Files
another-boids-in-rust/vendor/bumpalo/src/collections/vec.rs

2970 lines
91 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A contiguous growable array type with heap-allocated contents, written
//! [`Vec<'bump, T>`].
//!
//! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and
//! `O(1)` pop (from the end).
//!
//! This module is a fork of the [`std::vec`] module, that uses a bump allocator.
//!
//! [`std::vec`]: https://doc.rust-lang.org/std/vec/index.html
//!
//! # Examples
//!
//! You can explicitly create a [`Vec<'bump, T>`] with [`new_in`]:
//!
//! ```
//! use bumpalo::{Bump, collections::Vec};
//!
//! let b = Bump::new();
//! let v: Vec<i32> = Vec::new_in(&b);
//! ```
//!
//! ... or by using the [`vec!`] macro:
//!
//! ```
//! use bumpalo::{Bump, collections::Vec};
//!
//! let b = Bump::new();
//!
//! let v: Vec<i32> = bumpalo::vec![in &b];
//!
//! let v = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
//!
//! let v = bumpalo::vec![in &b; 0; 10]; // ten zeroes
//! ```
//!
//! You can [`push`] values onto the end of a vector (which will grow the vector
//! as needed):
//!
//! ```
//! use bumpalo::{Bump, collections::Vec};
//!
//! let b = Bump::new();
//!
//! let mut v = bumpalo::vec![in &b; 1, 2];
//!
//! v.push(3);
//! ```
//!
//! Popping values works in much the same way:
//!
//! ```
//! use bumpalo::{Bump, collections::Vec};
//!
//! let b = Bump::new();
//!
//! let mut v = bumpalo::vec![in &b; 1, 2];
//!
//! assert_eq!(v.pop(), Some(2));
//! ```
//!
//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
//!
//! ```
//! use bumpalo::{Bump, collections::Vec};
//!
//! let b = Bump::new();
//!
//! let mut v = bumpalo::vec![in &b; 1, 2, 3];
//! assert_eq!(v[2], 3);
//! v[1] += 5;
//! assert_eq!(v, [1, 7, 3]);
//! ```
//!
//! [`Vec<'bump, T>`]: struct.Vec.html
//! [`new_in`]: struct.Vec.html#method.new_in
//! [`push`]: struct.Vec.html#method.push
//! [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html
//! [`IndexMut`]: https://doc.rust-lang.org/std/ops/trait.IndexMut.html
//! [`vec!`]: ../../macro.vec.html
use super::raw_vec::RawVec;
use crate::collections::CollectionAllocErr;
use crate::Bump;
use core::borrow::{Borrow, BorrowMut};
use core::cmp::Ordering;
use core::fmt;
use core::hash::{self, Hash};
use core::iter::FusedIterator;
use core::marker::PhantomData;
use core::mem;
use core::ops;
use core::ops::Bound::{Excluded, Included, Unbounded};
use core::ops::{Index, IndexMut, RangeBounds};
use core::ptr;
use core::ptr::NonNull;
use core::slice;
#[cfg(feature = "std")]
use std::io;
unsafe fn arith_offset<T>(p: *const T, offset: isize) -> *const T {
p.offset(offset)
}
fn partition_dedup_by<T, F>(s: &mut [T], mut same_bucket: F) -> (&mut [T], &mut [T])
where
F: FnMut(&mut T, &mut T) -> bool,
{
// Although we have a mutable reference to `s`, we cannot make
// *arbitrary* changes. The `same_bucket` calls could panic, so we
// must ensure that the slice is in a valid state at all times.
//
// The way that we handle this is by using swaps; we iterate
// over all the elements, swapping as we go so that at the end
// the elements we wish to keep are in the front, and those we
// wish to reject are at the back. We can then split the slice.
// This operation is still O(n).
//
// Example: We start in this state, where `r` represents "next
// read" and `w` represents "next_write`.
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing s[r] against s[w-1], this is not a duplicate, so
// we swap s[r] and s[w] (no effect as r==w) and then increment both
// r and w, leaving us with:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing s[r] against s[w-1], this value is a duplicate,
// so we increment `r` but leave everything else unchanged:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing s[r] against s[w-1], this is not a duplicate,
// so swap s[r] and s[w] and advance r and w:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 1 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Not a duplicate, repeat:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 3 | 1 | 3 |
// +---+---+---+---+---+---+
// w
//
// Duplicate, advance r. End of slice. Split at w.
let len = s.len();
if len <= 1 {
return (s, &mut []);
}
let ptr = s.as_mut_ptr();
let mut next_read: usize = 1;
let mut next_write: usize = 1;
unsafe {
// Avoid bounds checks by using raw pointers.
while next_read < len {
let ptr_read = ptr.add(next_read);
let prev_ptr_write = ptr.add(next_write - 1);
if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
if next_read != next_write {
let ptr_write = prev_ptr_write.offset(1);
mem::swap(&mut *ptr_read, &mut *ptr_write);
}
next_write += 1;
}
next_read += 1;
}
}
s.split_at_mut(next_write)
}
unsafe fn offset_from<T>(p: *const T, origin: *const T) -> isize
where
T: Sized,
{
let pointee_size = mem::size_of::<T>();
assert!(0 < pointee_size && pointee_size <= isize::max_value() as usize);
// This is the same sequence that Clang emits for pointer subtraction.
// It can be neither `nsw` nor `nuw` because the input is treated as
// unsigned but then the output is treated as signed, so neither works.
let d = isize::wrapping_sub(p as _, origin as _);
d / (pointee_size as isize)
}
/// Creates a [`Vec`] containing the arguments.
///
/// `vec!` allows `Vec`s to be defined with the same syntax as array expressions.
/// There are two forms of this macro:
///
/// - Create a [`Vec`] containing a given list of elements:
///
/// ```
/// use bumpalo::Bump;
///
/// let b = Bump::new();
/// let v = bumpalo::vec![in &b; 1, 2, 3];
/// assert_eq!(v, [1, 2, 3]);
/// ```
///
/// - Create a [`Vec`] from a given element and size:
///
/// ```
/// use bumpalo::Bump;
///
/// let b = Bump::new();
/// let v = bumpalo::vec![in &b; 1; 3];
/// assert_eq!(v, [1, 1, 1]);
/// ```
///
/// Note that unlike array expressions, this syntax supports all elements
/// which implement [`Clone`] and the number of elements doesn't have to be
/// a constant.
///
/// This will use `clone` to duplicate an expression, so one should be careful
/// using this with types having a non-standard `Clone` implementation. For
/// example, `bumpalo::vec![in &bump; Rc::new(1); 5]` will create a vector of five references
/// to the same boxed integer value, not five references pointing to independently
/// boxed integers.
///
/// [`Vec`]: collections/vec/struct.Vec.html
/// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
#[macro_export]
macro_rules! vec {
(in $bump:expr; $elem:expr; $n:expr) => {{
let n = $n;
let mut v = $crate::collections::Vec::with_capacity_in(n, $bump);
if n > 0 {
let elem = $elem;
for _ in 0..n - 1 {
v.push(elem.clone());
}
v.push(elem);
}
v
}};
(in $bump:expr) => { $crate::collections::Vec::new_in($bump) };
(in $bump:expr; $($x:expr),*) => {{
let mut v = $crate::collections::Vec::new_in($bump);
$( v.push($x); )*
v
}};
(in $bump:expr; $($x:expr,)*) => (bumpalo::vec![in $bump; $($x),*])
}
/// A contiguous growable array type, written `Vec<'bump, T>` but pronounced 'vector'.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = Vec::new_in(&b);
/// vec.push(1);
/// vec.push(2);
///
/// assert_eq!(vec.len(), 2);
/// assert_eq!(vec[0], 1);
///
/// assert_eq!(vec.pop(), Some(2));
/// assert_eq!(vec.len(), 1);
///
/// vec[0] = 7;
/// assert_eq!(vec[0], 7);
///
/// vec.extend([1, 2, 3].iter().cloned());
///
/// for x in &vec {
/// println!("{}", x);
/// }
/// assert_eq!(vec, [7, 1, 2, 3]);
/// ```
///
/// The [`vec!`] macro is provided to make initialization more convenient:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// vec.push(4);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// It can also initialize each element of a `Vec<'bump, T>` with a given value.
/// This may be more efficient than performing allocation and initialization
/// in separate steps, especially when initializing a vector of zeros:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let vec = bumpalo::vec![in &b; 0; 5];
/// assert_eq!(vec, [0, 0, 0, 0, 0]);
///
/// // The following is equivalent, but potentially slower:
/// let mut vec1 = Vec::with_capacity_in(5, &b);
/// vec1.resize(5, 0);
/// ```
///
/// Use a `Vec<'bump, T>` as an efficient stack:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut stack = Vec::new_in(&b);
///
/// stack.push(1);
/// stack.push(2);
/// stack.push(3);
///
/// while let Some(top) = stack.pop() {
/// // Prints 3, 2, 1
/// println!("{}", top);
/// }
/// ```
///
/// # Indexing
///
/// The `Vec` type allows to access values by index, because it implements the
/// [`Index`] trait. An example will be more explicit:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let v = bumpalo::vec![in &b; 0, 2, 4, 6];
/// println!("{}", v[1]); // it will display '2'
/// ```
///
/// However be careful: if you try to access an index which isn't in the `Vec`,
/// your software will panic! You cannot do this:
///
/// ```should_panic
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let v = bumpalo::vec![in &b; 0, 2, 4, 6];
/// println!("{}", v[6]); // it will panic!
/// ```
///
/// In conclusion: always check if the index you want to get really exists
/// before doing it.
///
/// # Slicing
///
/// A `Vec` can be mutable. Slices, on the other hand, are read-only objects.
/// To get a slice, use `&`. Example:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// fn read_slice(slice: &[usize]) {
/// // ...
/// }
///
/// let b = Bump::new();
///
/// let v = bumpalo::vec![in &b; 0, 1];
/// read_slice(&v);
///
/// // ... and that's all!
/// // you can also do it like this:
/// let x : &[usize] = &v;
/// ```
///
/// In Rust, it's more common to pass slices as arguments rather than vectors
/// when you just want to provide a read access. The same goes for [`String`] and
/// [`&str`].
///
/// # Capacity and reallocation
///
/// The capacity of a vector is the amount of space allocated for any future
/// elements that will be added onto the vector. This is not to be confused with
/// the *length* of a vector, which specifies the number of actual elements
/// within the vector. If a vector's length exceeds its capacity, its capacity
/// will automatically be increased, but its elements will have to be
/// reallocated.
///
/// For example, a vector with capacity 10 and length 0 would be an empty vector
/// with space for 10 more elements. Pushing 10 or fewer elements onto the
/// vector will not change its capacity or cause reallocation to occur. However,
/// if the vector's length is increased to 11, it will have to reallocate, which
/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity_in`]
/// whenever possible to specify how big the vector is expected to get.
///
/// # Guarantees
///
/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
/// about its design. This ensures that it's as low-overhead as possible in
/// the general case, and can be correctly manipulated in primitive ways
/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<'bump, T>`.
/// If additional type parameters are added (e.g. to support custom allocators),
/// overriding their defaults may change the behavior.
///
/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
/// triplet. No more, no less. The order of these fields is completely
/// unspecified, and you should use the appropriate methods to modify these.
/// The pointer will never be null, so this type is null-pointer-optimized.
///
/// However, the pointer may not actually point to allocated memory. In particular,
/// if you construct a `Vec` with capacity 0 via [`Vec::new_in`], [`bumpalo::vec![in bump]`][`vec!`],
/// [`Vec::with_capacity_in(0)`][`Vec::with_capacity_in`], or by calling [`shrink_to_fit`]
/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
/// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only
/// if <code>[`mem::size_of::<T>`]\() * capacity() > 0</code>. In general, `Vec`'s allocation
/// details are very subtle &mdash; if you intend to allocate memory using a `Vec`
/// and use it for something else (either to pass to unsafe code, or to build your
/// own memory-backed collection), be sure to deallocate this memory by using
/// `from_raw_parts` to recover the `Vec` and then dropping it.
///
/// If a `Vec` *has* allocated memory, then the memory it points to is
/// in the [`Bump`] arena used to construct it, and its
/// pointer points to [`len`] initialized, contiguous elements in order (what
/// you would see if you coerced it to a slice), followed by <code>[`capacity`] -
/// [`len`]</code> logically uninitialized, contiguous elements.
///
/// `Vec` will never perform a "small optimization" where elements are actually
/// stored on the stack for two reasons:
///
/// * It would make it more difficult for unsafe code to correctly manipulate
/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
/// only moved, and it would be more difficult to determine if a `Vec` had
/// actually allocated memory.
///
/// * It would penalize the general case, incurring an additional branch
/// on every access.
///
/// `Vec` will never automatically shrink itself, even if completely empty. This
/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
/// and then filling it back up to the same [`len`] should incur no calls to
/// the allocator. If you wish to free up unused memory, use
/// [`shrink_to_fit`][`shrink_to_fit`].
///
/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
/// <code>[`len`] == [`capacity`]</code>. That is, the reported capacity is completely
/// accurate, and can be relied on. It can even be used to manually free the memory
/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
/// when not necessary.
///
/// `Vec` does not guarantee any particular growth strategy when reallocating
/// when full, nor when [`reserve`] is called. The current strategy is basic
/// and it may prove desirable to use a non-constant growth factor. Whatever
/// strategy is used will of course guarantee `O(1)` amortized [`push`].
///
/// `bumpalo::vec![in bump; x; n]`, `bumpalo::vec![in bump; a, b, c, d]`, and
/// [`Vec::with_capacity_in(n)`][`Vec::with_capacity_in`], will all produce a
/// `Vec` with exactly the requested capacity. If <code>[`len`] == [`capacity`]</code>, (as
/// is the case for the [`vec!`] macro), then a `Vec<'bump, T>` can be converted
/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the
/// elements.
///
/// `Vec` will not specifically overwrite any data that is removed from it,
/// but also won't specifically preserve it. Its uninitialized memory is
/// scratch space that it may use however it wants. It will generally just do
/// whatever is most efficient or otherwise easy to implement. Do not rely on
/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
/// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory
/// first, that may not actually happen because the optimizer does not consider
/// this a side-effect that must be preserved. There is one case which we will
/// not break, however: using `unsafe` code to write to the excess capacity,
/// and then increasing the length to match, is always valid.
///
/// `Vec` does not currently guarantee the order in which elements are dropped.
/// The order has changed in the past and may change again.
///
/// [`vec!`]: ../../macro.vec.html
/// [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html
/// [`String`]: ../string/struct.String.html
/// [`&str`]: https://doc.rust-lang.org/std/primitive.str.html
/// [`Vec::with_capacity_in`]: struct.Vec.html#method.with_capacity_in
/// [`Vec::new_in`]: struct.Vec.html#method.new_in
/// [`shrink_to_fit`]: struct.Vec.html#method.shrink_to_fit
/// [`capacity`]: struct.Vec.html#method.capacity
/// [`mem::size_of::<T>`]: https://doc.rust-lang.org/std/mem/fn.size_of.html
/// [`len`]: struct.Vec.html#method.len
/// [`push`]: struct.Vec.html#method.push
/// [`insert`]: struct.Vec.html#method.insert
/// [`reserve`]: struct.Vec.html#method.reserve
/// [owned slice]: https://doc.rust-lang.org/std/boxed/struct.Box.html
pub struct Vec<'bump, T: 'bump> {
buf: RawVec<'bump, T>,
len: usize,
}
////////////////////////////////////////////////////////////////////////////////
// Inherent methods
////////////////////////////////////////////////////////////////////////////////
impl<'bump, T: 'bump> Vec<'bump, T> {
/// Constructs a new, empty `Vec<'bump, T>`.
///
/// The vector will not allocate until elements are pushed onto it.
///
/// # Examples
///
/// ```
/// # #![allow(unused_mut)]
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let mut vec: Vec<i32> = Vec::new_in(&b);
/// ```
#[inline]
pub fn new_in(bump: &'bump Bump) -> Vec<'bump, T> {
Vec {
buf: RawVec::new_in(bump),
len: 0,
}
}
/// Constructs a new, empty `Vec<'bump, T>` with the specified capacity.
///
/// The vector will be able to hold exactly `capacity` elements without
/// reallocating. If `capacity` is 0, the vector will not allocate.
///
/// It is important to note that although the returned vector has the
/// *capacity* specified, the vector will have a zero *length*. For an
/// explanation of the difference between length and capacity, see
/// *[Capacity and reallocation]*.
///
/// [Capacity and reallocation]: #capacity-and-reallocation
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = Vec::with_capacity_in(10, &b);
///
/// // The vector contains no items, even though it has capacity for more
/// assert_eq!(vec.len(), 0);
///
/// // These are all done without reallocating...
/// for i in 0..10 {
/// vec.push(i);
/// }
///
/// // ...but this may make the vector reallocate
/// vec.push(11);
/// ```
#[inline]
pub fn with_capacity_in(capacity: usize, bump: &'bump Bump) -> Vec<'bump, T> {
Vec {
buf: RawVec::with_capacity_in(capacity, bump),
len: 0,
}
}
/// Construct a new `Vec` from the given iterator's items.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
/// use std::iter;
///
/// let b = Bump::new();
/// let v = Vec::from_iter_in(iter::repeat(7).take(3), &b);
/// assert_eq!(v, [7, 7, 7]);
/// ```
pub fn from_iter_in<I: IntoIterator<Item = T>>(iter: I, bump: &'bump Bump) -> Vec<'bump, T> {
let mut v = Vec::new_in(bump);
v.extend(iter);
v
}
/// Creates a `Vec<'bump, T>` directly from the raw components of another vector.
///
/// # Safety
///
/// This is highly unsafe, due to the number of invariants that aren't
/// checked:
///
/// * `ptr` needs to have been previously allocated via [`String`]/`Vec<'bump, T>`
/// (at least, it's highly likely to be incorrect if it wasn't).
/// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with.
/// * `length` needs to be less than or equal to `capacity`.
/// * `capacity` needs to be the capacity that the pointer was allocated with.
///
/// Violating these may cause problems like corrupting the allocator's
/// internal data structures. For example it is **not** safe
/// to build a `Vec<u8>` from a pointer to a C `char` array and a `size_t`.
///
/// The ownership of `ptr` is effectively transferred to the
/// `Vec<'bump, T>` which may then deallocate, reallocate or change the
/// contents of memory pointed to by the pointer at will. Ensure
/// that nothing else uses the pointer after calling this
/// function.
///
/// [`String`]: ../string/struct.String.html
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// use std::ptr;
/// use std::mem;
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; 1, 2, 3];
///
/// // Pull out the various important pieces of information about `v`
/// let p = v.as_mut_ptr();
/// let len = v.len();
/// let cap = v.capacity();
///
/// unsafe {
/// // Cast `v` into the void: no destructor run, so we are in
/// // complete control of the allocation to which `p` points.
/// mem::forget(v);
///
/// // Overwrite memory with 4, 5, 6
/// for i in 0..len as isize {
/// ptr::write(p.offset(i), 4 + i);
/// }
///
/// // Put everything back together into a Vec
/// let rebuilt = Vec::from_raw_parts_in(p, len, cap, &b);
/// assert_eq!(rebuilt, [4, 5, 6]);
/// }
/// ```
pub unsafe fn from_raw_parts_in(
ptr: *mut T,
length: usize,
capacity: usize,
bump: &'bump Bump,
) -> Vec<'bump, T> {
Vec {
buf: RawVec::from_raw_parts_in(ptr, capacity, bump),
len: length,
}
}
/// Returns a shared reference to the allocator backing this `Vec`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// // uses the same allocator as the provided `Vec`
/// fn add_strings<'bump>(vec: &mut Vec<'bump, &'bump str>) {
/// for string in ["foo", "bar", "baz"] {
/// vec.push(vec.bump().alloc_str(string));
/// }
/// }
/// ```
#[inline]
#[must_use]
pub fn bump(&self) -> &'bump Bump {
self.buf.bump()
}
/// Returns the number of elements the vector can hold without
/// reallocating.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let vec: Vec<i32> = Vec::with_capacity_in(10, &b);
/// assert_eq!(vec.capacity(), 10);
/// ```
#[inline]
pub fn capacity(&self) -> usize {
self.buf.cap()
}
/// Reserves capacity for at least `additional` more elements to be inserted
/// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.reserve(10);
/// assert!(vec.capacity() >= 11);
/// ```
pub fn reserve(&mut self, additional: usize) {
self.buf.reserve(self.len, additional);
}
/// Reserves the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `Vec<'bump, T>`. After calling `reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `reserve` if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.reserve_exact(10);
/// assert!(vec.capacity() >= 11);
/// ```
pub fn reserve_exact(&mut self, additional: usize) {
self.buf.reserve_exact(self.len, additional);
}
/// Attempts to reserve capacity for at least `additional` more elements to be inserted
/// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid
/// frequent reallocations. After calling `try_reserve`, capacity will be
/// greater than or equal to `self.len() + additional`. Does nothing if
/// capacity is already sufficient.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.try_reserve(10).unwrap();
/// assert!(vec.capacity() >= 11);
/// ```
pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.buf.try_reserve(self.len, additional)
}
/// Attempts to reserve the minimum capacity for exactly `additional` more elements to
/// be inserted in the given `Vec<'bump, T>`. After calling `try_reserve_exact`,
/// capacity will be greater than or equal to `self.len() + additional`.
/// Does nothing if the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it
/// requests. Therefore capacity can not be relied upon to be precisely
/// minimal. Prefer `try_reserve` if future insertions are expected.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.try_reserve_exact(10).unwrap();
/// assert!(vec.capacity() >= 11);
/// ```
pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> {
self.buf.try_reserve_exact(self.len, additional)
}
/// Shrinks the capacity of the vector as much as possible.
///
/// It will drop down as close as possible to the length but the allocator
/// may still inform the vector that there is space for a few more elements.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = Vec::with_capacity_in(10, &b);
/// vec.extend([1, 2, 3].iter().cloned());
/// assert_eq!(vec.capacity(), 10);
/// vec.shrink_to_fit();
/// assert!(vec.capacity() >= 3);
/// ```
pub fn shrink_to_fit(&mut self) {
if self.capacity() != self.len {
self.buf.shrink_to_fit(self.len);
}
}
/// Converts the vector into `&'bump [T]`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let v = bumpalo::vec![in &b; 1, 2, 3];
///
/// let slice = v.into_bump_slice();
/// assert_eq!(slice, [1, 2, 3]);
/// ```
pub fn into_bump_slice(self) -> &'bump [T] {
unsafe {
let ptr = self.as_ptr();
let len = self.len();
mem::forget(self);
slice::from_raw_parts(ptr, len)
}
}
/// Converts the vector into `&'bump mut [T]`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
/// let v = bumpalo::vec![in &b; 1, 2, 3];
///
/// let mut slice = v.into_bump_slice_mut();
///
/// slice[0] = 3;
/// slice[2] = 1;
///
/// assert_eq!(slice, [3, 2, 1]);
/// ```
pub fn into_bump_slice_mut(mut self) -> &'bump mut [T] {
let ptr = self.as_mut_ptr();
let len = self.len();
mem::forget(self);
unsafe { slice::from_raw_parts_mut(ptr, len) }
}
/// Shortens the vector, keeping the first `len` elements and dropping
/// the rest.
///
/// If `len` is greater than the vector's current length, this has no
/// effect.
///
/// The [`drain`] method can emulate `truncate`, but causes the excess
/// elements to be returned instead of dropped.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// Truncating a five element vector to two elements:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
/// vec.truncate(2);
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// No truncation occurs when `len` is greater than the vector's current
/// length:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// vec.truncate(8);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
///
/// Truncating when `len == 0` is equivalent to calling the [`clear`]
/// method.
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// vec.truncate(0);
/// assert_eq!(vec, []);
/// ```
///
/// [`clear`]: #method.clear
/// [`drain`]: #method.drain
pub fn truncate(&mut self, len: usize) {
let current_len = self.len;
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len);
// Set the final length at the end, keeping in mind that
// dropping an element might panic. Works around a missed
// optimization, as seen in the following issue:
// https://github.com/rust-lang/rust/issues/51802
let mut local_len = SetLenOnDrop::new(&mut self.len);
// drop any extra elements
for _ in len..current_len {
local_len.decrement_len(1);
ptr = ptr.offset(-1);
ptr::drop_in_place(ptr);
}
}
}
/// Extracts a slice containing the entire vector.
///
/// Equivalent to `&s[..]`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
/// use std::io::{self, Write};
///
/// let b = Bump::new();
///
/// let buffer = bumpalo::vec![in &b; 1, 2, 3, 5, 8];
/// io::sink().write(buffer.as_slice()).unwrap();
/// ```
#[inline]
pub fn as_slice(&self) -> &[T] {
self
}
/// Extracts a mutable slice of the entire vector.
///
/// Equivalent to `&mut s[..]`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
/// use std::io::{self, Read};
///
/// let b = Bump::new();
/// let mut buffer = bumpalo::vec![in &b; 0; 3];
/// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
/// ```
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
/// valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// The caller must also ensure that the memory the pointer (non-transitively) points to
/// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
/// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let bump = Bump::new();
///
/// let x = bumpalo::vec![in &bump; 1, 2, 4];
/// let x_ptr = x.as_ptr();
///
/// unsafe {
/// for i in 0..x.len() {
/// assert_eq!(*x_ptr.add(i), 1 << i);
/// }
/// }
/// ```
///
/// [`as_mut_ptr`]: Vec::as_mut_ptr
#[inline]
pub fn as_ptr(&self) -> *const T {
// We shadow the slice method of the same name to avoid going through
// `deref`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe {
if ptr.is_null() {
core::hint::unreachable_unchecked();
}
}
ptr
}
/// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
/// raw pointer valid for zero sized reads if the vector didn't allocate.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
/// Modifying the vector may cause its buffer to be reallocated,
/// which would also make any pointers to it invalid.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let bump = Bump::new();
///
/// // Allocate vector big enough for 4 elements.
/// let size = 4;
/// let mut x: Vec<i32> = Vec::with_capacity_in(size, &bump);
/// let x_ptr = x.as_mut_ptr();
///
/// // Initialize elements via raw pointer writes, then set length.
/// unsafe {
/// for i in 0..size {
/// x_ptr.add(i).write(i as i32);
/// }
/// x.set_len(size);
/// }
/// assert_eq!(&*x, &[0, 1, 2, 3]);
/// ```
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut T {
// We shadow the slice method of the same name to avoid going through
// `deref_mut`, which creates an intermediate reference.
let ptr = self.buf.ptr();
unsafe {
if ptr.is_null() {
core::hint::unreachable_unchecked();
}
}
ptr
}
/// Sets the length of a vector.
///
/// This will explicitly set the size of the vector, without actually
/// modifying its buffers, so it is up to the caller to ensure that the
/// vector is actually the specified size.
///
/// # Safety
///
/// - `new_len` must be less than or equal to [`capacity()`].
/// - The elements at `old_len..new_len` must be initialized.
///
/// [`capacity()`]: struct.Vec.html#method.capacity
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// use std::ptr;
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 'r', 'u', 's', 't'];
///
/// unsafe {
/// ptr::drop_in_place(&mut vec[3]);
/// vec.set_len(3);
/// }
/// assert_eq!(vec, ['r', 'u', 's']);
/// ```
///
/// In this example, there is a memory leak since the memory locations
/// owned by the inner vectors were not freed prior to the `set_len` call:
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b;
/// bumpalo::vec![in &b; 1, 0, 0],
/// bumpalo::vec![in &b; 0, 1, 0],
/// bumpalo::vec![in &b; 0, 0, 1]];
/// unsafe {
/// vec.set_len(0);
/// }
/// ```
///
/// In this example, the vector gets expanded from zero to four items
/// but we directly initialize uninitialized memory:
///
// TODO: rely upon `spare_capacity_mut`
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let len = 4;
/// let b = Bump::new();
///
/// let mut vec: Vec<u8> = Vec::with_capacity_in(len, &b);
///
/// for i in 0..len {
/// // SAFETY: we initialize memory via `pointer::write`
/// unsafe { vec.as_mut_ptr().add(i).write(b'a') }
/// }
///
/// unsafe {
/// vec.set_len(len);
/// }
///
/// assert_eq!(b"aaaa", &*vec);
/// ```
#[inline]
pub unsafe fn set_len(&mut self, new_len: usize) {
self.len = new_len;
}
/// Removes an element from the vector and returns it.
///
/// The removed element is replaced by the last element of the vector.
///
/// This does not preserve ordering, but is O(1).
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; "foo", "bar", "baz", "qux"];
///
/// assert_eq!(v.swap_remove(1), "bar");
/// assert_eq!(v, ["foo", "qux", "baz"]);
///
/// assert_eq!(v.swap_remove(0), "foo");
/// assert_eq!(v, ["baz", "qux"]);
/// ```
#[inline]
pub fn swap_remove(&mut self, index: usize) -> T {
unsafe {
// We replace self[index] with the last element. Note that if the
// bounds check on hole succeeds there must be a last element (which
// can be self[index] itself).
let hole: *mut T = &mut self[index];
let last = ptr::read(self.get_unchecked(self.len - 1));
self.len -= 1;
ptr::replace(hole, last)
}
}
/// Inserts an element at position `index` within the vector, shifting all
/// elements after it to the right.
///
/// # Panics
///
/// Panics if `index > len`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// vec.insert(1, 4);
/// assert_eq!(vec, [1, 4, 2, 3]);
/// vec.insert(4, 5);
/// assert_eq!(vec, [1, 4, 2, 3, 5]);
/// ```
pub fn insert(&mut self, index: usize, element: T) {
let len = self.len();
assert!(index <= len);
// space for the new element
if len == self.buf.cap() {
self.reserve(1);
}
unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().add(index);
// Shift everything over to make space. (Duplicating the
// `index`th element into two consecutive places.)
ptr::copy(p, p.offset(1), len - index);
// Write it in, overwriting the first copy of the `index`th
// element.
ptr::write(p, element);
}
self.set_len(len + 1);
}
}
/// Removes and returns the element at position `index` within the vector,
/// shifting all elements after it to the left.
///
/// # Panics
///
/// Panics if `index` is out of bounds.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; 1, 2, 3];
/// assert_eq!(v.remove(1), 2);
/// assert_eq!(v, [1, 3]);
/// ```
pub fn remove(&mut self, index: usize) -> T {
let len = self.len();
assert!(index < len);
unsafe {
// infallible
let ret;
{
// the place we are taking from.
let ptr = self.as_mut_ptr().add(index);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
ret = ptr::read(ptr);
// Shift everything down to fill in that spot.
ptr::copy(ptr.offset(1), ptr, len - index - 1);
}
self.set_len(len - 1);
ret
}
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&e)` returns `false`.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4];
/// vec.retain(|x: &i32| *x % 2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
pub fn retain<F>(&mut self, mut f: F)
where
F: FnMut(&T) -> bool,
{
self.drain_filter(|x| !f(x));
}
/// Retains only the elements specified by the predicate.
///
/// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
/// This method operates in place and preserves the order of the retained
/// elements.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4];
/// vec.retain_mut(|x: &mut i32| *x % 2 == 0);
/// assert_eq!(vec, [2, 4]);
/// ```
pub fn retain_mut<F>(&mut self, mut f: F)
where
F: FnMut(&mut T) -> bool,
{
self.drain_filter(|x| !f(x));
}
/// Creates an iterator that removes the elements in the vector
/// for which the predicate returns `true` and yields the removed items.
///
/// # Examples
///
/// ```
/// use bumpalo::Bump;
/// use bumpalo::collections::{CollectIn, Vec};
///
/// let b = Bump::new();
///
/// let mut numbers = bumpalo::vec![in &b; 1, 2, 3, 4, 5];
///
/// let evens: Vec<_> = numbers.drain_filter(|x| *x % 2 == 0).collect_in(&b);
///
/// assert_eq!(numbers, &[1, 3, 5]);
/// assert_eq!(evens, &[2, 4]);
/// ```
pub fn drain_filter<'a, F>(&'a mut self, filter: F) -> DrainFilter<'a, 'bump, T, F>
where
F: FnMut(&mut T) -> bool,
{
let old_len = self.len();
// Guard against us getting leaked (leak amplification)
unsafe {
self.set_len(0);
}
DrainFilter {
vec: self,
idx: 0,
del: 0,
old_len,
pred: filter,
}
}
/// Removes all but the first of consecutive elements in the vector that resolve to the same
/// key.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 10, 20, 21, 30, 20];
///
/// vec.dedup_by_key(|i| *i / 10);
///
/// assert_eq!(vec, [10, 20, 30, 20]);
/// ```
#[inline]
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
where
F: FnMut(&mut T) -> K,
K: PartialEq,
{
self.dedup_by(|a, b| key(a) == key(b))
}
/// Removes all but the first of consecutive elements in the vector satisfying a given equality
/// relation.
///
/// The `same_bucket` function is passed references to two elements from the vector and
/// must determine if the elements compare equal. The elements are passed in opposite order
/// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; "foo", "bar", "Bar", "baz", "bar"];
///
/// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
///
/// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
/// ```
pub fn dedup_by<F>(&mut self, same_bucket: F)
where
F: FnMut(&mut T, &mut T) -> bool,
{
let len = {
let (dedup, _) = partition_dedup_by(self.as_mut_slice(), same_bucket);
dedup.len()
};
self.truncate(len);
}
// Proven specification with verus, converted to comments.
/// # Preconditions
///
/// - old(self).len() < old(self).capacity(),
///
/// # Postconditions
///
/// - self.get_unchecked(old(self).len()) == value,
/// - self.len() == old(self).len() + 1,
/// - self.capacity() == old(self).capacity(),
/// - forall|i: usize| implies(
/// i < old(self).len(),
/// self.get_unchecked(i) == old(self).get_unchecked(i)
/// )
#[allow(clippy::inline_always)]
#[inline(always)]
unsafe fn push_unchecked(&mut self, value: T) {
debug_assert!(self.len() < self.capacity());
// Divergence from verified impl:
// Verified implementation has special handling for ZSTs
// as ZSTs do not play nicely with separation logic.
ptr::write(self.buf.ptr().add(self.len), value);
self.len = self.len + 1;
}
/// Appends an element to the back of a vector.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2];
/// vec.push(3);
/// assert_eq!(vec, [1, 2, 3]);
/// ```
#[inline]
pub fn push(&mut self, value: T) {
// This will panic or abort if we would allocate > isize::MAX bytes
// or if the length increment would overflow for zero-sized types.
if self.len == self.buf.cap() {
self.reserve(1);
}
unsafe {
self.push_unchecked(value);
}
}
/// Removes the last element from a vector and returns it, or [`None`] if it
/// is empty.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// assert_eq!(vec.pop(), Some(3));
/// assert_eq!(vec, [1, 2]);
/// ```
#[inline]
pub fn pop(&mut self) -> Option<T> {
if self.len == 0 {
None
} else {
unsafe {
self.len -= 1;
Some(ptr::read(self.as_ptr().add(self.len())))
}
}
}
/// Moves all the elements of `other` into `Self`, leaving `other` empty.
///
/// # Panics
///
/// Panics if the number of elements in the vector overflows a `usize`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// let mut vec2 = bumpalo::vec![in &b; 4, 5, 6];
/// vec.append(&mut vec2);
/// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
/// assert_eq!(vec2, []);
/// ```
#[inline]
pub fn append(&mut self, other: &mut Self) {
unsafe {
self.append_elements(other.as_slice() as _);
other.set_len(0);
}
}
/// Appends elements to `Self` from other buffer.
#[inline]
unsafe fn append_elements(&mut self, other: *const [T]) {
let count = (&(*other)).len();
self.reserve(count);
let len = self.len();
ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count);
self.len += count;
}
/// Creates a draining iterator that removes the specified range in the vector
/// and yields the removed items.
///
/// Note 1: The element range is removed even if the iterator is only
/// partially consumed or not consumed at all.
///
/// Note 2: It is unspecified how many elements are removed from the vector
/// if the `Drain` value is leaked.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// use bumpalo::Bump;
/// use bumpalo::collections::{CollectIn, Vec};
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; 1, 2, 3];
///
/// let u: Vec<_> = v.drain(1..).collect_in(&b);
///
/// assert_eq!(v, &[1]);
/// assert_eq!(u, &[2, 3]);
///
/// // A full range clears the vector
/// v.drain(..);
/// assert_eq!(v, &[]);
/// ```
pub fn drain<R>(&mut self, range: R) -> Drain<T>
where
R: RangeBounds<usize>,
{
// Memory safety
//
// When the Drain is first created, it shortens the length of
// the source vector to make sure no uninitialized or moved-from elements
// are accessible at all if the Drain's destructor never gets to run.
//
// Drain will ptr::read out the values to remove.
// When finished, remaining tail of the vec is copied back to cover
// the hole, and the vector length is restored to the new length.
//
let len = self.len();
let start = match range.start_bound() {
Included(&n) => n,
Excluded(&n) => n + 1,
Unbounded => 0,
};
let end = match range.end_bound() {
Included(&n) => n + 1,
Excluded(&n) => n,
Unbounded => len,
};
assert!(start <= end);
assert!(end <= len);
unsafe {
// set self.vec length's to start, to be safe in case Drain is leaked
self.set_len(start);
// Use the borrow in the IterMut to indicate borrowing behavior of the
// whole Drain iterator (like &mut T).
let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
Drain {
tail_start: end,
tail_len: len - end,
iter: range_slice.iter(),
vec: NonNull::from(self),
}
}
}
/// Clears the vector, removing all values.
///
/// Note that this method has no effect on the allocated capacity
/// of the vector.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; 1, 2, 3];
///
/// v.clear();
///
/// assert!(v.is_empty());
/// ```
#[inline]
pub fn clear(&mut self) {
self.truncate(0)
}
/// Returns the number of elements in the vector, also referred to
/// as its 'length'.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let a = bumpalo::vec![in &b; 1, 2, 3];
/// assert_eq!(a.len(), 3);
/// ```
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut v = Vec::new_in(&b);
/// assert!(v.is_empty());
///
/// v.push(1);
/// assert!(!v.is_empty());
/// ```
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Splits the collection into two at the given index.
///
/// Returns a newly allocated vector. `self` contains elements `[0, at)`,
/// and the returned vector contains elements `[at, len)`.
///
/// Note that the capacity of `self` does not change.
///
/// # Panics
///
/// Panics if `at > len`.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3];
/// let vec2 = vec.split_off(1);
/// assert_eq!(vec, [1]);
/// assert_eq!(vec2, [2, 3]);
/// ```
#[inline]
pub fn split_off(&mut self, at: usize) -> Self {
assert!(at <= self.len(), "`at` out of bounds");
let other_len = self.len - at;
let mut other = Vec::with_capacity_in(other_len, self.buf.bump());
// Unsafely `set_len` and copy items to `other`.
unsafe {
self.set_len(at);
other.set_len(other_len);
ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
}
other
}
}
#[cfg(feature = "boxed")]
impl<'bump, T> Vec<'bump, T> {
/// Converts the vector into [`Box<[T]>`][owned slice].
///
/// Note that this will drop any excess capacity.
///
/// [owned slice]: ../../boxed/struct.Box.html
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec, vec};
///
/// let b = Bump::new();
///
/// let v = vec![in &b; 1, 2, 3];
///
/// let slice = v.into_boxed_slice();
/// ```
pub fn into_boxed_slice(mut self) -> crate::boxed::Box<'bump, [T]> {
use crate::boxed::Box;
// Unlike `alloc::vec::Vec` shrinking here isn't necessary as `bumpalo::boxed::Box` doesn't own memory.
unsafe {
let slice = slice::from_raw_parts_mut(self.as_mut_ptr(), self.len);
let output: Box<'bump, [T]> = Box::from_raw(slice);
mem::forget(self);
output
}
}
}
impl<'bump, T: 'bump + Clone> Vec<'bump, T> {
/// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
///
/// If `new_len` is greater than `len`, the `Vec` is extended by the
/// difference, with each additional slot filled with `value`.
/// If `new_len` is less than `len`, the `Vec` is simply truncated.
///
/// This method requires [`Clone`] to be able clone the passed value. If
/// you need more flexibility (or want to rely on [`Default`] instead of
/// [`Clone`]), use [`resize_with`].
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; "hello"];
/// vec.resize(3, "world");
/// assert_eq!(vec, ["hello", "world", "world"]);
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4];
/// vec.resize(2, 0);
/// assert_eq!(vec, [1, 2]);
/// ```
///
/// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html
/// [`Default`]: https://doc.rust-lang.org/std/default/trait.Default.html
/// [`resize_with`]: #method.resize_with
pub fn resize(&mut self, new_len: usize, value: T) {
let len = self.len();
if new_len > len {
self.extend_with(new_len - len, ExtendElement(value))
} else {
self.truncate(new_len);
}
}
// Proven specification with verus, converted to comments.
/// # Preconditions
///
/// - old(self).len() + slice.len() <= old(self).capacity(),
///
/// # Postconditions
///
/// - forall|i: usize| implies(
/// i < old(self).len(),
/// self.get_unchecked(i) == old(self).get_unchecked(i)
/// ),
/// - forall|i: usize| implies(
/// i < slice.len(),
/// self.get_unchecked((old(self).len() + i) as usize)
/// == clone(slice.get_unchecked(i))
/// ),
/// - self.len() == old(self).len() + slice.len(),
/// - self.capacity() == old(self).capacity(),
#[inline]
unsafe fn extend_from_slice_unchecked(&mut self, slice: &[T]) {
// Guaranteed never to overflow for non ZSTs
// size_of::<T>() <= isize::MAX - (isize::MAX % align_of::<T>()))
// isize::MAX + isize::MAX < usize::MAX
debug_assert!(
core::mem::size_of::<T>() == 0 || self.capacity() >= self.len() + slice.len()
);
debug_assert!(
// is_zst::<T>() ==> capacity >= slen + slice.len()
core::mem::size_of::<T>() != 0
// Capacity is usize::MAX for ZSTs
|| self.len() <= usize::MAX - slice.len()
);
let mut pos = 0usize;
loop
/*
invariants
pos <= slice.len(),
self.len() + (slice.len() - pos) <= old(self).capacity(),
old(self).capacity() == self.capacity(),
self.len() == old(self).len() + pos,
forall|i: usize| implies(
i < old(self).len(),
self.get_unchecked(i) == old(self).get_unchecked(i)
),
forall|i: usize| implies(
i < pos,
self.get_unchecked((old(self).len() + i) as usize)
== clone(slice.get_unchecked(i))
)
*/
{
if pos == slice.len() {
/*
pos = slice.len(),
self.len() = old(self).len() + slice.len(),
forall|i: usize| i < slice.len() implies {
self.get_unchecked((old(self).len() + i) as usize)
== clone(slice.get_unchecked(i))
}
by {
i < pos
}
*/
return;
}
/*
pos < slice.len(),
self.len() < self.capacity()
*/
let elem = slice.get_unchecked(pos);
self.push_unchecked(elem.clone());
/*
ghost prev_pos = pos
*/
pos = pos + 1;
/*
forall|i: usize| i < pos implies {
self.get_unchecked((old(self).len() + i) as usize)
== clone(slice.get_unchecked(i))
}
by {
if i < pos - 1 {
// By invariant
}
else {
i == prev_pos
}
}
*/
}
}
/// Clones and appends all elements in a slice to the `Vec`.
///
/// Iterates over the slice `other`, clones each element, and then appends
/// it to this `Vec`. The `other` vector is traversed in-order.
///
/// Note that this function is same as [`extend`] except that it is
/// specialized to work with slices instead. If and when Rust gets
/// specialization this function will likely be deprecated (but still
/// available).
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.extend_from_slice(&[2, 3, 4]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// [`extend`]: #method.extend
pub fn extend_from_slice(&mut self, other: &[T]) {
let capacity = self.capacity();
/*
Cannot underflow via invariant of the Vec (capacity >= length).
This also holds for ZSTs, as capacity is usize::MAX
*/
let remaining_cap = capacity - self.len;
/*
self.len() + other.len() <= self.capacity(),
<==>
other.len() <= self.capacity() - self.len()
*/
if other.len() > remaining_cap {
/*
Divergence from verified impl:
Verified implementation's reserve is not the same
as bumpalo's. Verified implementation reserves with
respect to capacity, not length. Thus this is equivalent
to the verified implementation's:
self.buf.reserve(other.len() - remaining_cap)
*/
self.reserve(other.len());
}
/*
self.capacity() >= self.len() + other.len()
*/
unsafe {
self.extend_from_slice_unchecked(other);
}
}
}
impl<'bump, T: 'bump + Copy> Vec<'bump, T> {
/// Helper method to copy all of the items in `other` and append them to the end of `self`.
///
/// SAFETY:
/// * The caller is responsible for:
/// * calling [`reserve`](Self::reserve) beforehand to guarantee that there is enough
/// capacity to store `other.len()` more items.
/// * guaranteeing that `self` and `other` do not overlap.
unsafe fn extend_from_slice_copy_unchecked(&mut self, other: &[T]) {
let old_len = self.len();
debug_assert!(old_len + other.len() <= self.capacity());
// SAFETY:
// * `src` is valid for reads of `other.len()` values by virtue of being a `&[T]`.
// * `dst` is valid for writes of `other.len()` bytes because the caller of this
// method is required to `reserve` capacity to store at least `other.len()` items
// beforehand.
// * Because `src` is a `&[T]` and dst is a `&[T]` within the `Vec<T>`,
// `copy_nonoverlapping`'s alignment requirements are met.
// * Caller is required to guarantee that the source and destination ranges cannot overlap
unsafe {
let src = other.as_ptr();
let dst = self.as_mut_ptr().add(old_len);
ptr::copy_nonoverlapping(src, dst, other.len());
self.set_len(old_len + other.len());
}
}
/// Copies all elements in the slice `other` and appends them to the `Vec`.
///
/// Note that this function is same as [`extend_from_slice`] except that it is optimized for
/// slices of types that implement the `Copy` trait. If and when Rust gets specialization
/// this function will likely be deprecated (but still available).
///
/// To copy and append the data from multiple source slices at once, see
/// [`extend_from_slices_copy`].
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.extend_from_slice_copy(&[2, 3, 4]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 'H' as u8];
/// vec.extend_from_slice_copy("ello, world!".as_bytes());
/// assert_eq!(vec, "Hello, world!".as_bytes());
/// ```
///
/// [`extend_from_slice`]: #method.extend_from_slice
/// [`extend_from_slices`]: #method.extend_from_slices
pub fn extend_from_slice_copy(&mut self, other: &[T]) {
// Reserve space in the Vec for the values to be added
self.reserve(other.len());
// Copy values into the space that was just reserved
// SAFETY:
// * `self` has enough capacity to store `other.len()` more items as `self.reserve(other.len())`
// above guarantees that.
// * Source and destination data ranges cannot overlap as we just reserved the destination
// range from the bump.
unsafe {
self.extend_from_slice_copy_unchecked(other);
}
}
/// For each slice in `slices`, copies all elements in the slice and appends them to the `Vec`.
///
/// This method is equivalent to calling [`extend_from_slice_copy`] in a loop, but is able
/// to precompute the total amount of space to reserve in advance. This reduces the potential
/// maximum number of reallocations needed from one-per-slice to just one.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1];
/// vec.extend_from_slices_copy(&[&[2, 3], &[], &[4]]);
/// assert_eq!(vec, [1, 2, 3, 4]);
/// ```
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 'H' as u8];
/// vec.extend_from_slices_copy(&["ello,".as_bytes(), &[], " world!".as_bytes()]);
/// assert_eq!(vec, "Hello, world!".as_bytes());
/// ```
///
/// [`extend_from_slice_copy`]: #method.extend_from_slice_copy
pub fn extend_from_slices_copy(&mut self, slices: &[&[T]]) {
// Reserve the total amount of capacity we'll need to safely append the aggregated contents
// of each slice in `slices`.
let capacity_to_reserve: usize = slices.iter().map(|slice| slice.len()).sum();
self.reserve(capacity_to_reserve);
// SAFETY:
// * `dst` is valid for writes of `capacity_to_reserve` items as
// `self.reserve(capacity_to_reserve)` above guarantees that.
// * Source and destination ranges cannot overlap as we just reserved the destination
// range from the bump.
unsafe {
// Copy the contents of each slice onto the end of `self`
slices.iter().for_each(|slice| {
self.extend_from_slice_copy_unchecked(slice);
});
}
}
}
// This code generalises `extend_with_{element,default}`.
trait ExtendWith<T> {
fn next(&mut self) -> T;
fn last(self) -> T;
}
struct ExtendElement<T>(T);
impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
fn next(&mut self) -> T {
self.0.clone()
}
fn last(self) -> T {
self.0
}
}
impl<'bump, T: 'bump> Vec<'bump, T> {
/// Extend the vector by `n` values, using the given generator.
fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
self.reserve(n);
unsafe {
let mut ptr = self.as_mut_ptr().add(self.len());
// Use SetLenOnDrop to work around bug where compiler
// may not realize the store through `ptr` through self.set_len()
// don't alias.
let mut local_len = SetLenOnDrop::new(&mut self.len);
// Write all elements except the last one
for _ in 1..n {
ptr::write(ptr, value.next());
ptr = ptr.offset(1);
// Increment the length in every step in case next() panics
local_len.increment_len(1);
}
if n > 0 {
// We can write the last element directly without cloning needlessly
ptr::write(ptr, value.last());
local_len.increment_len(1);
}
// len set by scope guard
}
}
}
// Set the length of the vec when the `SetLenOnDrop` value goes out of scope.
//
// The idea is: The length field in SetLenOnDrop is a local variable
// that the optimizer will see does not alias with any stores through the Vec's data
// pointer. This is a workaround for alias analysis issue #32155
struct SetLenOnDrop<'a> {
len: &'a mut usize,
local_len: usize,
}
impl<'a> SetLenOnDrop<'a> {
#[inline]
fn new(len: &'a mut usize) -> Self {
SetLenOnDrop {
local_len: *len,
len,
}
}
#[inline]
fn increment_len(&mut self, increment: usize) {
self.local_len += increment;
}
#[inline]
fn decrement_len(&mut self, decrement: usize) {
self.local_len -= decrement;
}
}
impl<'a> Drop for SetLenOnDrop<'a> {
#[inline]
fn drop(&mut self) {
*self.len = self.local_len;
}
}
impl<'bump, T: 'bump + PartialEq> Vec<'bump, T> {
/// Removes consecutive repeated elements in the vector according to the
/// [`PartialEq`] trait implementation.
///
/// If the vector is sorted, this removes all duplicates.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut vec = bumpalo::vec![in &b; 1, 2, 2, 3, 2];
///
/// vec.dedup();
///
/// assert_eq!(vec, [1, 2, 3, 2]);
/// ```
#[inline]
pub fn dedup(&mut self) {
self.dedup_by(|a, b| a == b)
}
}
////////////////////////////////////////////////////////////////////////////////
// Common trait implementations for Vec
////////////////////////////////////////////////////////////////////////////////
impl<'bump, T: 'bump + Clone> Clone for Vec<'bump, T> {
#[cfg(not(test))]
fn clone(&self) -> Vec<'bump, T> {
let mut v = Vec::with_capacity_in(self.len(), self.buf.bump());
v.extend(self.iter().cloned());
v
}
// HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
// required for this method definition, is not available. Instead use the
// `slice::to_vec` function which is only available with cfg(test)
// NB see the slice::hack module in slice.rs for more information
#[cfg(test)]
fn clone(&self) -> Vec<'bump, T> {
let mut v = Vec::new_in(self.buf.bump());
v.extend(self.iter().cloned());
v
}
}
impl<'bump, T: 'bump + Hash> Hash for Vec<'bump, T> {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
Hash::hash(&**self, state)
}
}
impl<'bump, T, I> Index<I> for Vec<'bump, T>
where
I: ::core::slice::SliceIndex<[T]>,
{
type Output = I::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(&**self, index)
}
}
impl<'bump, T, I> IndexMut<I> for Vec<'bump, T>
where
I: ::core::slice::SliceIndex<[T]>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(&mut **self, index)
}
}
impl<'bump, T: 'bump> ops::Deref for Vec<'bump, T> {
type Target = [T];
fn deref(&self) -> &[T] {
unsafe {
let p = self.buf.ptr();
// assume(!p.is_null());
slice::from_raw_parts(p, self.len)
}
}
}
impl<'bump, T: 'bump> ops::DerefMut for Vec<'bump, T> {
fn deref_mut(&mut self) -> &mut [T] {
unsafe {
let ptr = self.buf.ptr();
// assume(!ptr.is_null());
slice::from_raw_parts_mut(ptr, self.len)
}
}
}
impl<'bump, T: 'bump> IntoIterator for Vec<'bump, T> {
type Item = T;
type IntoIter = IntoIter<'bump, T>;
/// Creates a consuming iterator, that is, one that moves each value out of
/// the vector (from start to end). The vector cannot be used after calling
/// this.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let v = bumpalo::vec![in &b; "a".to_string(), "b".to_string()];
/// for s in v.into_iter() {
/// // s has type String, not &String
/// println!("{}", s);
/// }
/// ```
#[inline]
fn into_iter(mut self) -> IntoIter<'bump, T> {
unsafe {
let begin = self.as_mut_ptr();
// assume(!begin.is_null());
let end = if mem::size_of::<T>() == 0 {
arith_offset(begin as *const i8, self.len() as isize) as *const T
} else {
begin.add(self.len()) as *const T
};
mem::forget(self);
IntoIter {
phantom: PhantomData,
ptr: begin,
end,
}
}
}
}
impl<'a, 'bump, T> IntoIterator for &'a Vec<'bump, T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
fn into_iter(self) -> slice::Iter<'a, T> {
self.iter()
}
}
impl<'a, 'bump, T> IntoIterator for &'a mut Vec<'bump, T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
fn into_iter(self) -> slice::IterMut<'a, T> {
self.iter_mut()
}
}
impl<'bump, T: 'bump> Extend<T> for Vec<'bump, T> {
#[inline]
fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
let iter = iter.into_iter();
self.reserve(iter.size_hint().0);
for t in iter {
self.push(t);
}
}
}
impl<'bump, T: 'bump> Vec<'bump, T> {
/// Creates a splicing iterator that replaces the specified range in the vector
/// with the given `replace_with` iterator and yields the removed items.
/// `replace_with` does not need to be the same length as `range`.
///
/// Note 1: The element range is removed even if the iterator is not
/// consumed until the end.
///
/// Note 2: It is unspecified how many elements are removed from the vector,
/// if the `Splice` value is leaked.
///
/// Note 3: The input iterator `replace_with` is only consumed
/// when the `Splice` value is dropped.
///
/// Note 4: This is optimal if:
///
/// * The tail (elements in the vector after `range`) is empty,
/// * or `replace_with` yields fewer elements than `range`s length
/// * or the lower bound of its `size_hint()` is exact.
///
/// Otherwise, a temporary vector is allocated and the tail is moved twice.
///
/// # Panics
///
/// Panics if the starting point is greater than the end point or if
/// the end point is greater than the length of the vector.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let mut v = bumpalo::vec![in &b; 1, 2, 3];
/// let new = [7, 8];
/// let u: Vec<_> = Vec::from_iter_in(v.splice(..2, new.iter().cloned()), &b);
/// assert_eq!(v, &[7, 8, 3]);
/// assert_eq!(u, &[1, 2]);
/// ```
#[inline]
pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<I::IntoIter>
where
R: RangeBounds<usize>,
I: IntoIterator<Item = T>,
{
Splice {
drain: self.drain(range),
replace_with: replace_with.into_iter(),
}
}
}
/// Extend implementation that copies elements out of references before pushing them onto the Vec.
///
/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
/// append the entire slice at once.
///
/// [`copy_from_slice`]: https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice
impl<'a, 'bump, T: 'a + Copy> Extend<&'a T> for Vec<'bump, T> {
fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
self.extend(iter.into_iter().cloned())
}
}
macro_rules! __impl_slice_eq1 {
($Lhs: ty, $Rhs: ty) => {
__impl_slice_eq1! { $Lhs, $Rhs, Sized }
};
($Lhs: ty, $Rhs: ty, $Bound: ident) => {
impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &$Rhs) -> bool {
self[..] == other[..]
}
}
};
}
__impl_slice_eq1! { Vec<'a, A>, Vec<'b, B> }
__impl_slice_eq1! { Vec<'a, A>, &'b [B] }
__impl_slice_eq1! { Vec<'a, A>, &'b mut [B] }
// __impl_slice_eq1! { Cow<'a, [A]>, Vec<'b, B>, Clone }
macro_rules! __impl_slice_eq1_array {
($Lhs: ty, $Rhs: ty) => {
impl<'a, 'b, A, B, const N: usize> PartialEq<$Rhs> for $Lhs
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &$Rhs) -> bool {
self[..] == other[..]
}
}
};
}
__impl_slice_eq1_array! { Vec<'a, A>, [B; N] }
__impl_slice_eq1_array! { Vec<'a, A>, &'b [B; N] }
__impl_slice_eq1_array! { Vec<'a, A>, &'b mut [B; N] }
/// Implements comparison of vectors, lexicographically.
impl<'bump, T: 'bump + PartialOrd> PartialOrd for Vec<'bump, T> {
#[inline]
fn partial_cmp(&self, other: &Vec<'bump, T>) -> Option<Ordering> {
PartialOrd::partial_cmp(&**self, &**other)
}
}
impl<'bump, T: 'bump + Eq> Eq for Vec<'bump, T> {}
/// Implements ordering of vectors, lexicographically.
impl<'bump, T: 'bump + Ord> Ord for Vec<'bump, T> {
#[inline]
fn cmp(&self, other: &Vec<'bump, T>) -> Ordering {
Ord::cmp(&**self, &**other)
}
}
impl<'bump, T: 'bump + fmt::Debug> fmt::Debug for Vec<'bump, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<'bump, T: 'bump> AsRef<Vec<'bump, T>> for Vec<'bump, T> {
fn as_ref(&self) -> &Vec<'bump, T> {
self
}
}
impl<'bump, T: 'bump> AsMut<Vec<'bump, T>> for Vec<'bump, T> {
fn as_mut(&mut self) -> &mut Vec<'bump, T> {
self
}
}
impl<'bump, T: 'bump> AsRef<[T]> for Vec<'bump, T> {
fn as_ref(&self) -> &[T] {
self
}
}
impl<'bump, T: 'bump> AsMut<[T]> for Vec<'bump, T> {
fn as_mut(&mut self) -> &mut [T] {
self
}
}
#[cfg(feature = "boxed")]
impl<'bump, T: 'bump> From<Vec<'bump, T>> for crate::boxed::Box<'bump, [T]> {
fn from(v: Vec<'bump, T>) -> crate::boxed::Box<'bump, [T]> {
v.into_boxed_slice()
}
}
impl<'bump, T: 'bump> Borrow<[T]> for Vec<'bump, T> {
#[inline]
fn borrow(&self) -> &[T] {
&self[..]
}
}
impl<'bump, T: 'bump> BorrowMut<[T]> for Vec<'bump, T> {
#[inline]
fn borrow_mut(&mut self) -> &mut [T] {
&mut self[..]
}
}
impl<'bump, T> Drop for Vec<'bump, T> {
fn drop(&mut self) {
unsafe {
// use drop for [T]
// use a raw slice to refer to the elements of the vector as weakest necessary type;
// could avoid questions of validity in certain cases
ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
}
// RawVec handles deallocation
}
}
////////////////////////////////////////////////////////////////////////////////
// Clone-on-write
////////////////////////////////////////////////////////////////////////////////
// impl<'a, 'bump, T: Clone> From<Vec<'bump, T>> for Cow<'a, [T]> {
// fn from(v: Vec<'bump, T>) -> Cow<'a, [T]> {
// Cow::Owned(v)
// }
// }
// impl<'a, 'bump, T: Clone> From<&'a Vec<'bump, T>> for Cow<'a, [T]> {
// fn from(v: &'a Vec<'bump, T>) -> Cow<'a, [T]> {
// Cow::Borrowed(v.as_slice())
// }
// }
////////////////////////////////////////////////////////////////////////////////
// Iterators
////////////////////////////////////////////////////////////////////////////////
/// An iterator that moves out of a vector.
///
/// This `struct` is created by the [`Vec::into_iter`] method
/// (provided by the [`IntoIterator`] trait).
///
/// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html
pub struct IntoIter<'bump, T> {
phantom: PhantomData<&'bump [T]>,
ptr: *const T,
end: *const T,
}
impl<'bump, T: fmt::Debug> fmt::Debug for IntoIter<'bump, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
}
}
impl<'bump, T: 'bump> IntoIter<'bump, T> {
/// Returns the remaining items of this iterator as a slice.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let vec = bumpalo::vec![in &b; 'a', 'b', 'c'];
/// let mut into_iter = vec.into_iter();
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
/// let _ = into_iter.next().unwrap();
/// assert_eq!(into_iter.as_slice(), &['b', 'c']);
/// ```
pub fn as_slice(&self) -> &[T] {
unsafe { slice::from_raw_parts(self.ptr, self.len()) }
}
/// Returns the remaining items of this iterator as a mutable slice.
///
/// # Examples
///
/// ```
/// use bumpalo::{Bump, collections::Vec};
///
/// let b = Bump::new();
///
/// let vec = bumpalo::vec![in &b; 'a', 'b', 'c'];
/// let mut into_iter = vec.into_iter();
/// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']);
/// into_iter.as_mut_slice()[2] = 'z';
/// assert_eq!(into_iter.next().unwrap(), 'a');
/// assert_eq!(into_iter.next().unwrap(), 'b');
/// assert_eq!(into_iter.next().unwrap(), 'z');
/// ```
pub fn as_mut_slice(&mut self) -> &mut [T] {
unsafe { slice::from_raw_parts_mut(self.ptr as *mut T, self.len()) }
}
}
unsafe impl<'bump, T: Send> Send for IntoIter<'bump, T> {}
unsafe impl<'bump, T: Sync> Sync for IntoIter<'bump, T> {}
impl<'bump, T: 'bump> Iterator for IntoIter<'bump, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
unsafe {
if self.ptr as *const _ == self.end {
None
} else if mem::size_of::<T>() == 0 {
// purposefully don't use 'ptr.offset' because for
// vectors with 0-size elements this would return the
// same pointer.
self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T;
// Make up a value of this ZST.
Some(mem::zeroed())
} else {
let old = self.ptr;
self.ptr = self.ptr.offset(1);
Some(ptr::read(old))
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let exact = if mem::size_of::<T>() == 0 {
(self.end as usize).wrapping_sub(self.ptr as usize)
} else {
unsafe { offset_from(self.end, self.ptr) as usize }
};
(exact, Some(exact))
}
#[inline]
fn count(self) -> usize {
self.len()
}
}
impl<'bump, T: 'bump> DoubleEndedIterator for IntoIter<'bump, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
unsafe {
if self.end == self.ptr {
None
} else if mem::size_of::<T>() == 0 {
// See above for why 'ptr.offset' isn't used
self.end = arith_offset(self.end as *const i8, -1) as *mut T;
// Make up a value of this ZST.
Some(mem::zeroed())
} else {
self.end = self.end.offset(-1);
Some(ptr::read(self.end))
}
}
}
}
impl<'bump, T: 'bump> ExactSizeIterator for IntoIter<'bump, T> {}
impl<'bump, T: 'bump> FusedIterator for IntoIter<'bump, T> {}
impl<'bump, T> Drop for IntoIter<'bump, T> {
fn drop(&mut self) {
// drop all remaining elements
self.for_each(drop);
}
}
/// A draining iterator for `Vec<'bump, T>`.
///
/// This `struct` is created by the [`Vec::drain`] method.
pub struct Drain<'a, 'bump, T: 'a + 'bump> {
/// Index of tail to preserve
tail_start: usize,
/// Length of tail
tail_len: usize,
/// Current remaining range to remove
iter: slice::Iter<'a, T>,
vec: NonNull<Vec<'bump, T>>,
}
impl<'a, 'bump, T: 'a + 'bump + fmt::Debug> fmt::Debug for Drain<'a, 'bump, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
}
}
unsafe impl<'a, 'bump, T: Sync> Sync for Drain<'a, 'bump, T> {}
unsafe impl<'a, 'bump, T: Send> Send for Drain<'a, 'bump, T> {}
impl<'a, 'bump, T> Iterator for Drain<'a, 'bump, T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
self.iter
.next()
.map(|elt| unsafe { ptr::read(elt as *const _) })
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<'a, 'bump, T> DoubleEndedIterator for Drain<'a, 'bump, T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
self.iter
.next_back()
.map(|elt| unsafe { ptr::read(elt as *const _) })
}
}
impl<'a, 'bump, T> Drop for Drain<'a, 'bump, T> {
fn drop(&mut self) {
// exhaust self first
self.for_each(drop);
if self.tail_len > 0 {
unsafe {
let source_vec = self.vec.as_mut();
// memmove back untouched tail, update to new length
let start = source_vec.len();
let tail = self.tail_start;
if tail != start {
let src = source_vec.as_ptr().add(tail);
let dst = source_vec.as_mut_ptr().add(start);
ptr::copy(src, dst, self.tail_len);
}
source_vec.set_len(start + self.tail_len);
}
}
}
}
impl<'a, 'bump, T> ExactSizeIterator for Drain<'a, 'bump, T> {}
impl<'a, 'bump, T> FusedIterator for Drain<'a, 'bump, T> {}
/// A splicing iterator for `Vec`.
///
/// This struct is created by the [`Vec::splice`] method. See its
/// documentation for more information.
#[derive(Debug)]
pub struct Splice<'a, 'bump, I: Iterator + 'a + 'bump> {
drain: Drain<'a, 'bump, I::Item>,
replace_with: I,
}
impl<'a, 'bump, I: Iterator> Iterator for Splice<'a, 'bump, I> {
type Item = I::Item;
fn next(&mut self) -> Option<Self::Item> {
self.drain.next()
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.drain.size_hint()
}
}
impl<'a, 'bump, I: Iterator> DoubleEndedIterator for Splice<'a, 'bump, I> {
fn next_back(&mut self) -> Option<Self::Item> {
self.drain.next_back()
}
}
impl<'a, 'bump, I: Iterator> ExactSizeIterator for Splice<'a, 'bump, I> {}
impl<'a, 'bump, I: Iterator> Drop for Splice<'a, 'bump, I> {
fn drop(&mut self) {
self.drain.by_ref().for_each(drop);
unsafe {
if self.drain.tail_len == 0 {
self.drain.vec.as_mut().extend(self.replace_with.by_ref());
return;
}
// First fill the range left by drain().
if !self.drain.fill(&mut self.replace_with) {
return;
}
// There may be more elements. Use the lower bound as an estimate.
// FIXME: Is the upper bound a better guess? Or something else?
let (lower_bound, _upper_bound) = self.replace_with.size_hint();
if lower_bound > 0 {
self.drain.move_tail(lower_bound);
if !self.drain.fill(&mut self.replace_with) {
return;
}
}
// Collect any remaining elements.
// This is a zero-length vector which does not allocate if `lower_bound` was exact.
let mut collected = Vec::new_in(self.drain.vec.as_ref().buf.bump());
collected.extend(self.replace_with.by_ref());
let mut collected = collected.into_iter();
// Now we have an exact count.
if collected.len() > 0 {
self.drain.move_tail(collected.len());
let filled = self.drain.fill(&mut collected);
debug_assert!(filled);
debug_assert_eq!(collected.len(), 0);
}
}
// Let `Drain::drop` move the tail back if necessary and restore `vec.len`.
}
}
/// Private helper methods for `Splice::drop`
impl<'a, 'bump, T> Drain<'a, 'bump, T> {
/// The range from `self.vec.len` to `self.tail_start` contains elements
/// that have been moved out.
/// Fill that range as much as possible with new elements from the `replace_with` iterator.
/// Return whether we filled the entire range. (`replace_with.next()` didnt return `None`.)
unsafe fn fill<I: Iterator<Item = T>>(&mut self, replace_with: &mut I) -> bool {
let vec = self.vec.as_mut();
let range_start = vec.len;
let range_end = self.tail_start;
let range_slice =
slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start);
for place in range_slice {
if let Some(new_item) = replace_with.next() {
ptr::write(place, new_item);
vec.len += 1;
} else {
return false;
}
}
true
}
/// Make room for inserting more elements before the tail.
unsafe fn move_tail(&mut self, extra_capacity: usize) {
let vec = self.vec.as_mut();
let used_capacity = self.tail_start + self.tail_len;
vec.buf.reserve(used_capacity, extra_capacity);
let new_tail_start = self.tail_start + extra_capacity;
let src = vec.as_ptr().add(self.tail_start);
let dst = vec.as_mut_ptr().add(new_tail_start);
ptr::copy(src, dst, self.tail_len);
self.tail_start = new_tail_start;
}
}
/// An iterator produced by calling [`Vec::drain_filter`].
#[derive(Debug)]
pub struct DrainFilter<'a, 'bump: 'a, T: 'a + 'bump, F>
where
F: FnMut(&mut T) -> bool,
{
vec: &'a mut Vec<'bump, T>,
idx: usize,
del: usize,
old_len: usize,
pred: F,
}
impl<'a, 'bump, T, F> Iterator for DrainFilter<'a, 'bump, T, F>
where
F: FnMut(&mut T) -> bool,
{
type Item = T;
fn next(&mut self) -> Option<T> {
unsafe {
while self.idx != self.old_len {
let i = self.idx;
self.idx += 1;
let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len);
if (self.pred)(&mut v[i]) {
self.del += 1;
return Some(ptr::read(&v[i]));
} else if self.del > 0 {
let del = self.del;
let src: *const T = &v[i];
let dst: *mut T = &mut v[i - del];
// This is safe because self.vec has length 0
// thus its elements will not have Drop::drop
// called on them in the event of a panic.
ptr::copy_nonoverlapping(src, dst, 1);
}
}
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.old_len - self.idx))
}
}
impl<'a, 'bump, T, F> Drop for DrainFilter<'a, 'bump, T, F>
where
F: FnMut(&mut T) -> bool,
{
fn drop(&mut self) {
self.for_each(drop);
unsafe {
self.vec.set_len(self.old_len - self.del);
}
}
}
#[cfg(feature = "std")]
impl<'bump> io::Write for Vec<'bump, u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
self.extend_from_slice_copy(buf);
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, buf: &[u8]) -> io::Result<()> {
self.extend_from_slice_copy(buf);
Ok(())
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(feature = "serde")]
mod serialize {
use super::*;
use serde::{ser::SerializeSeq, Serialize, Serializer};
impl<'a, T> Serialize for Vec<'a, T>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_seq(Some(self.len))?;
for e in self.iter() {
seq.serialize_element(e)?;
}
seq.end()
}
}
}