851 lines
26 KiB
Rust
851 lines
26 KiB
Rust
// Generated from mat.rs.tera template. Edit the template, not the generated file.
|
|
|
|
use crate::{
|
|
euler::{FromEuler, ToEuler},
|
|
f64::math,
|
|
swizzles::*,
|
|
DMat2, DMat4, DQuat, DVec2, DVec3, EulerRot, Mat3,
|
|
};
|
|
use core::fmt;
|
|
use core::iter::{Product, Sum};
|
|
use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
|
|
|
/// Creates a 3x3 matrix from three column vectors.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub const fn dmat3(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3) -> DMat3 {
|
|
DMat3::from_cols(x_axis, y_axis, z_axis)
|
|
}
|
|
|
|
/// A 3x3 column major matrix.
|
|
///
|
|
/// This 3x3 matrix type features convenience methods for creating and using linear and
|
|
/// affine transformations. If you are primarily dealing with 2D affine transformations the
|
|
/// [`DAffine2`](crate::DAffine2) type is much faster and more space efficient than
|
|
/// using a 3x3 matrix.
|
|
///
|
|
/// Linear transformations including 3D rotation and scale can be created using methods
|
|
/// such as [`Self::from_diagonal()`], [`Self::from_quat()`], [`Self::from_axis_angle()`],
|
|
/// [`Self::from_rotation_x()`], [`Self::from_rotation_y()`], or
|
|
/// [`Self::from_rotation_z()`].
|
|
///
|
|
/// The resulting matrices can be use to transform 3D vectors using regular vector
|
|
/// multiplication.
|
|
///
|
|
/// Affine transformations including 2D translation, rotation and scale can be created
|
|
/// using methods such as [`Self::from_translation()`], [`Self::from_angle()`],
|
|
/// [`Self::from_scale()`] and [`Self::from_scale_angle_translation()`].
|
|
///
|
|
/// The [`Self::transform_point2()`] and [`Self::transform_vector2()`] convenience methods
|
|
/// are provided for performing affine transforms on 2D vectors and points. These multiply
|
|
/// 2D inputs as 3D vectors with an implicit `z` value of `1` for points and `0` for
|
|
/// vectors respectively. These methods assume that `Self` contains a valid affine
|
|
/// transform.
|
|
#[derive(Clone, Copy)]
|
|
#[repr(C)]
|
|
pub struct DMat3 {
|
|
pub x_axis: DVec3,
|
|
pub y_axis: DVec3,
|
|
pub z_axis: DVec3,
|
|
}
|
|
|
|
impl DMat3 {
|
|
/// A 3x3 matrix with all elements set to `0.0`.
|
|
pub const ZERO: Self = Self::from_cols(DVec3::ZERO, DVec3::ZERO, DVec3::ZERO);
|
|
|
|
/// A 3x3 identity matrix, where all diagonal elements are `1`, and all off-diagonal elements are `0`.
|
|
pub const IDENTITY: Self = Self::from_cols(DVec3::X, DVec3::Y, DVec3::Z);
|
|
|
|
/// All NAN:s.
|
|
pub const NAN: Self = Self::from_cols(DVec3::NAN, DVec3::NAN, DVec3::NAN);
|
|
|
|
#[allow(clippy::too_many_arguments)]
|
|
#[inline(always)]
|
|
#[must_use]
|
|
const fn new(
|
|
m00: f64,
|
|
m01: f64,
|
|
m02: f64,
|
|
m10: f64,
|
|
m11: f64,
|
|
m12: f64,
|
|
m20: f64,
|
|
m21: f64,
|
|
m22: f64,
|
|
) -> Self {
|
|
Self {
|
|
x_axis: DVec3::new(m00, m01, m02),
|
|
y_axis: DVec3::new(m10, m11, m12),
|
|
z_axis: DVec3::new(m20, m21, m22),
|
|
}
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from three column vectors.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub const fn from_cols(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3) -> Self {
|
|
Self {
|
|
x_axis,
|
|
y_axis,
|
|
z_axis,
|
|
}
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from a `[f64; 9]` array stored in column major order.
|
|
/// If your data is stored in row major you will need to `transpose` the returned
|
|
/// matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn from_cols_array(m: &[f64; 9]) -> Self {
|
|
Self::new(m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8])
|
|
}
|
|
|
|
/// Creates a `[f64; 9]` array storing data in column major order.
|
|
/// If you require data in row major order `transpose` the matrix first.
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn to_cols_array(&self) -> [f64; 9] {
|
|
[
|
|
self.x_axis.x,
|
|
self.x_axis.y,
|
|
self.x_axis.z,
|
|
self.y_axis.x,
|
|
self.y_axis.y,
|
|
self.y_axis.z,
|
|
self.z_axis.x,
|
|
self.z_axis.y,
|
|
self.z_axis.z,
|
|
]
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from a `[[f64; 3]; 3]` 3D array stored in column major order.
|
|
/// If your data is in row major order you will need to `transpose` the returned
|
|
/// matrix.
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn from_cols_array_2d(m: &[[f64; 3]; 3]) -> Self {
|
|
Self::from_cols(
|
|
DVec3::from_array(m[0]),
|
|
DVec3::from_array(m[1]),
|
|
DVec3::from_array(m[2]),
|
|
)
|
|
}
|
|
|
|
/// Creates a `[[f64; 3]; 3]` 3D array storing data in column major order.
|
|
/// If you require data in row major order `transpose` the matrix first.
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn to_cols_array_2d(&self) -> [[f64; 3]; 3] {
|
|
[
|
|
self.x_axis.to_array(),
|
|
self.y_axis.to_array(),
|
|
self.z_axis.to_array(),
|
|
]
|
|
}
|
|
|
|
/// Creates a 3x3 matrix with its diagonal set to `diagonal` and all other entries set to 0.
|
|
#[doc(alias = "scale")]
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn from_diagonal(diagonal: DVec3) -> Self {
|
|
Self::new(
|
|
diagonal.x, 0.0, 0.0, 0.0, diagonal.y, 0.0, 0.0, 0.0, diagonal.z,
|
|
)
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from a 4x4 matrix, discarding the 4th row and column.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_mat4(m: DMat4) -> Self {
|
|
Self::from_cols(
|
|
DVec3::from_vec4(m.x_axis),
|
|
DVec3::from_vec4(m.y_axis),
|
|
DVec3::from_vec4(m.z_axis),
|
|
)
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from the minor of the given 4x4 matrix, discarding the `i`th column
|
|
/// and `j`th row.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `i` or `j` is greater than 3.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_mat4_minor(m: DMat4, i: usize, j: usize) -> Self {
|
|
match (i, j) {
|
|
(0, 0) => Self::from_cols(m.y_axis.yzw(), m.z_axis.yzw(), m.w_axis.yzw()),
|
|
(0, 1) => Self::from_cols(m.y_axis.xzw(), m.z_axis.xzw(), m.w_axis.xzw()),
|
|
(0, 2) => Self::from_cols(m.y_axis.xyw(), m.z_axis.xyw(), m.w_axis.xyw()),
|
|
(0, 3) => Self::from_cols(m.y_axis.xyz(), m.z_axis.xyz(), m.w_axis.xyz()),
|
|
(1, 0) => Self::from_cols(m.x_axis.yzw(), m.z_axis.yzw(), m.w_axis.yzw()),
|
|
(1, 1) => Self::from_cols(m.x_axis.xzw(), m.z_axis.xzw(), m.w_axis.xzw()),
|
|
(1, 2) => Self::from_cols(m.x_axis.xyw(), m.z_axis.xyw(), m.w_axis.xyw()),
|
|
(1, 3) => Self::from_cols(m.x_axis.xyz(), m.z_axis.xyz(), m.w_axis.xyz()),
|
|
(2, 0) => Self::from_cols(m.x_axis.yzw(), m.y_axis.yzw(), m.w_axis.yzw()),
|
|
(2, 1) => Self::from_cols(m.x_axis.xzw(), m.y_axis.xzw(), m.w_axis.xzw()),
|
|
(2, 2) => Self::from_cols(m.x_axis.xyw(), m.y_axis.xyw(), m.w_axis.xyw()),
|
|
(2, 3) => Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.w_axis.xyz()),
|
|
(3, 0) => Self::from_cols(m.x_axis.yzw(), m.y_axis.yzw(), m.z_axis.yzw()),
|
|
(3, 1) => Self::from_cols(m.x_axis.xzw(), m.y_axis.xzw(), m.z_axis.xzw()),
|
|
(3, 2) => Self::from_cols(m.x_axis.xyw(), m.y_axis.xyw(), m.z_axis.xyw()),
|
|
(3, 3) => Self::from_cols(m.x_axis.xyz(), m.y_axis.xyz(), m.z_axis.xyz()),
|
|
_ => panic!("index out of bounds"),
|
|
}
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from the given quaternion.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if `rotation` is not normalized when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_quat(rotation: DQuat) -> Self {
|
|
glam_assert!(rotation.is_normalized());
|
|
|
|
let x2 = rotation.x + rotation.x;
|
|
let y2 = rotation.y + rotation.y;
|
|
let z2 = rotation.z + rotation.z;
|
|
let xx = rotation.x * x2;
|
|
let xy = rotation.x * y2;
|
|
let xz = rotation.x * z2;
|
|
let yy = rotation.y * y2;
|
|
let yz = rotation.y * z2;
|
|
let zz = rotation.z * z2;
|
|
let wx = rotation.w * x2;
|
|
let wy = rotation.w * y2;
|
|
let wz = rotation.w * z2;
|
|
|
|
Self::from_cols(
|
|
DVec3::new(1.0 - (yy + zz), xy + wz, xz - wy),
|
|
DVec3::new(xy - wz, 1.0 - (xx + zz), yz + wx),
|
|
DVec3::new(xz + wy, yz - wx, 1.0 - (xx + yy)),
|
|
)
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from a normalized rotation `axis` and `angle` (in
|
|
/// radians).
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if `axis` is not normalized when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self {
|
|
glam_assert!(axis.is_normalized());
|
|
|
|
let (sin, cos) = math::sin_cos(angle);
|
|
let (xsin, ysin, zsin) = axis.mul(sin).into();
|
|
let (x, y, z) = axis.into();
|
|
let (x2, y2, z2) = axis.mul(axis).into();
|
|
let omc = 1.0 - cos;
|
|
let xyomc = x * y * omc;
|
|
let xzomc = x * z * omc;
|
|
let yzomc = y * z * omc;
|
|
Self::from_cols(
|
|
DVec3::new(x2 * omc + cos, xyomc + zsin, xzomc - ysin),
|
|
DVec3::new(xyomc - zsin, y2 * omc + cos, yzomc + xsin),
|
|
DVec3::new(xzomc + ysin, yzomc - xsin, z2 * omc + cos),
|
|
)
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from the given euler rotation sequence and the angles (in
|
|
/// radians).
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_euler(order: EulerRot, a: f64, b: f64, c: f64) -> Self {
|
|
Self::from_euler_angles(order, a, b, c)
|
|
}
|
|
|
|
/// Extract Euler angles with the given Euler rotation order.
|
|
///
|
|
/// Note if the input matrix contains scales, shears, or other non-rotation transformations then
|
|
/// the resulting Euler angles will be ill-defined.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if any input matrix column is not normalized when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn to_euler(&self, order: EulerRot) -> (f64, f64, f64) {
|
|
glam_assert!(
|
|
self.x_axis.is_normalized()
|
|
&& self.y_axis.is_normalized()
|
|
&& self.z_axis.is_normalized()
|
|
);
|
|
self.to_euler_angles(order)
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from `angle` (in radians) around the x axis.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_rotation_x(angle: f64) -> Self {
|
|
let (sina, cosa) = math::sin_cos(angle);
|
|
Self::from_cols(
|
|
DVec3::X,
|
|
DVec3::new(0.0, cosa, sina),
|
|
DVec3::new(0.0, -sina, cosa),
|
|
)
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from `angle` (in radians) around the y axis.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_rotation_y(angle: f64) -> Self {
|
|
let (sina, cosa) = math::sin_cos(angle);
|
|
Self::from_cols(
|
|
DVec3::new(cosa, 0.0, -sina),
|
|
DVec3::Y,
|
|
DVec3::new(sina, 0.0, cosa),
|
|
)
|
|
}
|
|
|
|
/// Creates a 3D rotation matrix from `angle` (in radians) around the z axis.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_rotation_z(angle: f64) -> Self {
|
|
let (sina, cosa) = math::sin_cos(angle);
|
|
Self::from_cols(
|
|
DVec3::new(cosa, sina, 0.0),
|
|
DVec3::new(-sina, cosa, 0.0),
|
|
DVec3::Z,
|
|
)
|
|
}
|
|
|
|
/// Creates an affine transformation matrix from the given 2D `translation`.
|
|
///
|
|
/// The resulting matrix can be used to transform 2D points and vectors. See
|
|
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_translation(translation: DVec2) -> Self {
|
|
Self::from_cols(
|
|
DVec3::X,
|
|
DVec3::Y,
|
|
DVec3::new(translation.x, translation.y, 1.0),
|
|
)
|
|
}
|
|
|
|
/// Creates an affine transformation matrix from the given 2D rotation `angle` (in
|
|
/// radians).
|
|
///
|
|
/// The resulting matrix can be used to transform 2D points and vectors. See
|
|
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_angle(angle: f64) -> Self {
|
|
let (sin, cos) = math::sin_cos(angle);
|
|
Self::from_cols(
|
|
DVec3::new(cos, sin, 0.0),
|
|
DVec3::new(-sin, cos, 0.0),
|
|
DVec3::Z,
|
|
)
|
|
}
|
|
|
|
/// Creates an affine transformation matrix from the given 2D `scale`, rotation `angle` (in
|
|
/// radians) and `translation`.
|
|
///
|
|
/// The resulting matrix can be used to transform 2D points and vectors. See
|
|
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_scale_angle_translation(scale: DVec2, angle: f64, translation: DVec2) -> Self {
|
|
let (sin, cos) = math::sin_cos(angle);
|
|
Self::from_cols(
|
|
DVec3::new(cos * scale.x, sin * scale.x, 0.0),
|
|
DVec3::new(-sin * scale.y, cos * scale.y, 0.0),
|
|
DVec3::new(translation.x, translation.y, 1.0),
|
|
)
|
|
}
|
|
|
|
/// Creates an affine transformation matrix from the given non-uniform 2D `scale`.
|
|
///
|
|
/// The resulting matrix can be used to transform 2D points and vectors. See
|
|
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if all elements of `scale` are zero when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn from_scale(scale: DVec2) -> Self {
|
|
// Do not panic as long as any component is non-zero
|
|
glam_assert!(scale.cmpne(DVec2::ZERO).any());
|
|
|
|
Self::from_cols(
|
|
DVec3::new(scale.x, 0.0, 0.0),
|
|
DVec3::new(0.0, scale.y, 0.0),
|
|
DVec3::Z,
|
|
)
|
|
}
|
|
|
|
/// Creates an affine transformation matrix from the given 2x2 matrix.
|
|
///
|
|
/// The resulting matrix can be used to transform 2D points and vectors. See
|
|
/// [`Self::transform_point2()`] and [`Self::transform_vector2()`].
|
|
#[inline]
|
|
pub fn from_mat2(m: DMat2) -> Self {
|
|
Self::from_cols((m.x_axis, 0.0).into(), (m.y_axis, 0.0).into(), DVec3::Z)
|
|
}
|
|
|
|
/// Creates a 3x3 matrix from the first 9 values in `slice`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `slice` is less than 9 elements long.
|
|
#[inline]
|
|
#[must_use]
|
|
pub const fn from_cols_slice(slice: &[f64]) -> Self {
|
|
Self::new(
|
|
slice[0], slice[1], slice[2], slice[3], slice[4], slice[5], slice[6], slice[7],
|
|
slice[8],
|
|
)
|
|
}
|
|
|
|
/// Writes the columns of `self` to the first 9 elements in `slice`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `slice` is less than 9 elements long.
|
|
#[inline]
|
|
pub fn write_cols_to_slice(self, slice: &mut [f64]) {
|
|
slice[0] = self.x_axis.x;
|
|
slice[1] = self.x_axis.y;
|
|
slice[2] = self.x_axis.z;
|
|
slice[3] = self.y_axis.x;
|
|
slice[4] = self.y_axis.y;
|
|
slice[5] = self.y_axis.z;
|
|
slice[6] = self.z_axis.x;
|
|
slice[7] = self.z_axis.y;
|
|
slice[8] = self.z_axis.z;
|
|
}
|
|
|
|
/// Returns the matrix column for the given `index`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `index` is greater than 2.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn col(&self, index: usize) -> DVec3 {
|
|
match index {
|
|
0 => self.x_axis,
|
|
1 => self.y_axis,
|
|
2 => self.z_axis,
|
|
_ => panic!("index out of bounds"),
|
|
}
|
|
}
|
|
|
|
/// Returns a mutable reference to the matrix column for the given `index`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `index` is greater than 2.
|
|
#[inline]
|
|
pub fn col_mut(&mut self, index: usize) -> &mut DVec3 {
|
|
match index {
|
|
0 => &mut self.x_axis,
|
|
1 => &mut self.y_axis,
|
|
2 => &mut self.z_axis,
|
|
_ => panic!("index out of bounds"),
|
|
}
|
|
}
|
|
|
|
/// Returns the matrix row for the given `index`.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics if `index` is greater than 2.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn row(&self, index: usize) -> DVec3 {
|
|
match index {
|
|
0 => DVec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
|
|
1 => DVec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
|
|
2 => DVec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
|
|
_ => panic!("index out of bounds"),
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if, and only if, all elements are finite.
|
|
/// If any element is either `NaN`, positive or negative infinity, this will return `false`.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn is_finite(&self) -> bool {
|
|
self.x_axis.is_finite() && self.y_axis.is_finite() && self.z_axis.is_finite()
|
|
}
|
|
|
|
/// Returns `true` if any elements are `NaN`.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn is_nan(&self) -> bool {
|
|
self.x_axis.is_nan() || self.y_axis.is_nan() || self.z_axis.is_nan()
|
|
}
|
|
|
|
/// Returns the transpose of `self`.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn transpose(&self) -> Self {
|
|
Self {
|
|
x_axis: DVec3::new(self.x_axis.x, self.y_axis.x, self.z_axis.x),
|
|
y_axis: DVec3::new(self.x_axis.y, self.y_axis.y, self.z_axis.y),
|
|
z_axis: DVec3::new(self.x_axis.z, self.y_axis.z, self.z_axis.z),
|
|
}
|
|
}
|
|
|
|
/// Returns the determinant of `self`.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn determinant(&self) -> f64 {
|
|
self.z_axis.dot(self.x_axis.cross(self.y_axis))
|
|
}
|
|
|
|
/// Returns the inverse of `self`.
|
|
///
|
|
/// If the matrix is not invertible the returned matrix will be invalid.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the determinant of `self` is zero when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn inverse(&self) -> Self {
|
|
let tmp0 = self.y_axis.cross(self.z_axis);
|
|
let tmp1 = self.z_axis.cross(self.x_axis);
|
|
let tmp2 = self.x_axis.cross(self.y_axis);
|
|
let det = self.z_axis.dot(tmp2);
|
|
glam_assert!(det != 0.0);
|
|
let inv_det = DVec3::splat(det.recip());
|
|
Self::from_cols(tmp0.mul(inv_det), tmp1.mul(inv_det), tmp2.mul(inv_det)).transpose()
|
|
}
|
|
|
|
/// Transforms the given 2D vector as a point.
|
|
///
|
|
/// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `1`.
|
|
///
|
|
/// This method assumes that `self` contains a valid affine transform.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn transform_point2(&self, rhs: DVec2) -> DVec2 {
|
|
glam_assert!(self.row(2).abs_diff_eq(DVec3::Z, 1e-6));
|
|
DMat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs + self.z_axis.xy()
|
|
}
|
|
|
|
/// Rotates the given 2D vector.
|
|
///
|
|
/// This is the equivalent of multiplying `rhs` as a 3D vector where `z` is `0`.
|
|
///
|
|
/// This method assumes that `self` contains a valid affine transform.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Will panic if the 2nd row of `self` is not `(0, 0, 1)` when `glam_assert` is enabled.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn transform_vector2(&self, rhs: DVec2) -> DVec2 {
|
|
glam_assert!(self.row(2).abs_diff_eq(DVec3::Z, 1e-6));
|
|
DMat2::from_cols(self.x_axis.xy(), self.y_axis.xy()) * rhs
|
|
}
|
|
|
|
/// Transforms a 3D vector.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn mul_vec3(&self, rhs: DVec3) -> DVec3 {
|
|
let mut res = self.x_axis.mul(rhs.x);
|
|
res = res.add(self.y_axis.mul(rhs.y));
|
|
res = res.add(self.z_axis.mul(rhs.z));
|
|
res
|
|
}
|
|
|
|
/// Multiplies two 3x3 matrices.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn mul_mat3(&self, rhs: &Self) -> Self {
|
|
Self::from_cols(
|
|
self.mul(rhs.x_axis),
|
|
self.mul(rhs.y_axis),
|
|
self.mul(rhs.z_axis),
|
|
)
|
|
}
|
|
|
|
/// Adds two 3x3 matrices.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn add_mat3(&self, rhs: &Self) -> Self {
|
|
Self::from_cols(
|
|
self.x_axis.add(rhs.x_axis),
|
|
self.y_axis.add(rhs.y_axis),
|
|
self.z_axis.add(rhs.z_axis),
|
|
)
|
|
}
|
|
|
|
/// Subtracts two 3x3 matrices.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn sub_mat3(&self, rhs: &Self) -> Self {
|
|
Self::from_cols(
|
|
self.x_axis.sub(rhs.x_axis),
|
|
self.y_axis.sub(rhs.y_axis),
|
|
self.z_axis.sub(rhs.z_axis),
|
|
)
|
|
}
|
|
|
|
/// Multiplies a 3x3 matrix by a scalar.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn mul_scalar(&self, rhs: f64) -> Self {
|
|
Self::from_cols(
|
|
self.x_axis.mul(rhs),
|
|
self.y_axis.mul(rhs),
|
|
self.z_axis.mul(rhs),
|
|
)
|
|
}
|
|
|
|
/// Divides a 3x3 matrix by a scalar.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn div_scalar(&self, rhs: f64) -> Self {
|
|
let rhs = DVec3::splat(rhs);
|
|
Self::from_cols(
|
|
self.x_axis.div(rhs),
|
|
self.y_axis.div(rhs),
|
|
self.z_axis.div(rhs),
|
|
)
|
|
}
|
|
|
|
/// Returns true if the absolute difference of all elements between `self` and `rhs`
|
|
/// is less than or equal to `max_abs_diff`.
|
|
///
|
|
/// This can be used to compare if two matrices contain similar elements. It works best
|
|
/// when comparing with a known value. The `max_abs_diff` that should be used used
|
|
/// depends on the values being compared against.
|
|
///
|
|
/// For more see
|
|
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
|
|
self.x_axis.abs_diff_eq(rhs.x_axis, max_abs_diff)
|
|
&& self.y_axis.abs_diff_eq(rhs.y_axis, max_abs_diff)
|
|
&& self.z_axis.abs_diff_eq(rhs.z_axis, max_abs_diff)
|
|
}
|
|
|
|
/// Takes the absolute value of each element in `self`
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn abs(&self) -> Self {
|
|
Self::from_cols(self.x_axis.abs(), self.y_axis.abs(), self.z_axis.abs())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn as_mat3(&self) -> Mat3 {
|
|
Mat3::from_cols(
|
|
self.x_axis.as_vec3(),
|
|
self.y_axis.as_vec3(),
|
|
self.z_axis.as_vec3(),
|
|
)
|
|
}
|
|
}
|
|
|
|
impl Default for DMat3 {
|
|
#[inline]
|
|
fn default() -> Self {
|
|
Self::IDENTITY
|
|
}
|
|
}
|
|
|
|
impl Add<DMat3> for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn add(self, rhs: Self) -> Self::Output {
|
|
self.add_mat3(&rhs)
|
|
}
|
|
}
|
|
|
|
impl AddAssign<DMat3> for DMat3 {
|
|
#[inline]
|
|
fn add_assign(&mut self, rhs: Self) {
|
|
*self = self.add_mat3(&rhs);
|
|
}
|
|
}
|
|
|
|
impl Sub<DMat3> for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn sub(self, rhs: Self) -> Self::Output {
|
|
self.sub_mat3(&rhs)
|
|
}
|
|
}
|
|
|
|
impl SubAssign<DMat3> for DMat3 {
|
|
#[inline]
|
|
fn sub_assign(&mut self, rhs: Self) {
|
|
*self = self.sub_mat3(&rhs);
|
|
}
|
|
}
|
|
|
|
impl Neg for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn neg(self) -> Self::Output {
|
|
Self::from_cols(self.x_axis.neg(), self.y_axis.neg(), self.z_axis.neg())
|
|
}
|
|
}
|
|
|
|
impl Mul<DMat3> for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn mul(self, rhs: Self) -> Self::Output {
|
|
self.mul_mat3(&rhs)
|
|
}
|
|
}
|
|
|
|
impl MulAssign<DMat3> for DMat3 {
|
|
#[inline]
|
|
fn mul_assign(&mut self, rhs: Self) {
|
|
*self = self.mul_mat3(&rhs);
|
|
}
|
|
}
|
|
|
|
impl Mul<DVec3> for DMat3 {
|
|
type Output = DVec3;
|
|
#[inline]
|
|
fn mul(self, rhs: DVec3) -> Self::Output {
|
|
self.mul_vec3(rhs)
|
|
}
|
|
}
|
|
|
|
impl Mul<DMat3> for f64 {
|
|
type Output = DMat3;
|
|
#[inline]
|
|
fn mul(self, rhs: DMat3) -> Self::Output {
|
|
rhs.mul_scalar(self)
|
|
}
|
|
}
|
|
|
|
impl Mul<f64> for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn mul(self, rhs: f64) -> Self::Output {
|
|
self.mul_scalar(rhs)
|
|
}
|
|
}
|
|
|
|
impl MulAssign<f64> for DMat3 {
|
|
#[inline]
|
|
fn mul_assign(&mut self, rhs: f64) {
|
|
*self = self.mul_scalar(rhs);
|
|
}
|
|
}
|
|
|
|
impl Div<DMat3> for f64 {
|
|
type Output = DMat3;
|
|
#[inline]
|
|
fn div(self, rhs: DMat3) -> Self::Output {
|
|
rhs.div_scalar(self)
|
|
}
|
|
}
|
|
|
|
impl Div<f64> for DMat3 {
|
|
type Output = Self;
|
|
#[inline]
|
|
fn div(self, rhs: f64) -> Self::Output {
|
|
self.div_scalar(rhs)
|
|
}
|
|
}
|
|
|
|
impl DivAssign<f64> for DMat3 {
|
|
#[inline]
|
|
fn div_assign(&mut self, rhs: f64) {
|
|
*self = self.div_scalar(rhs);
|
|
}
|
|
}
|
|
|
|
impl Sum<Self> for DMat3 {
|
|
fn sum<I>(iter: I) -> Self
|
|
where
|
|
I: Iterator<Item = Self>,
|
|
{
|
|
iter.fold(Self::ZERO, Self::add)
|
|
}
|
|
}
|
|
|
|
impl<'a> Sum<&'a Self> for DMat3 {
|
|
fn sum<I>(iter: I) -> Self
|
|
where
|
|
I: Iterator<Item = &'a Self>,
|
|
{
|
|
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
|
|
}
|
|
}
|
|
|
|
impl Product for DMat3 {
|
|
fn product<I>(iter: I) -> Self
|
|
where
|
|
I: Iterator<Item = Self>,
|
|
{
|
|
iter.fold(Self::IDENTITY, Self::mul)
|
|
}
|
|
}
|
|
|
|
impl<'a> Product<&'a Self> for DMat3 {
|
|
fn product<I>(iter: I) -> Self
|
|
where
|
|
I: Iterator<Item = &'a Self>,
|
|
{
|
|
iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
|
|
}
|
|
}
|
|
|
|
impl PartialEq for DMat3 {
|
|
#[inline]
|
|
fn eq(&self, rhs: &Self) -> bool {
|
|
self.x_axis.eq(&rhs.x_axis) && self.y_axis.eq(&rhs.y_axis) && self.z_axis.eq(&rhs.z_axis)
|
|
}
|
|
}
|
|
|
|
#[cfg(not(target_arch = "spirv"))]
|
|
impl AsRef<[f64; 9]> for DMat3 {
|
|
#[inline]
|
|
fn as_ref(&self) -> &[f64; 9] {
|
|
unsafe { &*(self as *const Self as *const [f64; 9]) }
|
|
}
|
|
}
|
|
|
|
#[cfg(not(target_arch = "spirv"))]
|
|
impl AsMut<[f64; 9]> for DMat3 {
|
|
#[inline]
|
|
fn as_mut(&mut self) -> &mut [f64; 9] {
|
|
unsafe { &mut *(self as *mut Self as *mut [f64; 9]) }
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for DMat3 {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt.debug_struct(stringify!(DMat3))
|
|
.field("x_axis", &self.x_axis)
|
|
.field("y_axis", &self.y_axis)
|
|
.field("z_axis", &self.z_axis)
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
impl fmt::Display for DMat3 {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
if let Some(p) = f.precision() {
|
|
write!(
|
|
f,
|
|
"[{:.*}, {:.*}, {:.*}]",
|
|
p, self.x_axis, p, self.y_axis, p, self.z_axis
|
|
)
|
|
} else {
|
|
write!(f, "[{}, {}, {}]", self.x_axis, self.y_axis, self.z_axis)
|
|
}
|
|
}
|
|
}
|