241 lines
8.1 KiB
Rust
241 lines
8.1 KiB
Rust
/*
|
|
* // Copyright (c) Radzivon Bartoshyk 7/2025. All rights reserved.
|
|
* //
|
|
* // Redistribution and use in source and binary forms, with or without modification,
|
|
* // are permitted provided that the following conditions are met:
|
|
* //
|
|
* // 1. Redistributions of source code must retain the above copyright notice, this
|
|
* // list of conditions and the following disclaimer.
|
|
* //
|
|
* // 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* // this list of conditions and the following disclaimer in the documentation
|
|
* // and/or other materials provided with the distribution.
|
|
* //
|
|
* // 3. Neither the name of the copyright holder nor the names of its
|
|
* // contributors may be used to endorse or promote products derived from
|
|
* // this software without specific prior written permission.
|
|
* //
|
|
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
use crate::bessel::j0f::j1f_rsqrt;
|
|
use crate::common::f_fmla;
|
|
use crate::exponents::core_expf;
|
|
use crate::logs::fast_logf;
|
|
use crate::polyeval::{f_estrin_polyeval8, f_polyeval3, f_polyeval4};
|
|
|
|
/// Modified exponentially scaled Bessel of the second kind of order 1
|
|
///
|
|
/// Computes K1(x)exp(x)
|
|
///
|
|
/// Max ULP 0.5
|
|
pub fn f_k1ef(x: f32) -> f32 {
|
|
let ux = x.to_bits();
|
|
if ux >= 0xffu32 << 23 || ux == 0 {
|
|
// |x| == 0, |x| == inf, |x| == NaN, x < 0
|
|
if ux.wrapping_shl(1) == 0 {
|
|
return f32::INFINITY;
|
|
}
|
|
if x.is_infinite() {
|
|
return if x.is_sign_positive() { 0. } else { f32::NAN };
|
|
}
|
|
return x + f32::NAN; // x == NaN
|
|
}
|
|
|
|
let xb = x.to_bits();
|
|
|
|
if xb <= 0x3f800000u32 {
|
|
// x <= 1.0
|
|
if xb <= 0x34000000u32 {
|
|
// |x| <= f32::EPSILON
|
|
let dx = x as f64;
|
|
let leading_term = 1. / dx + 1.;
|
|
if xb <= 0x3109705fu32 {
|
|
// |x| <= 2e-9
|
|
// taylor series for tiny K1(x)exp(x) ~ 1/x + 1 + O(x)
|
|
return leading_term as f32;
|
|
}
|
|
// taylor series for small K1(x)exp(x) ~ 1/x+1+1/4 (1+2 EulerGamma-2 Log[2]+2 Log[x]) x + O(x^3)
|
|
const C: f64 = f64::from_bits(0xbffd8773039049e8); // 1 + 2 EulerGamma-2 Log[2]
|
|
let log_x = fast_logf(x);
|
|
let r = f_fmla(log_x, 2., C);
|
|
let w0 = f_fmla(dx * 0.25, r, leading_term);
|
|
return w0 as f32;
|
|
}
|
|
return k1ef_small(x);
|
|
}
|
|
|
|
k1ef_asympt(x)
|
|
}
|
|
|
|
/**
|
|
Computes
|
|
I1(x) = x/2 * (1 + 1 * (x/2)^2 + (x/2)^4 * P((x/2)^2))
|
|
|
|
Generated by Woflram Mathematica:
|
|
|
|
```text
|
|
<<FunctionApproximations`
|
|
ClearAll["Global`*"]
|
|
f[x_]:=(BesselI[1,x]*2/x-1-1/2(x/2)^2)/(x/2)^4
|
|
g[z_]:=f[2 Sqrt[z]]
|
|
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,2},WorkingPrecision->60]
|
|
poly=Numerator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
poly=Denominator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
```
|
|
**/
|
|
#[inline]
|
|
fn i1f_small(x: f32) -> f64 {
|
|
let dx = x as f64;
|
|
let x_over_two = dx * 0.5;
|
|
let x_over_two_sqr = x_over_two * x_over_two;
|
|
let x_over_two_p4 = x_over_two_sqr * x_over_two_sqr;
|
|
|
|
let p_num = f_polyeval4(
|
|
x_over_two_sqr,
|
|
f64::from_bits(0x3fb5555555555355),
|
|
f64::from_bits(0x3f6ebf07f0dbc49b),
|
|
f64::from_bits(0x3f1fdc02bf28a8d9),
|
|
f64::from_bits(0x3ebb5e7574c700a6),
|
|
);
|
|
let p_den = f_polyeval3(
|
|
x_over_two_sqr,
|
|
f64::from_bits(0x3ff0000000000000),
|
|
f64::from_bits(0xbfa39b64b6135b5a),
|
|
f64::from_bits(0x3f3fa729bbe951f9),
|
|
);
|
|
let p = p_num / p_den;
|
|
|
|
let p1 = f_fmla(0.5, x_over_two_sqr, 1.);
|
|
let p2 = f_fmla(x_over_two_p4, p, p1);
|
|
p2 * x_over_two
|
|
}
|
|
|
|
/**
|
|
Series for
|
|
f(x) := BesselK(1, x) - Log(x)*BesselI(1, x) - 1/x
|
|
|
|
Generated by Wolfram Mathematica:
|
|
```text
|
|
<<FunctionApproximations`
|
|
ClearAll["Global`*"]
|
|
f[x_]:=(BesselK[1, x]-Log[x]BesselI[1,x]-1/x)/x
|
|
g[z_]:=f[Sqrt[z]]
|
|
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},3,3},WorkingPrecision->60]
|
|
poly=Numerator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
poly=Denominator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
```
|
|
**/
|
|
#[inline]
|
|
fn k1ef_small(x: f32) -> f32 {
|
|
let dx = x as f64;
|
|
let rcp = 1. / dx;
|
|
let x2 = dx * dx;
|
|
let p_num = f_polyeval4(
|
|
x2,
|
|
f64::from_bits(0xbfd3b5b6028a83d6),
|
|
f64::from_bits(0xbfb3fde2c83f7cca),
|
|
f64::from_bits(0xbf662b2e5defbe8c),
|
|
f64::from_bits(0xbefa2a63cc5c4feb),
|
|
);
|
|
let p_den = f_polyeval4(
|
|
x2,
|
|
f64::from_bits(0x3ff0000000000000),
|
|
f64::from_bits(0xbf9833197207a7c6),
|
|
f64::from_bits(0x3f315663bc7330ef),
|
|
f64::from_bits(0xbeb9211958f6b8c3),
|
|
);
|
|
let p = p_num / p_den;
|
|
|
|
let v_exp = core_expf(x);
|
|
let lg = fast_logf(x);
|
|
let v_i = i1f_small(x);
|
|
let z = f_fmla(lg, v_i, rcp);
|
|
let z0 = f_fmla(p, dx, z);
|
|
(z0 * v_exp) as f32
|
|
}
|
|
|
|
/**
|
|
Generated by Wolfram Mathematica:
|
|
```text
|
|
<<FunctionApproximations`
|
|
ClearAll["Global`*"]
|
|
f[x_]:=Sqrt[x] Exp[x] BesselK[1,x]
|
|
g[z_]:=f[1/z]
|
|
{err, approx}=MiniMaxApproximation[g[z],{z,{0.000000001,1},7,7},WorkingPrecision->60]
|
|
poly=Numerator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
poly=Denominator[approx][[1]];
|
|
coeffs=CoefficientList[poly,z];
|
|
TableForm[Table[Row[{"'",NumberForm[coeffs[[i+1]],{50,50}, ExponentFunction->(Null&)],"',"}],{i,0,Length[coeffs]-1}]]
|
|
```
|
|
**/
|
|
#[inline]
|
|
fn k1ef_asympt(x: f32) -> f32 {
|
|
let dx = x as f64;
|
|
let recip = 1. / dx;
|
|
let r_sqrt = j1f_rsqrt(dx);
|
|
let p_num = f_estrin_polyeval8(
|
|
recip,
|
|
f64::from_bits(0x3ff40d931ff6270d),
|
|
f64::from_bits(0x402d250670ed7a6c),
|
|
f64::from_bits(0x404e517b9b494d38),
|
|
f64::from_bits(0x405cb02b7433a838),
|
|
f64::from_bits(0x405a03e606a1b871),
|
|
f64::from_bits(0x4045c98d4308dbcd),
|
|
f64::from_bits(0x401d115c4ce0540c),
|
|
f64::from_bits(0x3fd4213e72b24b3a),
|
|
);
|
|
let p_den = f_estrin_polyeval8(
|
|
recip,
|
|
f64::from_bits(0x3ff0000000000000),
|
|
f64::from_bits(0x402681096aa3a87d),
|
|
f64::from_bits(0x404623ab8d72ceea),
|
|
f64::from_bits(0x40530af06ea802b2),
|
|
f64::from_bits(0x404d526906fb9cec),
|
|
f64::from_bits(0x403281caca389f1b),
|
|
f64::from_bits(0x3ffdb93996948bb4),
|
|
f64::from_bits(0x3f9a009da07eb989),
|
|
);
|
|
let v = p_num / p_den;
|
|
let pp = v * r_sqrt;
|
|
pp as f32
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn test_k1f() {
|
|
assert_eq!(f_k1ef(0.00000000005423), 18439980000.0);
|
|
assert_eq!(f_k1ef(0.0000000043123), 231894820.0);
|
|
assert_eq!(f_k1ef(0.3), 4.125158);
|
|
assert_eq!(f_k1ef(1.89), 1.0710458);
|
|
assert_eq!(f_k1ef(5.89), 0.5477655);
|
|
assert_eq!(f_k1ef(101.89), 0.12461915);
|
|
assert_eq!(f_k1ef(0.), f32::INFINITY);
|
|
assert_eq!(f_k1ef(-0.), f32::INFINITY);
|
|
assert!(f_k1ef(-0.5).is_nan());
|
|
assert!(f_k1ef(f32::NEG_INFINITY).is_nan());
|
|
assert_eq!(f_k1ef(f32::INFINITY), 0.);
|
|
}
|
|
}
|