Files
another-boids-in-rust/vendor/pxfm/src/bessel/beta1.rs

265 lines
8.6 KiB
Rust

/*
* // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
* //
* // Redistribution and use in source and binary forms, with or without modification,
* // are permitted provided that the following conditions are met:
* //
* // 1. Redistributions of source code must retain the above copyright notice, this
* // list of conditions and the following disclaimer.
* //
* // 2. Redistributions in binary form must reproduce the above copyright notice,
* // this list of conditions and the following disclaimer in the documentation
* // and/or other materials provided with the distribution.
* //
* // 3. Neither the name of the copyright holder nor the names of its
* // contributors may be used to endorse or promote products derived from
* // this software without specific prior written permission.
* //
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
use crate::double_double::DoubleDouble;
use crate::dyadic_float::{DyadicFloat128, DyadicSign};
use crate::polyeval::f_polyeval9;
/**
Note expansion generation below: this is negative series expressed in Sage as positive,
so before any real evaluation `x=1/x` should be applied
Generated by SageMath:
```python
def binomial_like(n, m):
prod = QQ(1)
z = QQ(4)*(n**2)
for k in range(1,m + 1):
prod *= (z - (2*k - 1)**2)
return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
x = R.gen()
def Pn_asymptotic(n, y, terms=10):
# now y = 1/x
return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
def Qn_asymptotic(n, y, terms=10):
return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
P = Pn_asymptotic(1, x, 50)
Q = Qn_asymptotic(1, x, 50)
def sqrt_series(s):
val = S.valuation()
lc = S[val] # Leading coefficient
b = lc.sqrt() * x**(val // 2)
for _ in range(5):
b = (b + S / b) / 2
b = b
return b
S = (P**2 + Q**2).truncate(50)
b_series = sqrt_series(S).truncate(30)
# see the beta series
print(b_series)
```
See notes/bessel_asympt.ipynb for generation
**/
#[inline]
pub(crate) fn bessel_1_asympt_beta_fast(recip: DoubleDouble) -> DoubleDouble {
const C: [u64; 10] = [
0x3ff0000000000000,
0x3fc8000000000000,
0xbfc8c00000000000,
0x3fe9c50000000000,
0xc01ef5b680000000,
0x40609860dd400000,
0xc0abae9b7a06e000,
0x41008711d41c1428,
0xc15ab70164c8be6e,
0x41bc1055e24f297f,
];
// Doing (1/x)*(1/x) instead (1/(x*x)) to avoid spurious overflow/underflow
let x2 = DoubleDouble::quick_mult(recip, recip);
let p = f_polyeval9(
x2.hi,
f64::from_bits(C[1]),
f64::from_bits(C[2]),
f64::from_bits(C[3]),
f64::from_bits(C[4]),
f64::from_bits(C[5]),
f64::from_bits(C[6]),
f64::from_bits(C[7]),
f64::from_bits(C[8]),
f64::from_bits(C[9]),
);
DoubleDouble::mul_f64_add_f64(x2, p, f64::from_bits(C[0]))
}
/**
Note expansion generation below: this is negative series expressed in Sage as positive,
so before any real evaluation `x=1/x` should be applied
Generated by SageMath:
```python
def binomial_like(n, m):
prod = QQ(1)
z = QQ(4)*(n**2)
for k in range(1,m + 1):
prod *= (z - (2*k - 1)**2)
return prod / (QQ(2)**(2*m) * (ZZ(m).factorial()))
R = LaurentSeriesRing(RealField(300), 'x',default_prec=300)
x = R.gen()
def Pn_asymptotic(n, y, terms=10):
# now y = 1/x
return sum( (-1)**m * binomial_like(n, 2*m) / (QQ(2)**(2*m)) * y**(QQ(2)*m) for m in range(terms) )
def Qn_asymptotic(n, y, terms=10):
return sum( (-1)**m * binomial_like(n, 2*m + 1) / (QQ(2)**(2*m + 1)) * y**(QQ(2)*m + 1) for m in range(terms) )
P = Pn_asymptotic(1, x, 50)
Q = Qn_asymptotic(1, x, 50)
def sqrt_series(s):
val = S.valuation()
lc = S[val] # Leading coefficient
b = lc.sqrt() * x**(val // 2)
for _ in range(5):
b = (b + S / b) / 2
b = b
return b
S = (P**2 + Q**2).truncate(50)
b_series = sqrt_series(S).truncate(30)
# see the beta series
print(b_series)
```
See notes/bessel_asympt.ipynb for generation
**/
#[inline]
pub(crate) fn bessel_1_asympt_beta(recip: DoubleDouble) -> DoubleDouble {
const C: [(u64, u64); 10] = [
(0x0000000000000000, 0x3ff0000000000000), // 1
(0x0000000000000000, 0x3fc8000000000000), // 2
(0x0000000000000000, 0xbfc8c00000000000), // 3
(0x0000000000000000, 0x3fe9c50000000000), // 4
(0x0000000000000000, 0xc01ef5b680000000), // 5
(0x0000000000000000, 0x40609860dd400000), // 6
(0x0000000000000000, 0xc0abae9b7a06e000), // 7
(0x0000000000000000, 0x41008711d41c1428), // 8
(0xbdf7a00000000000, 0xc15ab70164c8be6e),
(0xbe40e1f000000000, 0x41bc1055e24f297f),
];
// Doing (1/x)*(1/x) instead (1/(x*x)) to avoid spurious overflow/underflow
let x2 = DoubleDouble::quick_mult(recip, recip);
let mut p = DoubleDouble::mul_add(
x2,
DoubleDouble::from_bit_pair(C[9]),
DoubleDouble::from_bit_pair(C[8]),
);
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[7].1)); // 8
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[6].1)); // 7
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[5].1)); // 6
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[4].1)); // 5
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[3].1)); // 4
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[2].1)); // 3
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[1].1)); // 2
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(C[0].1)); // 1
p
}
/// see [bessel_1_asympt_beta] for more info
pub(crate) fn bessel_1_asympt_beta_hard(recip: DyadicFloat128) -> DyadicFloat128 {
static C: [DyadicFloat128; 12] = [
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -127,
mantissa: 0x80000000_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -130,
mantissa: 0xc0000000_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Neg,
exponent: -130,
mantissa: 0xc6000000_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -128,
mantissa: 0xce280000_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Neg,
exponent: -125,
mantissa: 0xf7adb400_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -120,
mantissa: 0x84c306ea_00000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Neg,
exponent: -116,
mantissa: 0xdd74dbd0_37000000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -110,
mantissa: 0x84388ea0_e0a14000_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Neg,
exponent: -105,
mantissa: 0xd5b80b26_45f372f4_00000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -99,
mantissa: 0xe082af12_794bf6f1_e1000000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Neg,
exponent: -92,
mantissa: 0x94a06149_f30146bc_fe8ed000_00000000_u128,
},
DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -86,
mantissa: 0xf212edfc_42a62526_4fac2b0c_00000000_u128,
},
];
let x2 = recip * recip;
let mut p = C[11];
for i in (0..11).rev() {
p = x2 * p + C[i];
}
p
}