Files
another-boids-in-rust/vendor/pxfm/src/cosm1.rs

220 lines
7.8 KiB
Rust

/*
* // Copyright (c) Radzivon Bartoshyk 8/2025. All rights reserved.
* //
* // Redistribution and use in source and binary forms, with or without modification,
* // are permitted provided that the following conditions are met:
* //
* // 1. Redistributions of source code must retain the above copyright notice, this
* // list of conditions and the following disclaimer.
* //
* // 2. Redistributions in binary form must reproduce the above copyright notice,
* // this list of conditions and the following disclaimer in the documentation
* // and/or other materials provided with the distribution.
* //
* // 3. Neither the name of the copyright holder nor the names of its
* // contributors may be used to endorse or promote products derived from
* // this software without specific prior written permission.
* //
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
use crate::common::f_fmla;
use crate::double_double::DoubleDouble;
use crate::polyeval::f_polyeval4;
use crate::sin::{range_reduction_small, sincos_eval};
use crate::sin_helper::sincos_eval_dd;
use crate::sin_table::SIN_K_PI_OVER_128;
use crate::sincos_reduce::LargeArgumentReduction;
#[cold]
#[inline(never)]
fn cosm1_accurate(y: DoubleDouble, sin_k: DoubleDouble, cos_k: DoubleDouble) -> f64 {
let r_sincos = sincos_eval_dd(y);
// k is an integer and -pi / 256 <= y <= pi / 256.
// Then sin(x) = sin((k * pi/128 + y)
// = sin(y) * cos(k*pi/128) + cos(y) * sin(k*pi/128)
let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k);
let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k);
let mut rr = DoubleDouble::full_dd_add(sin_k_cos_y, cos_k_sin_y);
// Computing cos(x) - 1 as follows:
// cos(x) - 1 = -2*sin^2(x/2)
rr = DoubleDouble::from_exact_add(rr.hi, rr.lo);
rr = DoubleDouble::quick_mult(rr, rr);
rr = DoubleDouble::quick_mult_f64(rr, -2.);
rr.to_f64()
}
#[cold]
fn cosm1_tiny_hard(x: f64) -> f64 {
// Generated by Sollya:
// d = [2^-27, 2^-7];
// f_cosm1 = cos(x) - 1;
// Q = fpminimax(f_cosm1, [|2,4,6,8|], [|0, 107...|], d);
// See ./notes/cosm1_hard.sollya
const C: [(u64, u64); 3] = [
(0x3c453997dc8ae20d, 0x3fa5555555555555),
(0x3bf6100c76a1827a, 0xbf56c16c16c15749),
(0x3b918f45acdd1fb2, 0x3efa019ddf5a583a),
];
let x2 = DoubleDouble::from_exact_mult(x, x);
let mut p = DoubleDouble::mul_add(
x2,
DoubleDouble::from_bit_pair(C[2]),
DoubleDouble::from_bit_pair(C[1]),
);
p = DoubleDouble::mul_add(x2, p, DoubleDouble::from_bit_pair(C[0]));
p = DoubleDouble::mul_add_f64(x2, p, f64::from_bits(0xbfe0000000000000));
p = DoubleDouble::quick_mult(p, x2);
p.to_f64()
}
/// Computes cos(x) - 1
pub fn f_cosm1(x: f64) -> f64 {
let x_e = (x.to_bits() >> 52) & 0x7ff;
const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
let y: DoubleDouble;
let k;
let mut argument_reduction = LargeArgumentReduction::default();
// |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA)
if x_e < E_BIAS + 16 {
// |x| < 2^-7
if x_e < E_BIAS - 7 {
// |x| < 2^-26
if x_e < E_BIAS - 27 {
// Signed zeros.
if x == 0.0 {
return 0.0;
}
// Taylor expansion for small cos(x) - 1 ~ -x^2/2 + x^4/24 + O(x^6)
let x_sqr = x * x;
const A0: f64 = -1. / 2.;
const A1: f64 = 1. / 24.;
let r0 = f_fmla(x_sqr, A1, A0);
return r0 * x_sqr;
}
// Generated by Sollya:
// d = [2^-27, 2^-7];
// f_cosm1 = (cos(x) - 1);
// Q = fpminimax(f_cosm1, [|2,4,6,8|], [|0, D...|], d);
// See ./notes/cosm1.sollya
let x2 = DoubleDouble::from_exact_mult(x, x);
let p = f_polyeval4(
x2.hi,
f64::from_bits(0xbfe0000000000000),
f64::from_bits(0x3fa5555555555555),
f64::from_bits(0xbf56c16c16b9c2b7),
f64::from_bits(0x3efa014d03f38855),
);
let r = DoubleDouble::quick_mult_f64(x2, p);
let eps = x * f_fmla(
x2.hi,
f64::from_bits(0x3d00000000000000), // 2^-47
f64::from_bits(0x3be0000000000000), // 2^-65
);
let ub = r.hi + (r.lo + eps);
let lb = r.hi + (r.lo - eps);
if ub == lb {
return r.to_f64();
}
return cosm1_tiny_hard(x);
} else {
// // Small range reduction.
(y, k) = range_reduction_small(x * 0.5);
}
} else {
// Inf or NaN
if x_e > 2 * E_BIAS {
// cos(+-Inf) = NaN
return x + f64::NAN;
}
// Large range reduction.
// k = argument_reduction.high_part(x);
(k, y) = argument_reduction.reduce(x * 0.5);
}
// Computing cos(x) - 1 as follows:
// cos(x) - 1 = -2*sin^2(x/2)
let r_sincos = sincos_eval(y);
// cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
let sk = SIN_K_PI_OVER_128[(k & 255) as usize];
let ck = SIN_K_PI_OVER_128[((k.wrapping_add(64)) & 255) as usize];
let sin_k = DoubleDouble::from_bit_pair(sk);
let cos_k = DoubleDouble::from_bit_pair(ck);
let sin_k_cos_y = DoubleDouble::quick_mult(r_sincos.v_cos, sin_k);
let cos_k_sin_y = DoubleDouble::quick_mult(r_sincos.v_sin, cos_k);
// sin_k_cos_y is always >> cos_k_sin_y
let mut rr = DoubleDouble::from_exact_add(sin_k_cos_y.hi, cos_k_sin_y.hi);
rr.lo += sin_k_cos_y.lo + cos_k_sin_y.lo;
rr = DoubleDouble::from_exact_add(rr.hi, rr.lo);
rr = DoubleDouble::quick_mult(rr, rr);
rr = DoubleDouble::quick_mult_f64(rr, -2.);
let rlp = rr.lo + r_sincos.err;
let rlm = rr.lo - r_sincos.err;
let r_upper = rr.hi + rlp; // (rr.lo + ERR);
let r_lower = rr.hi + rlm; // (rr.lo - ERR);
// Ziv's accuracy test
if r_upper == r_lower {
return rr.to_f64();
}
cosm1_accurate(y, sin_k, cos_k)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn f_cosm1f_test() {
assert_eq!(f_cosm1(0.0017700195313803402), -0.000001566484161754997);
assert_eq!(
f_cosm1(0.0000000011641532182693484),
-0.0000000000000000006776263578034406
);
assert_eq!(f_cosm1(0.006164513528517324), -0.000019000553351160402);
assert_eq!(f_cosm1(6.2831853071795862), -2.999519565323715e-32);
assert_eq!(f_cosm1(0.00015928394), -1.2685686744140693e-8);
assert_eq!(f_cosm1(0.0), 0.0);
assert_eq!(f_cosm1(0.0), 0.0);
assert_eq!(f_cosm1(std::f64::consts::PI), -2.);
assert_eq!(f_cosm1(0.5), -0.12241743810962728);
assert_eq!(f_cosm1(0.7), -0.23515781271551153);
assert_eq!(f_cosm1(1.7), -1.1288444942955247);
assert!(f_cosm1(f64::INFINITY).is_nan());
assert!(f_cosm1(f64::NEG_INFINITY).is_nan());
assert!(f_cosm1(f64::NAN).is_nan());
assert_eq!(f_cosm1(0.0002480338), -3.0760382813519806e-8);
}
}