default::default(),
};
let mut root = Root::default();
assert_eq!(root.push(some_object.clone()), Index::new(0));
assert_eq!(root.push(some_object), Index::new(1));
}
#[test]
fn root_extensions() {
use crate::validation::Error;
use crate::Path;
let mut root = super::Root {
extensions_required: vec!["KHR_lights_punctual".to_owned()],
..Default::default()
};
let mut errors = Vec::new();
root.validate(&root, Path::new, &mut |path, error| {
errors.push((path(), error));
});
#[cfg(feature = "KHR_lights_punctual")]
{
assert!(errors.is_empty());
}
#[cfg(not(feature = "KHR_lights_punctual"))]
{
assert_eq!(1, errors.len());
let (path, error) = errors.get(0).unwrap();
assert_eq!(
path.as_str(),
"extensionsRequired[0] = \"KHR_lights_punctual\""
);
assert_eq!(*error, Error::Unsupported);
}
root.extensions_required = vec!["KHR_mesh_quantization".to_owned()];
errors.clear();
root.validate(&root, Path::new, &mut |path, error| {
errors.push((path(), error));
});
assert_eq!(1, errors.len());
let (path, error) = errors.get(0).unwrap();
assert_eq!(
path.as_str(),
"extensionsRequired[0] = \"KHR_mesh_quantization\""
);
assert_eq!(*error, Error::Unsupported);
}
}