1890 lines
48 KiB
Rust
1890 lines
48 KiB
Rust
use super::*;
|
|
|
|
use alloc::vec::{self, Vec};
|
|
use core::convert::TryFrom;
|
|
use tinyvec_macros::impl_mirrored;
|
|
|
|
#[cfg(feature = "rustc_1_57")]
|
|
use alloc::collections::TryReserveError;
|
|
|
|
#[cfg(feature = "serde")]
|
|
use core::marker::PhantomData;
|
|
#[cfg(feature = "serde")]
|
|
use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
|
|
#[cfg(feature = "serde")]
|
|
use serde::ser::{Serialize, SerializeSeq, Serializer};
|
|
|
|
/// Helper to make a `TinyVec`.
|
|
///
|
|
/// You specify the backing array type, and optionally give all the elements you
|
|
/// want to initially place into the array.
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
///
|
|
/// // The backing array type can be specified in the macro call
|
|
/// let empty_tv = tiny_vec!([u8; 16]);
|
|
/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
|
///
|
|
/// // Or left to inference
|
|
/// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!();
|
|
/// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3);
|
|
/// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
|
/// ```
|
|
#[macro_export]
|
|
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
|
macro_rules! tiny_vec {
|
|
($array_type:ty => $($elem:expr),* $(,)?) => {
|
|
{
|
|
// https://github.com/rust-lang/lang-team/issues/28
|
|
const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*;
|
|
// If we have more `$elem` than the `CAPACITY` we will simply go directly
|
|
// to constructing on the heap.
|
|
match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) {
|
|
$crate::TinyVecConstructor::Inline(f) => {
|
|
f($crate::array_vec!($array_type => $($elem),*))
|
|
}
|
|
$crate::TinyVecConstructor::Heap(f) => {
|
|
f(vec!($($elem),*))
|
|
}
|
|
}
|
|
}
|
|
};
|
|
($array_type:ty) => {
|
|
$crate::TinyVec::<$array_type>::default()
|
|
};
|
|
($($elem:expr),*) => {
|
|
$crate::tiny_vec!(_ => $($elem),*)
|
|
};
|
|
($elem:expr; $n:expr) => {
|
|
$crate::TinyVec::from([$elem; $n])
|
|
};
|
|
() => {
|
|
$crate::tiny_vec!(_)
|
|
};
|
|
}
|
|
|
|
#[doc(hidden)] // Internal implementation details of `tiny_vec!`
|
|
pub enum TinyVecConstructor<A: Array> {
|
|
Inline(fn(ArrayVec<A>) -> TinyVec<A>),
|
|
Heap(fn(Vec<A::Item>) -> TinyVec<A>),
|
|
}
|
|
|
|
/// A vector that starts inline, but can automatically move to the heap.
|
|
///
|
|
/// * Requires the `alloc` feature
|
|
///
|
|
/// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or
|
|
/// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The
|
|
/// interface for the type as a whole is a bunch of methods that just match on
|
|
/// the enum variant and then call the same method on the inner vec.
|
|
///
|
|
/// ## Construction
|
|
///
|
|
/// Because it's an enum, you can construct a `TinyVec` simply by making an
|
|
/// `ArrayVec` or `Vec` and then putting it into the enum.
|
|
///
|
|
/// There is also a macro
|
|
///
|
|
/// ```rust
|
|
/// # use tinyvec::*;
|
|
/// let empty_tv = tiny_vec!([u8; 16]);
|
|
/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// ```
|
|
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
|
pub enum TinyVec<A: Array> {
|
|
#[allow(missing_docs)]
|
|
Inline(ArrayVec<A>),
|
|
#[allow(missing_docs)]
|
|
Heap(Vec<A::Item>),
|
|
}
|
|
|
|
impl<A> Clone for TinyVec<A>
|
|
where
|
|
A: Array + Clone,
|
|
A::Item: Clone,
|
|
{
|
|
#[inline]
|
|
fn clone(&self) -> Self {
|
|
match self {
|
|
TinyVec::Heap(v) => TinyVec::Heap(v.clone()),
|
|
TinyVec::Inline(v) => TinyVec::Inline(v.clone()),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn clone_from(&mut self, o: &Self) {
|
|
if o.len() > self.len() {
|
|
self.reserve(o.len() - self.len());
|
|
} else {
|
|
self.truncate(o.len());
|
|
}
|
|
let (start, end) = o.split_at(self.len());
|
|
for (dst, src) in self.iter_mut().zip(start) {
|
|
dst.clone_from(src);
|
|
}
|
|
self.extend_from_slice(end);
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Default for TinyVec<A> {
|
|
#[inline]
|
|
fn default() -> Self {
|
|
TinyVec::Inline(ArrayVec::default())
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Deref for TinyVec<A> {
|
|
type Target = [A::Item];
|
|
|
|
impl_mirrored! {
|
|
type Mirror = TinyVec;
|
|
#[inline(always)]
|
|
#[must_use]
|
|
fn deref(self: &Self) -> &Self::Target;
|
|
}
|
|
}
|
|
|
|
impl<A: Array> DerefMut for TinyVec<A> {
|
|
impl_mirrored! {
|
|
type Mirror = TinyVec;
|
|
#[inline(always)]
|
|
#[must_use]
|
|
fn deref_mut(self: &mut Self) -> &mut Self::Target;
|
|
}
|
|
}
|
|
|
|
impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> {
|
|
type Output = <I as SliceIndex<[A::Item]>>::Output;
|
|
#[inline(always)]
|
|
fn index(&self, index: I) -> &Self::Output {
|
|
&self.deref()[index]
|
|
}
|
|
}
|
|
|
|
impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
|
&mut self.deref_mut()[index]
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "std")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "std")))]
|
|
impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
|
|
self.extend_from_slice(buf);
|
|
Ok(buf.len())
|
|
}
|
|
|
|
#[inline(always)]
|
|
fn flush(&mut self) -> std::io::Result<()> {
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
|
|
impl<A: Array> Serialize for TinyVec<A>
|
|
where
|
|
A::Item: Serialize,
|
|
{
|
|
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
|
where
|
|
S: Serializer,
|
|
{
|
|
let mut seq = serializer.serialize_seq(Some(self.len()))?;
|
|
for element in self.iter() {
|
|
seq.serialize_element(element)?;
|
|
}
|
|
seq.end()
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
|
|
impl<'de, A: Array> Deserialize<'de> for TinyVec<A>
|
|
where
|
|
A::Item: Deserialize<'de>,
|
|
{
|
|
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
|
where
|
|
D: Deserializer<'de>,
|
|
{
|
|
deserializer.deserialize_seq(TinyVecVisitor(PhantomData))
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "borsh")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]
|
|
impl<A: Array> borsh::BorshSerialize for TinyVec<A>
|
|
where
|
|
<A as Array>::Item: borsh::BorshSerialize,
|
|
{
|
|
fn serialize<W: borsh::io::Write>(
|
|
&self, writer: &mut W,
|
|
) -> borsh::io::Result<()> {
|
|
<usize as borsh::BorshSerialize>::serialize(&self.len(), writer)?;
|
|
for elem in self.iter() {
|
|
<<A as Array>::Item as borsh::BorshSerialize>::serialize(elem, writer)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "borsh")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "borsh")))]
|
|
impl<A: Array> borsh::BorshDeserialize for TinyVec<A>
|
|
where
|
|
<A as Array>::Item: borsh::BorshDeserialize,
|
|
{
|
|
fn deserialize_reader<R: borsh::io::Read>(
|
|
reader: &mut R,
|
|
) -> borsh::io::Result<Self> {
|
|
let len = <usize as borsh::BorshDeserialize>::deserialize_reader(reader)?;
|
|
let mut new_tinyvec = Self::with_capacity(len);
|
|
|
|
for _ in 0..len {
|
|
new_tinyvec.push(
|
|
<<A as Array>::Item as borsh::BorshDeserialize>::deserialize_reader(
|
|
reader,
|
|
)?,
|
|
)
|
|
}
|
|
|
|
Ok(new_tinyvec)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "arbitrary")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]
|
|
impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A>
|
|
where
|
|
A: Array,
|
|
A::Item: arbitrary::Arbitrary<'a>,
|
|
{
|
|
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
|
|
let v = Vec::arbitrary(u)?;
|
|
let mut tv = TinyVec::Heap(v);
|
|
tv.shrink_to_fit();
|
|
Ok(tv)
|
|
}
|
|
}
|
|
|
|
impl<A: Array> TinyVec<A> {
|
|
/// Returns whether elements are on heap
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn is_heap(&self) -> bool {
|
|
match self {
|
|
TinyVec::Heap(_) => true,
|
|
TinyVec::Inline(_) => false,
|
|
}
|
|
}
|
|
/// Returns whether elements are on stack
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn is_inline(&self) -> bool {
|
|
!self.is_heap()
|
|
}
|
|
|
|
/// Shrinks the capacity of the vector as much as possible.\
|
|
/// It is inlined if length is less than `A::CAPACITY`.
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3);
|
|
/// assert!(tv.is_heap());
|
|
/// let _ = tv.pop();
|
|
/// assert!(tv.is_heap());
|
|
/// tv.shrink_to_fit();
|
|
/// assert!(tv.is_inline());
|
|
/// ```
|
|
#[inline]
|
|
pub fn shrink_to_fit(&mut self) {
|
|
let vec = match self {
|
|
TinyVec::Inline(_) => return,
|
|
TinyVec::Heap(h) => h,
|
|
};
|
|
|
|
if vec.len() > A::CAPACITY {
|
|
return vec.shrink_to_fit();
|
|
}
|
|
|
|
let moved_vec = core::mem::take(vec);
|
|
|
|
let mut av = ArrayVec::default();
|
|
let mut rest = av.fill(moved_vec);
|
|
debug_assert!(rest.next().is_none());
|
|
*self = TinyVec::Inline(av);
|
|
}
|
|
|
|
/// Moves the content of the TinyVec to the heap, if it's inline.
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// assert!(tv.is_inline());
|
|
/// tv.move_to_the_heap();
|
|
/// assert!(tv.is_heap());
|
|
/// ```
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
pub fn move_to_the_heap(&mut self) {
|
|
let arr = match self {
|
|
TinyVec::Heap(_) => return,
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
let v = arr.drain_to_vec();
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/// Tries to move the content of the TinyVec to the heap, if it's inline.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// If the allocator reports a failure, then an error is returned and the
|
|
/// content is kept on the stack.
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// assert!(tv.is_inline());
|
|
/// assert_eq!(Ok(()), tv.try_move_to_the_heap());
|
|
/// assert!(tv.is_heap());
|
|
/// ```
|
|
#[inline]
|
|
#[cfg(feature = "rustc_1_57")]
|
|
pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> {
|
|
let arr = match self {
|
|
TinyVec::Heap(_) => return Ok(()),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
let v = arr.try_drain_to_vec()?;
|
|
*self = TinyVec::Heap(v);
|
|
return Ok(());
|
|
}
|
|
|
|
/// If TinyVec is inline, moves the content of it to the heap.
|
|
/// Also reserves additional space.
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// assert!(tv.is_inline());
|
|
/// tv.move_to_the_heap_and_reserve(32);
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 35);
|
|
/// ```
|
|
#[inline]
|
|
pub fn move_to_the_heap_and_reserve(&mut self, n: usize) {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.reserve(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
let v = arr.drain_to_vec_and_reserve(n);
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/// If TinyVec is inline, try to move the content of it to the heap.
|
|
/// Also reserves additional space.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// If the allocator reports a failure, then an error is returned.
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// assert!(tv.is_inline());
|
|
/// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32));
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 35);
|
|
/// ```
|
|
#[inline]
|
|
#[cfg(feature = "rustc_1_57")]
|
|
pub fn try_move_to_the_heap_and_reserve(
|
|
&mut self, n: usize,
|
|
) -> Result<(), TryReserveError> {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.try_reserve(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
let v = arr.try_drain_to_vec_and_reserve(n)?;
|
|
*self = TinyVec::Heap(v);
|
|
return Ok(());
|
|
}
|
|
|
|
/// Reserves additional space.
|
|
/// Moves to the heap if array can't hold `n` more items
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
|
/// assert!(tv.is_inline());
|
|
/// tv.reserve(1);
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn reserve(&mut self, n: usize) {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.reserve(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
if n > arr.capacity() - arr.len() {
|
|
let v = arr.drain_to_vec_and_reserve(n);
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/* In this place array has enough place, so no work is needed more */
|
|
return;
|
|
}
|
|
|
|
/// Tries to reserve additional space.
|
|
/// Moves to the heap if array can't hold `n` more items.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// If the allocator reports a failure, then an error is returned.
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
|
/// assert!(tv.is_inline());
|
|
/// assert_eq!(Ok(()), tv.try_reserve(1));
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 5);
|
|
/// ```
|
|
#[inline]
|
|
#[cfg(feature = "rustc_1_57")]
|
|
pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.try_reserve(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
if n > arr.capacity() - arr.len() {
|
|
let v = arr.try_drain_to_vec_and_reserve(n)?;
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/* In this place array has enough place, so no work is needed more */
|
|
return Ok(());
|
|
}
|
|
|
|
/// Reserves additional space.
|
|
/// Moves to the heap if array can't hold `n` more items
|
|
///
|
|
/// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact)
|
|
/// ```text
|
|
/// Note that the allocator may give the collection more space than it requests.
|
|
/// Therefore, capacity can not be relied upon to be precisely minimal.
|
|
/// Prefer `reserve` if future insertions are expected.
|
|
/// ```
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
|
/// assert!(tv.is_inline());
|
|
/// tv.reserve_exact(1);
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 5);
|
|
/// ```
|
|
#[inline]
|
|
pub fn reserve_exact(&mut self, n: usize) {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.reserve_exact(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
if n > arr.capacity() - arr.len() {
|
|
let v = arr.drain_to_vec_and_reserve(n);
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/* In this place array has enough place, so no work is needed more */
|
|
return;
|
|
}
|
|
|
|
/// Tries to reserve additional space.
|
|
/// Moves to the heap if array can't hold `n` more items
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// If the allocator reports a failure, then an error is returned.
|
|
///
|
|
/// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact)
|
|
/// ```text
|
|
/// Note that the allocator may give the collection more space than it requests.
|
|
/// Therefore, capacity can not be relied upon to be precisely minimal.
|
|
/// Prefer `reserve` if future insertions are expected.
|
|
/// ```
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
|
/// assert!(tv.is_inline());
|
|
/// assert_eq!(Ok(()), tv.try_reserve_exact(1));
|
|
/// assert!(tv.is_heap());
|
|
/// assert!(tv.capacity() >= 5);
|
|
/// ```
|
|
#[inline]
|
|
#[cfg(feature = "rustc_1_57")]
|
|
pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> {
|
|
let arr = match self {
|
|
TinyVec::Heap(h) => return h.try_reserve_exact(n),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
if n > arr.capacity() - arr.len() {
|
|
let v = arr.try_drain_to_vec_and_reserve(n)?;
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
|
|
/* In this place array has enough place, so no work is needed more */
|
|
return Ok(());
|
|
}
|
|
|
|
/// Makes a new TinyVec with _at least_ the given capacity.
|
|
///
|
|
/// If the requested capacity is less than or equal to the array capacity you
|
|
/// get an inline vec. If it's greater than you get a heap vec.
|
|
/// ```
|
|
/// # use tinyvec::*;
|
|
/// let t = TinyVec::<[u8; 10]>::with_capacity(5);
|
|
/// assert!(t.is_inline());
|
|
/// assert!(t.capacity() >= 5);
|
|
///
|
|
/// let t = TinyVec::<[u8; 10]>::with_capacity(20);
|
|
/// assert!(t.is_heap());
|
|
/// assert!(t.capacity() >= 20);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn with_capacity(cap: usize) -> Self {
|
|
if cap <= A::CAPACITY {
|
|
TinyVec::Inline(ArrayVec::default())
|
|
} else {
|
|
TinyVec::Heap(Vec::with_capacity(cap))
|
|
}
|
|
}
|
|
|
|
/// Converts a `TinyVec<[T; N]>` into a `Box<[T]>`.
|
|
///
|
|
/// - For `TinyVec::Heap(Vec<T>)`, it takes the `Vec<T>` and converts it into
|
|
/// a `Box<[T]>` without heap reallocation.
|
|
/// - For `TinyVec::Inline(inner_data)`, it first converts the `inner_data` to
|
|
/// `Vec<T>`, then into a `Box<[T]>`. Requiring only a single heap
|
|
/// allocation.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```
|
|
/// use core::mem::size_of_val as mem_size_of;
|
|
/// use tinyvec::TinyVec;
|
|
///
|
|
/// // Initialize TinyVec with 256 elements (exceeding inline capacity)
|
|
/// let v: TinyVec<[_; 128]> = (0u8..=255).collect();
|
|
///
|
|
/// assert!(v.is_heap());
|
|
/// assert_eq!(mem_size_of(&v), 136); // mem size of TinyVec<[u8; N]>: N+8
|
|
/// assert_eq!(v.len(), 256);
|
|
///
|
|
/// let boxed = v.into_boxed_slice();
|
|
/// assert_eq!(mem_size_of(&boxed), 16); // mem size of Box<[u8]>: 16 bytes (fat pointer)
|
|
/// assert_eq!(boxed.len(), 256);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn into_boxed_slice(self) -> alloc::boxed::Box<[A::Item]> {
|
|
self.into_vec().into_boxed_slice()
|
|
}
|
|
|
|
/// Converts a `TinyVec<[T; N]>` into a `Vec<T>`.
|
|
///
|
|
/// `v.into_vec()` is equivalent to `Into::<Vec<_>>::into(v)`.
|
|
///
|
|
/// - For `TinyVec::Inline(_)`, `.into_vec()` **does not** offer a performance
|
|
/// advantage over `.to_vec()`.
|
|
/// - For `TinyVec::Heap(vec_data)`, `.into_vec()` will take `vec_data`
|
|
/// without heap reallocation.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```
|
|
/// use tinyvec::TinyVec;
|
|
///
|
|
/// let v = TinyVec::from([0u8; 8]);
|
|
/// let v2 = v.clone();
|
|
///
|
|
/// let vec = v.into_vec();
|
|
/// let vec2: Vec<_> = v2.into();
|
|
///
|
|
/// assert_eq!(vec, vec2);
|
|
/// ```
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn into_vec(self) -> Vec<A::Item> {
|
|
self.into()
|
|
}
|
|
}
|
|
|
|
impl<A: Array> TinyVec<A> {
|
|
/// Move all values from `other` into this vec.
|
|
#[inline]
|
|
pub fn append(&mut self, other: &mut Self) {
|
|
self.reserve(other.len());
|
|
|
|
/* Doing append should be faster, because it is effectively a memcpy */
|
|
match (self, other) {
|
|
(TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh),
|
|
(TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)),
|
|
(ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)),
|
|
}
|
|
}
|
|
|
|
impl_mirrored! {
|
|
type Mirror = TinyVec;
|
|
|
|
/// Remove an element, swapping the end of the vec into its place.
|
|
///
|
|
/// ## Panics
|
|
/// * If the index is out of bounds.
|
|
///
|
|
/// ## Example
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap");
|
|
///
|
|
/// assert_eq!(tv.swap_remove(1), "bar");
|
|
/// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]);
|
|
///
|
|
/// assert_eq!(tv.swap_remove(0), "foo");
|
|
/// assert_eq!(tv.as_slice(), &["quack", "zap"][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn swap_remove(self: &mut Self, index: usize) -> A::Item;
|
|
|
|
/// Remove and return the last element of the vec, if there is one.
|
|
///
|
|
/// ## Failure
|
|
/// * If the vec is empty you get `None`.
|
|
#[inline]
|
|
pub fn pop(self: &mut Self) -> Option<A::Item>;
|
|
|
|
/// Removes the item at `index`, shifting all others down by one index.
|
|
///
|
|
/// Returns the removed element.
|
|
///
|
|
/// ## Panics
|
|
///
|
|
/// If the index is out of bounds.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// assert_eq!(tv.remove(1), 2);
|
|
/// assert_eq!(tv.as_slice(), &[1, 3][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn remove(self: &mut Self, index: usize) -> A::Item;
|
|
|
|
/// The length of the vec (in elements).
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn len(self: &Self) -> usize;
|
|
|
|
/// The capacity of the `TinyVec`.
|
|
///
|
|
/// When not heap allocated this is fixed based on the array type.
|
|
/// Otherwise its the result of the underlying Vec::capacity.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn capacity(self: &Self) -> usize;
|
|
|
|
/// Reduces the vec's length to the given value.
|
|
///
|
|
/// If the vec is already shorter than the input, nothing happens.
|
|
#[inline]
|
|
pub fn truncate(self: &mut Self, new_len: usize);
|
|
|
|
/// A mutable pointer to the backing array.
|
|
///
|
|
/// ## Safety
|
|
///
|
|
/// This pointer has provenance over the _entire_ backing array/buffer.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item;
|
|
|
|
/// A const pointer to the backing array.
|
|
///
|
|
/// ## Safety
|
|
///
|
|
/// This pointer has provenance over the _entire_ backing array/buffer.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn as_ptr(self: &Self) -> *const A::Item;
|
|
}
|
|
|
|
/// Walk the vec and keep only the elements that pass the predicate given.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
///
|
|
/// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
|
/// tv.retain(|&x| x % 2 == 0);
|
|
/// assert_eq!(tv.as_slice(), &[2, 4][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, acceptable: F) {
|
|
match self {
|
|
TinyVec::Inline(i) => i.retain(acceptable),
|
|
TinyVec::Heap(h) => h.retain(acceptable),
|
|
}
|
|
}
|
|
|
|
/// Walk the vec and keep only the elements that pass the predicate given,
|
|
/// having the opportunity to modify the elements at the same time.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
///
|
|
/// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
|
/// tv.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });
|
|
/// assert_eq!(tv.as_slice(), &[4, 8][..]);
|
|
/// ```
|
|
#[inline]
|
|
#[cfg(feature = "rustc_1_61")]
|
|
pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, acceptable: F) {
|
|
match self {
|
|
TinyVec::Inline(i) => i.retain_mut(acceptable),
|
|
TinyVec::Heap(h) => h.retain_mut(acceptable),
|
|
}
|
|
}
|
|
|
|
/// Helper for getting the mut slice.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
|
|
self.deref_mut()
|
|
}
|
|
|
|
/// Helper for getting the shared slice.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn as_slice(&self) -> &[A::Item] {
|
|
self.deref()
|
|
}
|
|
|
|
/// Removes all elements from the vec.
|
|
#[inline(always)]
|
|
pub fn clear(&mut self) {
|
|
self.truncate(0)
|
|
}
|
|
|
|
/// De-duplicates the vec.
|
|
#[cfg(feature = "nightly_slice_partition_dedup")]
|
|
#[inline(always)]
|
|
pub fn dedup(&mut self)
|
|
where
|
|
A::Item: PartialEq,
|
|
{
|
|
self.dedup_by(|a, b| a == b)
|
|
}
|
|
|
|
/// De-duplicates the vec according to the predicate given.
|
|
#[cfg(feature = "nightly_slice_partition_dedup")]
|
|
#[inline(always)]
|
|
pub fn dedup_by<F>(&mut self, same_bucket: F)
|
|
where
|
|
F: FnMut(&mut A::Item, &mut A::Item) -> bool,
|
|
{
|
|
let len = {
|
|
let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
|
|
dedup.len()
|
|
};
|
|
self.truncate(len);
|
|
}
|
|
|
|
/// De-duplicates the vec according to the key selector given.
|
|
#[cfg(feature = "nightly_slice_partition_dedup")]
|
|
#[inline(always)]
|
|
pub fn dedup_by_key<F, K>(&mut self, mut key: F)
|
|
where
|
|
F: FnMut(&mut A::Item) -> K,
|
|
K: PartialEq,
|
|
{
|
|
self.dedup_by(|a, b| key(a) == key(b))
|
|
}
|
|
|
|
/// Creates a draining iterator that removes the specified range in the vector
|
|
/// and yields the removed items.
|
|
///
|
|
/// **Note: This method has significant performance issues compared to
|
|
/// matching on the TinyVec and then calling drain on the Inline or Heap value
|
|
/// inside. The draining iterator has to branch on every single access. It is
|
|
/// provided for simplicity and compatibility only.**
|
|
///
|
|
/// ## Panics
|
|
/// * If the start is greater than the end
|
|
/// * If the end is past the edge of the vec.
|
|
///
|
|
/// ## Example
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect();
|
|
/// assert_eq!(tv.as_slice(), &[1][..]);
|
|
/// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
|
///
|
|
/// tv.drain(..);
|
|
/// assert_eq!(tv.as_slice(), &[]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn drain<R: RangeBounds<usize>>(
|
|
&mut self, range: R,
|
|
) -> TinyVecDrain<'_, A> {
|
|
match self {
|
|
TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)),
|
|
TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)),
|
|
}
|
|
}
|
|
|
|
/// Clone each element of the slice into this vec.
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2);
|
|
/// tv.extend_from_slice(&[3, 4]);
|
|
/// assert_eq!(tv.as_slice(), [1, 2, 3, 4]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn extend_from_slice(&mut self, sli: &[A::Item])
|
|
where
|
|
A::Item: Clone,
|
|
{
|
|
self.reserve(sli.len());
|
|
match self {
|
|
TinyVec::Inline(a) => a.extend_from_slice(sli),
|
|
TinyVec::Heap(h) => h.extend_from_slice(sli),
|
|
}
|
|
}
|
|
|
|
/// Wraps up an array and uses the given length as the initial length.
|
|
///
|
|
/// Note that the `From` impl for arrays assumes the full length is used.
|
|
///
|
|
/// ## Panics
|
|
///
|
|
/// The length must be less than or equal to the capacity of the array.
|
|
#[inline]
|
|
#[must_use]
|
|
#[allow(clippy::match_wild_err_arm)]
|
|
pub fn from_array_len(data: A, len: usize) -> Self {
|
|
match Self::try_from_array_len(data, len) {
|
|
Ok(out) => out,
|
|
Err(_) => {
|
|
panic!("TinyVec: length {} exceeds capacity {}!", len, A::CAPACITY)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This is an internal implementation detail of the `tiny_vec!` macro, and
|
|
/// using it other than from that macro is not supported by this crate's
|
|
/// SemVer guarantee.
|
|
#[inline(always)]
|
|
#[doc(hidden)]
|
|
pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> {
|
|
if cap <= A::CAPACITY {
|
|
TinyVecConstructor::Inline(TinyVec::Inline)
|
|
} else {
|
|
TinyVecConstructor::Heap(TinyVec::Heap)
|
|
}
|
|
}
|
|
|
|
/// Inserts an item at the position given, moving all following elements +1
|
|
/// index.
|
|
///
|
|
/// ## Panics
|
|
/// * If `index` > `len`
|
|
///
|
|
/// ## Example
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
|
|
/// tv.insert(1, 4);
|
|
/// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]);
|
|
/// tv.insert(4, 5);
|
|
/// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn insert(&mut self, index: usize, item: A::Item) {
|
|
assert!(
|
|
index <= self.len(),
|
|
"insertion index (is {}) should be <= len (is {})",
|
|
index,
|
|
self.len()
|
|
);
|
|
|
|
let arr = match self {
|
|
TinyVec::Heap(v) => return v.insert(index, item),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
if let Some(x) = arr.try_insert(index, item) {
|
|
let mut v = Vec::with_capacity(arr.len() * 2);
|
|
let mut it = arr.iter_mut().map(core::mem::take);
|
|
v.extend(it.by_ref().take(index));
|
|
v.push(x);
|
|
v.extend(it);
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
}
|
|
|
|
/// If the vec is empty.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
|
|
/// Makes a new, empty vec.
|
|
#[inline(always)]
|
|
#[must_use]
|
|
pub fn new() -> Self {
|
|
Self::default()
|
|
}
|
|
|
|
/// Place an element onto the end of the vec.
|
|
#[inline]
|
|
pub fn push(&mut self, val: A::Item) {
|
|
// The code path for moving the inline contents to the heap produces a lot
|
|
// of instructions, but we have a strong guarantee that this is a cold
|
|
// path. LLVM doesn't know this, inlines it, and this tends to cause a
|
|
// cascade of other bad inlining decisions because the body of push looks
|
|
// huge even though nearly every call executes the same few instructions.
|
|
//
|
|
// Moving the logic out of line with #[cold] causes the hot code to be
|
|
// inlined together, and we take the extra cost of a function call only
|
|
// in rare cases.
|
|
#[cold]
|
|
fn drain_to_heap_and_push<A: Array>(
|
|
arr: &mut ArrayVec<A>, val: A::Item,
|
|
) -> TinyVec<A> {
|
|
/* Make the Vec twice the size to amortize the cost of draining */
|
|
let mut v = arr.drain_to_vec_and_reserve(arr.len());
|
|
v.push(val);
|
|
TinyVec::Heap(v)
|
|
}
|
|
|
|
match self {
|
|
TinyVec::Heap(v) => v.push(val),
|
|
TinyVec::Inline(arr) => {
|
|
if let Some(x) = arr.try_push(val) {
|
|
*self = drain_to_heap_and_push(arr, x);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resize the vec to the new length.
|
|
///
|
|
/// If it needs to be longer, it's filled with clones of the provided value.
|
|
/// If it needs to be shorter, it's truncated.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
///
|
|
/// let mut tv = tiny_vec!([&str; 10] => "hello");
|
|
/// tv.resize(3, "world");
|
|
/// assert_eq!(tv.as_slice(), &["hello", "world", "world"][..]);
|
|
///
|
|
/// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
|
/// tv.resize(2, 0);
|
|
/// assert_eq!(tv.as_slice(), &[1, 2][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn resize(&mut self, new_len: usize, new_val: A::Item)
|
|
where
|
|
A::Item: Clone,
|
|
{
|
|
self.resize_with(new_len, || new_val.clone());
|
|
}
|
|
|
|
/// Resize the vec to the new length.
|
|
///
|
|
/// If it needs to be longer, it's filled with repeated calls to the provided
|
|
/// function. If it needs to be shorter, it's truncated.
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
///
|
|
/// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3);
|
|
/// tv.resize_with(5, Default::default);
|
|
/// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]);
|
|
///
|
|
/// let mut tv = tiny_vec!([i32; 2]);
|
|
/// let mut p = 1;
|
|
/// tv.resize_with(4, || {
|
|
/// p *= 2;
|
|
/// p
|
|
/// });
|
|
/// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) {
|
|
match new_len.checked_sub(self.len()) {
|
|
None => return self.truncate(new_len),
|
|
Some(n) => self.reserve(n),
|
|
}
|
|
|
|
match self {
|
|
TinyVec::Inline(a) => a.resize_with(new_len, f),
|
|
TinyVec::Heap(v) => v.resize_with(new_len, f),
|
|
}
|
|
}
|
|
|
|
/// Splits the collection at the point given.
|
|
///
|
|
/// * `[0, at)` stays in this vec
|
|
/// * `[at, len)` ends up in the new vec.
|
|
///
|
|
/// ## Panics
|
|
/// * if at > len
|
|
///
|
|
/// ## Example
|
|
///
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// let tv2 = tv.split_off(1);
|
|
/// assert_eq!(tv.as_slice(), &[1][..]);
|
|
/// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn split_off(&mut self, at: usize) -> Self {
|
|
match self {
|
|
TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)),
|
|
TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)),
|
|
}
|
|
}
|
|
|
|
/// Creates a splicing iterator that removes the specified range in the
|
|
/// vector, yields the removed items, and replaces them with elements from
|
|
/// the provided iterator.
|
|
///
|
|
/// `splice` fuses the provided iterator, so elements after the first `None`
|
|
/// are ignored.
|
|
///
|
|
/// ## Panics
|
|
/// * If the start is greater than the end.
|
|
/// * If the end is past the edge of the vec.
|
|
/// * If the provided iterator panics.
|
|
///
|
|
/// ## Example
|
|
/// ```rust
|
|
/// use tinyvec::*;
|
|
/// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
|
/// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect();
|
|
/// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]);
|
|
/// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
|
///
|
|
/// tv.splice(.., None);
|
|
/// assert_eq!(tv.as_slice(), &[]);
|
|
/// ```
|
|
#[inline]
|
|
pub fn splice<R, I>(
|
|
&mut self, range: R, replacement: I,
|
|
) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
|
|
where
|
|
R: RangeBounds<usize>,
|
|
I: IntoIterator<Item = A::Item>,
|
|
{
|
|
use core::ops::Bound;
|
|
let start = match range.start_bound() {
|
|
Bound::Included(x) => *x,
|
|
Bound::Excluded(x) => x.saturating_add(1),
|
|
Bound::Unbounded => 0,
|
|
};
|
|
let end = match range.end_bound() {
|
|
Bound::Included(x) => x.saturating_add(1),
|
|
Bound::Excluded(x) => *x,
|
|
Bound::Unbounded => self.len(),
|
|
};
|
|
assert!(
|
|
start <= end,
|
|
"TinyVec::splice> Illegal range, {} to {}",
|
|
start,
|
|
end
|
|
);
|
|
assert!(
|
|
end <= self.len(),
|
|
"TinyVec::splice> Range ends at {} but length is only {}!",
|
|
end,
|
|
self.len()
|
|
);
|
|
|
|
TinyVecSplice {
|
|
removal_start: start,
|
|
removal_end: end,
|
|
parent: self,
|
|
replacement: replacement.into_iter().fuse(),
|
|
}
|
|
}
|
|
|
|
/// Wraps an array, using the given length as the starting length.
|
|
///
|
|
/// If you want to use the whole length of the array, you can just use the
|
|
/// `From` impl.
|
|
///
|
|
/// ## Failure
|
|
///
|
|
/// If the given length is greater than the capacity of the array this will
|
|
/// error, and you'll get the array back in the `Err`.
|
|
#[inline]
|
|
pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
|
|
let arr = ArrayVec::try_from_array_len(data, len)?;
|
|
Ok(TinyVec::Inline(arr))
|
|
}
|
|
}
|
|
|
|
/// Draining iterator for `TinyVecDrain`
|
|
///
|
|
/// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain)
|
|
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
|
pub enum TinyVecDrain<'p, A: Array> {
|
|
#[allow(missing_docs)]
|
|
Inline(ArrayVecDrain<'p, A::Item>),
|
|
#[allow(missing_docs)]
|
|
Heap(vec::Drain<'p, A::Item>),
|
|
}
|
|
|
|
impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> {
|
|
type Item = A::Item;
|
|
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecDrain;
|
|
|
|
#[inline]
|
|
fn next(self: &mut Self) -> Option<Self::Item>;
|
|
#[inline]
|
|
fn nth(self: &mut Self, n: usize) -> Option<Self::Item>;
|
|
#[inline]
|
|
fn size_hint(self: &Self) -> (usize, Option<usize>);
|
|
#[inline]
|
|
fn last(self: Self) -> Option<Self::Item>;
|
|
#[inline]
|
|
fn count(self: Self) -> usize;
|
|
}
|
|
|
|
#[inline]
|
|
fn for_each<F: FnMut(Self::Item)>(self, f: F) {
|
|
match self {
|
|
TinyVecDrain::Inline(i) => i.for_each(f),
|
|
TinyVecDrain::Heap(h) => h.for_each(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> {
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecDrain;
|
|
|
|
#[inline]
|
|
fn next_back(self: &mut Self) -> Option<Self::Item>;
|
|
|
|
#[inline]
|
|
fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
|
|
}
|
|
}
|
|
|
|
/// Splicing iterator for `TinyVec`
|
|
/// See [`TinyVec::splice`](TinyVec::<A>::splice)
|
|
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
|
pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
|
|
parent: &'p mut TinyVec<A>,
|
|
removal_start: usize,
|
|
removal_end: usize,
|
|
replacement: I,
|
|
}
|
|
|
|
impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I>
|
|
where
|
|
A: Array,
|
|
I: Iterator<Item = A::Item>,
|
|
{
|
|
type Item = A::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A::Item> {
|
|
if self.removal_start < self.removal_end {
|
|
match self.replacement.next() {
|
|
Some(replacement) => {
|
|
let removed = core::mem::replace(
|
|
&mut self.parent[self.removal_start],
|
|
replacement,
|
|
);
|
|
self.removal_start += 1;
|
|
Some(removed)
|
|
}
|
|
None => {
|
|
let removed = self.parent.remove(self.removal_start);
|
|
self.removal_end -= 1;
|
|
Some(removed)
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let len = self.len();
|
|
(len, Some(len))
|
|
}
|
|
}
|
|
|
|
impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I>
|
|
where
|
|
A: Array,
|
|
I: Iterator<Item = A::Item>,
|
|
{
|
|
#[inline]
|
|
fn len(&self) -> usize {
|
|
self.removal_end - self.removal_start
|
|
}
|
|
}
|
|
|
|
impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I>
|
|
where
|
|
A: Array,
|
|
I: Iterator<Item = A::Item>,
|
|
{
|
|
}
|
|
|
|
impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I>
|
|
where
|
|
A: Array,
|
|
I: Iterator<Item = A::Item> + DoubleEndedIterator,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A::Item> {
|
|
if self.removal_start < self.removal_end {
|
|
match self.replacement.next_back() {
|
|
Some(replacement) => {
|
|
let removed = core::mem::replace(
|
|
&mut self.parent[self.removal_end - 1],
|
|
replacement,
|
|
);
|
|
self.removal_end -= 1;
|
|
Some(removed)
|
|
}
|
|
None => {
|
|
let removed = self.parent.remove(self.removal_end - 1);
|
|
self.removal_end -= 1;
|
|
Some(removed)
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
|
|
for TinyVecSplice<'p, A, I>
|
|
{
|
|
#[inline]
|
|
fn drop(&mut self) {
|
|
for _ in self.by_ref() {}
|
|
|
|
let (lower_bound, _) = self.replacement.size_hint();
|
|
self.parent.reserve(lower_bound);
|
|
|
|
for replacement in self.replacement.by_ref() {
|
|
self.parent.insert(self.removal_end, replacement);
|
|
self.removal_end += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A: Array> AsMut<[A::Item]> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn as_mut(&mut self) -> &mut [A::Item] {
|
|
&mut *self
|
|
}
|
|
}
|
|
|
|
impl<A: Array> AsRef<[A::Item]> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn as_ref(&self) -> &[A::Item] {
|
|
&*self
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Borrow<[A::Item]> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn borrow(&self) -> &[A::Item] {
|
|
&*self
|
|
}
|
|
}
|
|
|
|
impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn borrow_mut(&mut self) -> &mut [A::Item] {
|
|
&mut *self
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Extend<A::Item> for TinyVec<A> {
|
|
#[inline]
|
|
fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
|
|
let iter = iter.into_iter();
|
|
let (lower_bound, _) = iter.size_hint();
|
|
self.reserve(lower_bound);
|
|
|
|
let a = match self {
|
|
TinyVec::Heap(h) => return h.extend(iter),
|
|
TinyVec::Inline(a) => a,
|
|
};
|
|
|
|
let mut iter = a.fill(iter);
|
|
let maybe = iter.next();
|
|
|
|
let surely = match maybe {
|
|
Some(x) => x,
|
|
None => return,
|
|
};
|
|
|
|
let mut v = a.drain_to_vec_and_reserve(a.len());
|
|
v.push(surely);
|
|
v.extend(iter);
|
|
*self = TinyVec::Heap(v);
|
|
}
|
|
}
|
|
|
|
impl<A: Array> From<ArrayVec<A>> for TinyVec<A> {
|
|
#[inline(always)]
|
|
fn from(arr: ArrayVec<A>) -> Self {
|
|
TinyVec::Inline(arr)
|
|
}
|
|
}
|
|
|
|
impl<A: Array> From<A> for TinyVec<A> {
|
|
#[inline]
|
|
fn from(array: A) -> Self {
|
|
TinyVec::Inline(ArrayVec::from(array))
|
|
}
|
|
}
|
|
|
|
impl<T, A> From<&'_ [T]> for TinyVec<A>
|
|
where
|
|
T: Clone + Default,
|
|
A: Array<Item = T>,
|
|
{
|
|
#[inline]
|
|
fn from(slice: &[T]) -> Self {
|
|
if let Ok(arr) = ArrayVec::try_from(slice) {
|
|
TinyVec::Inline(arr)
|
|
} else {
|
|
TinyVec::Heap(slice.into())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T, A> From<&'_ mut [T]> for TinyVec<A>
|
|
where
|
|
T: Clone + Default,
|
|
A: Array<Item = T>,
|
|
{
|
|
#[inline]
|
|
fn from(slice: &mut [T]) -> Self {
|
|
Self::from(&*slice)
|
|
}
|
|
}
|
|
|
|
impl<A: Array> FromIterator<A::Item> for TinyVec<A> {
|
|
#[inline]
|
|
fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
|
|
let mut av = Self::default();
|
|
av.extend(iter);
|
|
av
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Into<Vec<A::Item>> for TinyVec<A> {
|
|
/// Converts a `TinyVec` into a `Vec`.
|
|
///
|
|
/// ## Examples
|
|
///
|
|
/// ### Inline to Vec
|
|
///
|
|
/// For `TinyVec::Inline(_)`,
|
|
/// `.into()` **does not** offer a performance advantage over `.to_vec()`.
|
|
///
|
|
/// ```
|
|
/// use core::mem::size_of_val as mem_size_of;
|
|
/// use tinyvec::TinyVec;
|
|
///
|
|
/// let v = TinyVec::from([0u8; 128]);
|
|
/// assert_eq!(mem_size_of(&v), 136);
|
|
///
|
|
/// let vec: Vec<_> = v.into();
|
|
/// assert_eq!(mem_size_of(&vec), 24);
|
|
/// ```
|
|
///
|
|
/// ### Heap into Vec
|
|
///
|
|
/// For `TinyVec::Heap(vec_data)`,
|
|
/// `.into()` will take `vec_data` without heap reallocation.
|
|
///
|
|
/// ```
|
|
/// use core::{
|
|
/// any::type_name_of_val as type_of, mem::size_of_val as mem_size_of,
|
|
/// };
|
|
/// use tinyvec::TinyVec;
|
|
///
|
|
/// const fn from_heap<T: Default>(owned: Vec<T>) -> TinyVec<[T; 1]> {
|
|
/// TinyVec::Heap(owned)
|
|
/// }
|
|
///
|
|
/// let v = from_heap(vec![0u8; 128]);
|
|
/// assert_eq!(v.len(), 128);
|
|
/// assert_eq!(mem_size_of(&v), 24);
|
|
/// assert!(type_of(&v).ends_with("TinyVec<[u8; 1]>"));
|
|
///
|
|
/// let vec: Vec<_> = v.into();
|
|
/// assert_eq!(mem_size_of(&vec), 24);
|
|
/// assert!(type_of(&vec).ends_with("Vec<u8>"));
|
|
/// ```
|
|
#[inline]
|
|
fn into(self) -> Vec<A::Item> {
|
|
match self {
|
|
Self::Heap(inner) => inner,
|
|
Self::Inline(mut inner) => inner.drain_to_vec(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Iterator for consuming an `TinyVec` and returning owned elements.
|
|
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
|
|
pub enum TinyVecIterator<A: Array> {
|
|
#[allow(missing_docs)]
|
|
Inline(ArrayVecIterator<A>),
|
|
#[allow(missing_docs)]
|
|
Heap(alloc::vec::IntoIter<A::Item>),
|
|
}
|
|
|
|
impl<A: Array> TinyVecIterator<A> {
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecIterator;
|
|
/// Returns the remaining items of this iterator as a slice.
|
|
#[inline]
|
|
#[must_use]
|
|
pub fn as_slice(self: &Self) -> &[A::Item];
|
|
}
|
|
}
|
|
|
|
impl<A: Array> FusedIterator for TinyVecIterator<A> {}
|
|
|
|
impl<A: Array> Iterator for TinyVecIterator<A> {
|
|
type Item = A::Item;
|
|
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecIterator;
|
|
|
|
#[inline]
|
|
fn next(self: &mut Self) -> Option<Self::Item>;
|
|
|
|
#[inline(always)]
|
|
#[must_use]
|
|
fn size_hint(self: &Self) -> (usize, Option<usize>);
|
|
|
|
#[inline(always)]
|
|
fn count(self: Self) -> usize;
|
|
|
|
#[inline]
|
|
fn last(self: Self) -> Option<Self::Item>;
|
|
|
|
#[inline]
|
|
fn nth(self: &mut Self, n: usize) -> Option<A::Item>;
|
|
}
|
|
}
|
|
|
|
impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> {
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecIterator;
|
|
|
|
#[inline]
|
|
fn next_back(self: &mut Self) -> Option<Self::Item>;
|
|
|
|
#[inline]
|
|
fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
|
|
}
|
|
}
|
|
|
|
impl<A: Array> ExactSizeIterator for TinyVecIterator<A> {
|
|
impl_mirrored! {
|
|
type Mirror = TinyVecIterator;
|
|
#[inline]
|
|
fn len(self: &Self) -> usize;
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Debug for TinyVecIterator<A>
|
|
where
|
|
A::Item: Debug,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
|
|
f.debug_tuple("TinyVecIterator").field(&self.as_slice()).finish()
|
|
}
|
|
}
|
|
|
|
impl<A: Array> IntoIterator for TinyVec<A> {
|
|
type Item = A::Item;
|
|
type IntoIter = TinyVecIterator<A>;
|
|
#[inline(always)]
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
match self {
|
|
TinyVec::Inline(a) => TinyVecIterator::Inline(a.into_iter()),
|
|
TinyVec::Heap(v) => TinyVecIterator::Heap(v.into_iter()),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> {
|
|
type Item = &'a mut A::Item;
|
|
type IntoIter = core::slice::IterMut<'a, A::Item>;
|
|
#[inline(always)]
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter_mut()
|
|
}
|
|
}
|
|
|
|
impl<'a, A: Array> IntoIterator for &'a TinyVec<A> {
|
|
type Item = &'a A::Item;
|
|
type IntoIter = core::slice::Iter<'a, A::Item>;
|
|
#[inline(always)]
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
self.iter()
|
|
}
|
|
}
|
|
|
|
impl<A: Array> PartialEq for TinyVec<A>
|
|
where
|
|
A::Item: PartialEq,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.as_slice().eq(other.as_slice())
|
|
}
|
|
}
|
|
impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {}
|
|
|
|
impl<A: Array> PartialOrd for TinyVec<A>
|
|
where
|
|
A::Item: PartialOrd,
|
|
{
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
|
|
self.as_slice().partial_cmp(other.as_slice())
|
|
}
|
|
}
|
|
impl<A: Array> Ord for TinyVec<A>
|
|
where
|
|
A::Item: Ord,
|
|
{
|
|
#[inline]
|
|
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
|
|
self.as_slice().cmp(other.as_slice())
|
|
}
|
|
}
|
|
|
|
impl<A: Array> PartialEq<&A> for TinyVec<A>
|
|
where
|
|
A::Item: PartialEq,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, other: &&A) -> bool {
|
|
self.as_slice().eq(other.as_slice())
|
|
}
|
|
}
|
|
|
|
impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A>
|
|
where
|
|
A::Item: PartialEq,
|
|
{
|
|
#[inline]
|
|
fn eq(&self, other: &&[A::Item]) -> bool {
|
|
self.as_slice().eq(*other)
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Hash for TinyVec<A>
|
|
where
|
|
A::Item: Hash,
|
|
{
|
|
#[inline]
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.as_slice().hash(state)
|
|
}
|
|
}
|
|
|
|
// // // // // // // //
|
|
// Formatting impls
|
|
// // // // // // // //
|
|
|
|
impl<A: Array> Binary for TinyVec<A>
|
|
where
|
|
A::Item: Binary,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
Binary::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Debug for TinyVec<A>
|
|
where
|
|
A::Item: Debug,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() && !self.is_empty() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
Debug::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() && !self.is_empty() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Display for TinyVec<A>
|
|
where
|
|
A::Item: Display,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
Display::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> LowerExp for TinyVec<A>
|
|
where
|
|
A::Item: LowerExp,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
LowerExp::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> LowerHex for TinyVec<A>
|
|
where
|
|
A::Item: LowerHex,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
LowerHex::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Octal for TinyVec<A>
|
|
where
|
|
A::Item: Octal,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
Octal::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> Pointer for TinyVec<A>
|
|
where
|
|
A::Item: Pointer,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
Pointer::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> UpperExp for TinyVec<A>
|
|
where
|
|
A::Item: UpperExp,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
UpperExp::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
impl<A: Array> UpperHex for TinyVec<A>
|
|
where
|
|
A::Item: UpperHex,
|
|
{
|
|
#[allow(clippy::missing_inline_in_public_items)]
|
|
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
|
write!(f, "[")?;
|
|
if f.alternate() {
|
|
write!(f, "\n ")?;
|
|
}
|
|
for (i, elem) in self.iter().enumerate() {
|
|
if i > 0 {
|
|
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?;
|
|
}
|
|
UpperHex::fmt(elem, f)?;
|
|
}
|
|
if f.alternate() {
|
|
write!(f, ",\n")?;
|
|
}
|
|
write!(f, "]")
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
|
|
struct TinyVecVisitor<A: Array>(PhantomData<A>);
|
|
|
|
#[cfg(feature = "serde")]
|
|
impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A>
|
|
where
|
|
A::Item: Deserialize<'de>,
|
|
{
|
|
type Value = TinyVec<A>;
|
|
|
|
fn expecting(
|
|
&self, formatter: &mut core::fmt::Formatter,
|
|
) -> core::fmt::Result {
|
|
formatter.write_str("a sequence")
|
|
}
|
|
|
|
fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
|
|
where
|
|
S: SeqAccess<'de>,
|
|
{
|
|
let mut new_tinyvec = match seq.size_hint() {
|
|
Some(expected_size) => TinyVec::with_capacity(expected_size),
|
|
None => Default::default(),
|
|
};
|
|
|
|
while let Some(value) = seq.next_element()? {
|
|
new_tinyvec.push(value);
|
|
}
|
|
|
|
Ok(new_tinyvec)
|
|
}
|
|
}
|