Files
another-boids-in-rust/vendor/moxcms/src/oklab.rs

355 lines
7.9 KiB
Rust

/*
* // Copyright 2024 (c) the Radzivon Bartoshyk. All rights reserved.
* //
* // Use of this source code is governed by a BSD-style
* // license that can be found in the LICENSE file.
*/
use crate::Rgb;
use crate::mlaf::mlaf;
use num_traits::Pow;
use pxfm::{f_cbrtf, f_powf};
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
#[repr(C)]
#[derive(Debug, Copy, Clone, PartialOrd, PartialEq)]
/// Struct that represent *Oklab* colorspace
pub struct Oklab {
/// All values in Oklab intended to be normalized \[0; 1\]
pub l: f32,
/// A value range \[-0.5; 0.5\]
pub a: f32,
/// B value range \[-0.5; 0.5\]
pub b: f32,
}
impl Oklab {
#[inline]
pub const fn new(l: f32, a: f32, b: f32) -> Oklab {
Oklab { l, a, b }
}
#[inline]
/// Convert Linear Rgb to [Oklab]
pub fn from_linear_rgb(rgb: Rgb<f32>) -> Oklab {
Self::linear_rgb_to_oklab(rgb)
}
#[inline]
fn linear_rgb_to_oklab(rgb: Rgb<f32>) -> Oklab {
let l = mlaf(
mlaf(0.4122214708f32 * rgb.r, 0.5363325363f32, rgb.g),
0.0514459929f32,
rgb.b,
);
let m = mlaf(
mlaf(0.2119034982f32 * rgb.r, 0.6806995451f32, rgb.g),
0.1073969566f32,
rgb.b,
);
let s = mlaf(
mlaf(0.0883024619f32 * rgb.r, 0.2817188376f32, rgb.g),
0.6299787005f32,
rgb.b,
);
let l_cone = f_cbrtf(l);
let m_cone = f_cbrtf(m);
let s_cone = f_cbrtf(s);
Oklab {
l: mlaf(
mlaf(0.2104542553f32 * l_cone, 0.7936177850f32, m_cone),
-0.0040720468f32,
s_cone,
),
a: mlaf(
mlaf(1.9779984951f32 * l_cone, -2.4285922050f32, m_cone),
0.4505937099f32,
s_cone,
),
b: mlaf(
mlaf(0.0259040371f32 * l_cone, 0.7827717662f32, m_cone),
-0.8086757660f32,
s_cone,
),
}
}
#[inline]
/// Converts to linear RGB
pub fn to_linear_rgb(&self) -> Rgb<f32> {
let l_ = mlaf(
mlaf(self.l, 0.3963377774f32, self.a),
0.2158037573f32,
self.b,
);
let m_ = mlaf(
mlaf(self.l, -0.1055613458f32, self.a),
-0.0638541728f32,
self.b,
);
let s_ = mlaf(
mlaf(self.l, -0.0894841775f32, self.a),
-1.2914855480f32,
self.b,
);
let l = l_ * l_ * l_;
let m = m_ * m_ * m_;
let s = s_ * s_ * s_;
Rgb::new(
mlaf(
mlaf(4.0767416621f32 * l, -3.3077115913f32, m),
0.2309699292f32,
s,
),
mlaf(
mlaf(-1.2684380046f32 * l, 2.6097574011f32, m),
-0.3413193965f32,
s,
),
mlaf(
mlaf(-0.0041960863f32 * l, -0.7034186147f32, m),
1.7076147010f32,
s,
),
)
}
#[inline]
pub fn hybrid_distance(&self, other: Self) -> f32 {
let lax = self.l - other.l;
let dax = self.a - other.a;
let bax = self.b - other.b;
(dax * dax + bax * bax).sqrt() + lax.abs()
}
}
impl Oklab {
pub fn euclidean_distance(&self, other: Self) -> f32 {
let lax = self.l - other.l;
let dax = self.a - other.a;
let bax = self.b - other.b;
(lax * lax + dax * dax + bax * bax).sqrt()
}
}
impl Oklab {
pub fn taxicab_distance(&self, other: Self) -> f32 {
let lax = self.l - other.l;
let dax = self.a - other.a;
let bax = self.b - other.b;
lax.abs() + dax.abs() + bax.abs()
}
}
impl Add<Oklab> for Oklab {
type Output = Oklab;
#[inline]
fn add(self, rhs: Self) -> Oklab {
Oklab::new(self.l + rhs.l, self.a + rhs.a, self.b + rhs.b)
}
}
impl Add<f32> for Oklab {
type Output = Oklab;
#[inline]
fn add(self, rhs: f32) -> Oklab {
Oklab::new(self.l + rhs, self.a + rhs, self.b + rhs)
}
}
impl AddAssign<Oklab> for Oklab {
#[inline]
fn add_assign(&mut self, rhs: Oklab) {
self.l += rhs.l;
self.a += rhs.a;
self.b += rhs.b;
}
}
impl AddAssign<f32> for Oklab {
#[inline]
fn add_assign(&mut self, rhs: f32) {
self.l += rhs;
self.a += rhs;
self.b += rhs;
}
}
impl Mul<f32> for Oklab {
type Output = Oklab;
#[inline]
fn mul(self, rhs: f32) -> Self::Output {
Oklab::new(self.l * rhs, self.a * rhs, self.b * rhs)
}
}
impl Mul<Oklab> for Oklab {
type Output = Oklab;
#[inline]
fn mul(self, rhs: Oklab) -> Self::Output {
Oklab::new(self.l * rhs.l, self.a * rhs.a, self.b * rhs.b)
}
}
impl MulAssign<f32> for Oklab {
#[inline]
fn mul_assign(&mut self, rhs: f32) {
self.l *= rhs;
self.a *= rhs;
self.b *= rhs;
}
}
impl MulAssign<Oklab> for Oklab {
#[inline]
fn mul_assign(&mut self, rhs: Oklab) {
self.l *= rhs.l;
self.a *= rhs.a;
self.b *= rhs.b;
}
}
impl Sub<f32> for Oklab {
type Output = Oklab;
#[inline]
fn sub(self, rhs: f32) -> Self::Output {
Oklab::new(self.l - rhs, self.a - rhs, self.b - rhs)
}
}
impl Sub<Oklab> for Oklab {
type Output = Oklab;
#[inline]
fn sub(self, rhs: Oklab) -> Self::Output {
Oklab::new(self.l - rhs.l, self.a - rhs.a, self.b - rhs.b)
}
}
impl SubAssign<f32> for Oklab {
#[inline]
fn sub_assign(&mut self, rhs: f32) {
self.l -= rhs;
self.a -= rhs;
self.b -= rhs;
}
}
impl SubAssign<Oklab> for Oklab {
#[inline]
fn sub_assign(&mut self, rhs: Oklab) {
self.l -= rhs.l;
self.a -= rhs.a;
self.b -= rhs.b;
}
}
impl Div<f32> for Oklab {
type Output = Oklab;
#[inline]
fn div(self, rhs: f32) -> Self::Output {
Oklab::new(self.l / rhs, self.a / rhs, self.b / rhs)
}
}
impl Div<Oklab> for Oklab {
type Output = Oklab;
#[inline]
fn div(self, rhs: Oklab) -> Self::Output {
Oklab::new(self.l / rhs.l, self.a / rhs.a, self.b / rhs.b)
}
}
impl DivAssign<f32> for Oklab {
#[inline]
fn div_assign(&mut self, rhs: f32) {
self.l /= rhs;
self.a /= rhs;
self.b /= rhs;
}
}
impl DivAssign<Oklab> for Oklab {
#[inline]
fn div_assign(&mut self, rhs: Oklab) {
self.l /= rhs.l;
self.a /= rhs.a;
self.b /= rhs.b;
}
}
impl Neg for Oklab {
type Output = Oklab;
#[inline]
fn neg(self) -> Self::Output {
Oklab::new(-self.l, -self.a, -self.b)
}
}
impl Pow<f32> for Oklab {
type Output = Oklab;
#[inline]
fn pow(self, rhs: f32) -> Self::Output {
Oklab::new(
f_powf(self.l, rhs),
f_powf(self.a, rhs),
f_powf(self.b, rhs),
)
}
}
impl Pow<Oklab> for Oklab {
type Output = Oklab;
#[inline]
fn pow(self, rhs: Oklab) -> Self::Output {
Oklab::new(
f_powf(self.l, rhs.l),
f_powf(self.a, rhs.a),
f_powf(self.b, rhs.b),
)
}
}
impl Oklab {
#[inline]
pub fn sqrt(&self) -> Oklab {
Oklab::new(self.l.sqrt(), self.a.sqrt(), self.b.sqrt())
}
#[inline]
pub fn cbrt(&self) -> Oklab {
Oklab::new(f_cbrtf(self.l), f_cbrtf(self.a), f_cbrtf(self.b))
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn round_trip() {
let xyz = Rgb::new(0.1, 0.2, 0.3);
let lab = Oklab::from_linear_rgb(xyz);
let rolled_back = lab.to_linear_rgb();
let dx = (xyz.r - rolled_back.r).abs();
let dy = (xyz.g - rolled_back.g).abs();
let dz = (xyz.b - rolled_back.b).abs();
assert!(dx < 1e-5);
assert!(dy < 1e-5);
assert!(dz < 1e-5);
}
}