Files
another-boids-in-rust/vendor/accesskit/src/geometry.rs

867 lines
22 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
// Copyright 2023 The AccessKit Authors. All rights reserved.
// Licensed under the Apache License, Version 2.0 (found in
// the LICENSE-APACHE file) or the MIT license (found in
// the LICENSE-MIT file), at your option.
// Derived from kurbo.
// Copyright 2018 The kurbo Authors.
// Licensed under the Apache License, Version 2.0 (found in
// the LICENSE-APACHE file) or the MIT license (found in
// the LICENSE-MIT file), at your option.
use core::{
fmt,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
/// A 2D affine transform. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Affine([f64; 6]);
impl Affine {
/// The identity transform.
pub const IDENTITY: Affine = Affine::scale(1.0);
/// A transform that is flipped on the y-axis. Useful for converting between
/// y-up and y-down spaces.
pub const FLIP_Y: Affine = Affine::new([1.0, 0., 0., -1.0, 0., 0.]);
/// A transform that is flipped on the x-axis.
pub const FLIP_X: Affine = Affine::new([-1.0, 0., 0., 1.0, 0., 0.]);
/// Construct an affine transform from coefficients.
///
/// If the coefficients are `(a, b, c, d, e, f)`, then the resulting
/// transformation represents this augmented matrix:
///
/// ```text
/// | a c e |
/// | b d f |
/// | 0 0 1 |
/// ```
///
/// Note that this convention is transposed from PostScript and
/// Direct2D, but is consistent with the
/// [Wikipedia](https://en.wikipedia.org/wiki/Affine_transformation)
/// formulation of affine transformation as augmented matrix. The
/// idea is that `(A * B) * v == A * (B * v)`, where `*` is the
/// [`Mul`](core::ops::Mul) trait.
#[inline]
pub const fn new(c: [f64; 6]) -> Affine {
Affine(c)
}
/// An affine transform representing uniform scaling.
#[inline]
pub const fn scale(s: f64) -> Affine {
Affine([s, 0.0, 0.0, s, 0.0, 0.0])
}
/// An affine transform representing non-uniform scaling
/// with different scale values for x and y
#[inline]
pub const fn scale_non_uniform(s_x: f64, s_y: f64) -> Affine {
Affine([s_x, 0.0, 0.0, s_y, 0.0, 0.0])
}
/// An affine transform representing translation.
#[inline]
pub fn translate<V: Into<Vec2>>(p: V) -> Affine {
let p = p.into();
Affine([1.0, 0.0, 0.0, 1.0, p.x, p.y])
}
/// Creates an affine transformation that takes the unit square to the given rectangle.
///
/// Useful when you want to draw into the unit square but have your output fill any rectangle.
/// In this case push the `Affine` onto the transform stack.
pub fn map_unit_square(rect: Rect) -> Affine {
Affine([rect.width(), 0., 0., rect.height(), rect.x0, rect.y0])
}
/// Get the coefficients of the transform.
#[inline]
pub fn as_coeffs(self) -> [f64; 6] {
self.0
}
/// Compute the determinant of this transform.
pub fn determinant(self) -> f64 {
self.0[0] * self.0[3] - self.0[1] * self.0[2]
}
/// Compute the inverse transform.
///
/// Produces NaN values when the determinant is zero.
pub fn inverse(self) -> Affine {
let inv_det = self.determinant().recip();
Affine([
inv_det * self.0[3],
-inv_det * self.0[1],
-inv_det * self.0[2],
inv_det * self.0[0],
inv_det * (self.0[2] * self.0[5] - self.0[3] * self.0[4]),
inv_det * (self.0[1] * self.0[4] - self.0[0] * self.0[5]),
])
}
/// Compute the bounding box of a transformed rectangle.
///
/// Returns the minimal `Rect` that encloses the given `Rect` after affine transformation.
/// If the transform is axis-aligned, then this bounding box is "tight", in other words the
/// returned `Rect` is the transformed rectangle.
///
/// The returned rectangle always has non-negative width and height.
pub fn transform_rect_bbox(self, rect: Rect) -> Rect {
let p00 = self * Point::new(rect.x0, rect.y0);
let p01 = self * Point::new(rect.x0, rect.y1);
let p10 = self * Point::new(rect.x1, rect.y0);
let p11 = self * Point::new(rect.x1, rect.y1);
Rect::from_points(p00, p01).union(Rect::from_points(p10, p11))
}
/// Is this map finite?
#[inline]
pub fn is_finite(&self) -> bool {
self.0[0].is_finite()
&& self.0[1].is_finite()
&& self.0[2].is_finite()
&& self.0[3].is_finite()
&& self.0[4].is_finite()
&& self.0[5].is_finite()
}
/// Is this map NaN?
#[inline]
pub fn is_nan(&self) -> bool {
self.0[0].is_nan()
|| self.0[1].is_nan()
|| self.0[2].is_nan()
|| self.0[3].is_nan()
|| self.0[4].is_nan()
|| self.0[5].is_nan()
}
}
impl Default for Affine {
#[inline]
fn default() -> Affine {
Affine::IDENTITY
}
}
impl Mul<Point> for Affine {
type Output = Point;
#[inline]
fn mul(self, other: Point) -> Point {
Point::new(
self.0[0] * other.x + self.0[2] * other.y + self.0[4],
self.0[1] * other.x + self.0[3] * other.y + self.0[5],
)
}
}
impl Mul for Affine {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self.0[0] * other.0[0] + self.0[2] * other.0[1],
self.0[1] * other.0[0] + self.0[3] * other.0[1],
self.0[0] * other.0[2] + self.0[2] * other.0[3],
self.0[1] * other.0[2] + self.0[3] * other.0[3],
self.0[0] * other.0[4] + self.0[2] * other.0[5] + self.0[4],
self.0[1] * other.0[4] + self.0[3] * other.0[5] + self.0[5],
])
}
}
impl MulAssign for Affine {
#[inline]
fn mul_assign(&mut self, other: Affine) {
*self = self.mul(other);
}
}
impl Mul<Affine> for f64 {
type Output = Affine;
#[inline]
fn mul(self, other: Affine) -> Affine {
Affine([
self * other.0[0],
self * other.0[1],
self * other.0[2],
self * other.0[3],
self * other.0[4],
self * other.0[5],
])
}
}
/// A 2D point. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Point {
/// The x coordinate.
pub x: f64,
/// The y coordinate.
pub y: f64,
}
impl Point {
/// The point (0, 0).
pub const ZERO: Point = Point::new(0., 0.);
/// The point at the origin; (0, 0).
pub const ORIGIN: Point = Point::new(0., 0.);
/// Create a new `Point` with the provided `x` and `y` coordinates.
#[inline]
pub const fn new(x: f64, y: f64) -> Self {
Point { x, y }
}
/// Convert this point into a `Vec2`.
#[inline]
pub const fn to_vec2(self) -> Vec2 {
Vec2::new(self.x, self.y)
}
}
impl From<(f64, f64)> for Point {
#[inline]
fn from(v: (f64, f64)) -> Point {
Point { x: v.0, y: v.1 }
}
}
impl From<Point> for (f64, f64) {
#[inline]
fn from(v: Point) -> (f64, f64) {
(v.x, v.y)
}
}
impl Add<Vec2> for Point {
type Output = Point;
#[inline]
fn add(self, other: Vec2) -> Self {
Point::new(self.x + other.x, self.y + other.y)
}
}
impl AddAssign<Vec2> for Point {
#[inline]
fn add_assign(&mut self, other: Vec2) {
*self = Point::new(self.x + other.x, self.y + other.y);
}
}
impl Sub<Vec2> for Point {
type Output = Point;
#[inline]
fn sub(self, other: Vec2) -> Self {
Point::new(self.x - other.x, self.y - other.y)
}
}
impl SubAssign<Vec2> for Point {
#[inline]
fn sub_assign(&mut self, other: Vec2) {
*self = Point::new(self.x - other.x, self.y - other.y);
}
}
impl Add<(f64, f64)> for Point {
type Output = Point;
#[inline]
fn add(self, (x, y): (f64, f64)) -> Self {
Point::new(self.x + x, self.y + y)
}
}
impl AddAssign<(f64, f64)> for Point {
#[inline]
fn add_assign(&mut self, (x, y): (f64, f64)) {
*self = Point::new(self.x + x, self.y + y);
}
}
impl Sub<(f64, f64)> for Point {
type Output = Point;
#[inline]
fn sub(self, (x, y): (f64, f64)) -> Self {
Point::new(self.x - x, self.y - y)
}
}
impl SubAssign<(f64, f64)> for Point {
#[inline]
fn sub_assign(&mut self, (x, y): (f64, f64)) {
*self = Point::new(self.x - x, self.y - y);
}
}
impl Sub<Point> for Point {
type Output = Vec2;
#[inline]
fn sub(self, other: Point) -> Vec2 {
Vec2::new(self.x - other.x, self.y - other.y)
}
}
impl fmt::Debug for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "({:?}, {:?})", self.x, self.y)
}
}
/// A rectangle. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Rect {
/// The minimum x coordinate (left edge).
pub x0: f64,
/// The minimum y coordinate (top edge in y-down spaces).
pub y0: f64,
/// The maximum x coordinate (right edge).
pub x1: f64,
/// The maximum y coordinate (bottom edge in y-down spaces).
pub y1: f64,
}
impl From<(Point, Point)> for Rect {
fn from(points: (Point, Point)) -> Rect {
Rect::from_points(points.0, points.1)
}
}
impl From<(Point, Size)> for Rect {
fn from(params: (Point, Size)) -> Rect {
Rect::from_origin_size(params.0, params.1)
}
}
impl Add<Vec2> for Rect {
type Output = Rect;
#[inline]
fn add(self, v: Vec2) -> Rect {
Rect::new(self.x0 + v.x, self.y0 + v.y, self.x1 + v.x, self.y1 + v.y)
}
}
impl Sub<Vec2> for Rect {
type Output = Rect;
#[inline]
fn sub(self, v: Vec2) -> Rect {
Rect::new(self.x0 - v.x, self.y0 - v.y, self.x1 - v.x, self.y1 - v.y)
}
}
impl fmt::Debug for Rect {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if f.alternate() {
write!(
f,
"Rect {{ origin: {:?}, size: {:?} }}",
self.origin(),
self.size()
)
} else {
write!(
f,
"Rect {{ x0: {:?}, y0: {:?}, x1: {:?}, y1: {:?} }}",
self.x0, self.y0, self.x1, self.y1
)
}
}
}
impl Rect {
/// The empty rectangle at the origin.
pub const ZERO: Rect = Rect::new(0., 0., 0., 0.);
/// A new rectangle from minimum and maximum coordinates.
#[inline]
pub const fn new(x0: f64, y0: f64, x1: f64, y1: f64) -> Rect {
Rect { x0, y0, x1, y1 }
}
/// A new rectangle from two points.
///
/// The result will have non-negative width and height.
#[inline]
pub fn from_points(p0: impl Into<Point>, p1: impl Into<Point>) -> Rect {
let p0 = p0.into();
let p1 = p1.into();
Rect::new(p0.x, p0.y, p1.x, p1.y).abs()
}
/// A new rectangle from origin and size.
///
/// The result will have non-negative width and height.
#[inline]
pub fn from_origin_size(origin: impl Into<Point>, size: impl Into<Size>) -> Rect {
let origin = origin.into();
Rect::from_points(origin, origin + size.into().to_vec2())
}
/// Create a new `Rect` with the same size as `self` and a new origin.
#[inline]
pub fn with_origin(self, origin: impl Into<Point>) -> Rect {
Rect::from_origin_size(origin, self.size())
}
/// Create a new `Rect` with the same origin as `self` and a new size.
#[inline]
pub fn with_size(self, size: impl Into<Size>) -> Rect {
Rect::from_origin_size(self.origin(), size)
}
/// The width of the rectangle.
///
/// Note: nothing forbids negative width.
#[inline]
pub fn width(&self) -> f64 {
self.x1 - self.x0
}
/// The height of the rectangle.
///
/// Note: nothing forbids negative height.
#[inline]
pub fn height(&self) -> f64 {
self.y1 - self.y0
}
/// Returns the minimum value for the x-coordinate of the rectangle.
#[inline]
pub fn min_x(&self) -> f64 {
self.x0.min(self.x1)
}
/// Returns the maximum value for the x-coordinate of the rectangle.
#[inline]
pub fn max_x(&self) -> f64 {
self.x0.max(self.x1)
}
/// Returns the minimum value for the y-coordinate of the rectangle.
#[inline]
pub fn min_y(&self) -> f64 {
self.y0.min(self.y1)
}
/// Returns the maximum value for the y-coordinate of the rectangle.
#[inline]
pub fn max_y(&self) -> f64 {
self.y0.max(self.y1)
}
/// The origin of the rectangle.
///
/// This is the top left corner in a y-down space and with
/// non-negative width and height.
#[inline]
pub fn origin(&self) -> Point {
Point::new(self.x0, self.y0)
}
/// The size of the rectangle.
#[inline]
pub fn size(&self) -> Size {
Size::new(self.width(), self.height())
}
/// Take absolute value of width and height.
///
/// The resulting rect has the same extents as the original, but is
/// guaranteed to have non-negative width and height.
#[inline]
pub fn abs(&self) -> Rect {
let Rect { x0, y0, x1, y1 } = *self;
Rect::new(x0.min(x1), y0.min(y1), x0.max(x1), y0.max(y1))
}
/// The area of the rectangle.
#[inline]
pub fn area(&self) -> f64 {
self.width() * self.height()
}
/// Whether this rectangle has zero area.
///
/// Note: a rectangle with negative area is not considered empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.area() == 0.0
}
/// Returns `true` if `point` lies within `self`.
#[inline]
pub fn contains(&self, point: Point) -> bool {
point.x >= self.x0 && point.x < self.x1 && point.y >= self.y0 && point.y < self.y1
}
/// The smallest rectangle enclosing two rectangles.
///
/// Results are valid only if width and height are non-negative.
#[inline]
pub fn union(&self, other: Rect) -> Rect {
Rect::new(
self.x0.min(other.x0),
self.y0.min(other.y0),
self.x1.max(other.x1),
self.y1.max(other.y1),
)
}
/// Compute the union with one point.
///
/// This method includes the perimeter of zero-area rectangles.
/// Thus, a succession of `union_pt` operations on a series of
/// points yields their enclosing rectangle.
///
/// Results are valid only if width and height are non-negative.
pub fn union_pt(&self, pt: Point) -> Rect {
Rect::new(
self.x0.min(pt.x),
self.y0.min(pt.y),
self.x1.max(pt.x),
self.y1.max(pt.y),
)
}
/// The intersection of two rectangles.
///
/// The result is zero-area if either input has negative width or
/// height. The result always has non-negative width and height.
#[inline]
pub fn intersect(&self, other: Rect) -> Rect {
let x0 = self.x0.max(other.x0);
let y0 = self.y0.max(other.y0);
let x1 = self.x1.min(other.x1);
let y1 = self.y1.min(other.y1);
Rect::new(x0, y0, x1.max(x0), y1.max(y0))
}
}
/// A 2D size. Derived from [kurbo](https://github.com/linebender/kurbo).
#[derive(Clone, Copy, Default, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Size {
/// The width.
pub width: f64,
/// The height.
pub height: f64,
}
impl Size {
/// A size with zero width or height.
pub const ZERO: Size = Size::new(0., 0.);
/// Create a new `Size` with the provided `width` and `height`.
#[inline]
pub const fn new(width: f64, height: f64) -> Self {
Size { width, height }
}
/// Convert this size into a [`Vec2`], with `width` mapped to `x` and `height`
/// mapped to `y`.
#[inline]
pub const fn to_vec2(self) -> Vec2 {
Vec2::new(self.width, self.height)
}
}
impl fmt::Debug for Size {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}W×{:?}H", self.width, self.height)
}
}
impl MulAssign<f64> for Size {
#[inline]
fn mul_assign(&mut self, other: f64) {
*self = Size {
width: self.width * other,
height: self.height * other,
};
}
}
impl Mul<Size> for f64 {
type Output = Size;
#[inline]
fn mul(self, other: Size) -> Size {
other * self
}
}
impl Mul<f64> for Size {
type Output = Size;
#[inline]
fn mul(self, other: f64) -> Size {
Size {
width: self.width * other,
height: self.height * other,
}
}
}
impl DivAssign<f64> for Size {
#[inline]
fn div_assign(&mut self, other: f64) {
*self = Size {
width: self.width / other,
height: self.height / other,
};
}
}
impl Div<f64> for Size {
type Output = Size;
#[inline]
fn div(self, other: f64) -> Size {
Size {
width: self.width / other,
height: self.height / other,
}
}
}
impl Add<Size> for Size {
type Output = Size;
#[inline]
fn add(self, other: Size) -> Size {
Size {
width: self.width + other.width,
height: self.height + other.height,
}
}
}
impl AddAssign<Size> for Size {
#[inline]
fn add_assign(&mut self, other: Size) {
*self = *self + other;
}
}
impl Sub<Size> for Size {
type Output = Size;
#[inline]
fn sub(self, other: Size) -> Size {
Size {
width: self.width - other.width,
height: self.height - other.height,
}
}
}
impl SubAssign<Size> for Size {
#[inline]
fn sub_assign(&mut self, other: Size) {
*self = *self - other;
}
}
impl From<(f64, f64)> for Size {
#[inline]
fn from(v: (f64, f64)) -> Size {
Size {
width: v.0,
height: v.1,
}
}
}
impl From<Size> for (f64, f64) {
#[inline]
fn from(v: Size) -> (f64, f64) {
(v.width, v.height)
}
}
/// A 2D vector. Derived from [kurbo](https://github.com/linebender/kurbo).
///
/// This is intended primarily for a vector in the mathematical sense,
/// but it can be interpreted as a translation, and converted to and
/// from a point (vector relative to the origin) and size.
#[derive(Clone, Copy, Default, Debug, PartialEq)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[repr(C)]
pub struct Vec2 {
/// The x-coordinate.
pub x: f64,
/// The y-coordinate.
pub y: f64,
}
impl Vec2 {
/// The vector (0, 0).
pub const ZERO: Vec2 = Vec2::new(0., 0.);
/// Create a new vector.
#[inline]
pub const fn new(x: f64, y: f64) -> Vec2 {
Vec2 { x, y }
}
/// Convert this vector into a `Point`.
#[inline]
pub const fn to_point(self) -> Point {
Point::new(self.x, self.y)
}
/// Convert this vector into a `Size`.
#[inline]
pub const fn to_size(self) -> Size {
Size::new(self.x, self.y)
}
}
impl From<(f64, f64)> for Vec2 {
#[inline]
fn from(v: (f64, f64)) -> Vec2 {
Vec2 { x: v.0, y: v.1 }
}
}
impl From<Vec2> for (f64, f64) {
#[inline]
fn from(v: Vec2) -> (f64, f64) {
(v.x, v.y)
}
}
impl Add for Vec2 {
type Output = Vec2;
#[inline]
fn add(self, other: Vec2) -> Vec2 {
Vec2 {
x: self.x + other.x,
y: self.y + other.y,
}
}
}
impl AddAssign for Vec2 {
#[inline]
fn add_assign(&mut self, other: Vec2) {
*self = Vec2 {
x: self.x + other.x,
y: self.y + other.y,
}
}
}
impl Sub for Vec2 {
type Output = Vec2;
#[inline]
fn sub(self, other: Vec2) -> Vec2 {
Vec2 {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
impl SubAssign for Vec2 {
#[inline]
fn sub_assign(&mut self, other: Vec2) {
*self = Vec2 {
x: self.x - other.x,
y: self.y - other.y,
}
}
}
impl Mul<f64> for Vec2 {
type Output = Vec2;
#[inline]
fn mul(self, other: f64) -> Vec2 {
Vec2 {
x: self.x * other,
y: self.y * other,
}
}
}
impl MulAssign<f64> for Vec2 {
#[inline]
fn mul_assign(&mut self, other: f64) {
*self = Vec2 {
x: self.x * other,
y: self.y * other,
};
}
}
impl Mul<Vec2> for f64 {
type Output = Vec2;
#[inline]
fn mul(self, other: Vec2) -> Vec2 {
other * self
}
}
impl Div<f64> for Vec2 {
type Output = Vec2;
/// Note: division by a scalar is implemented by multiplying by the reciprocal.
///
/// This is more efficient but has different roundoff behavior than division.
#[inline]
#[allow(clippy::suspicious_arithmetic_impl)]
fn div(self, other: f64) -> Vec2 {
self * other.recip()
}
}
impl DivAssign<f64> for Vec2 {
#[inline]
fn div_assign(&mut self, other: f64) {
self.mul_assign(other.recip());
}
}
impl Neg for Vec2 {
type Output = Vec2;
#[inline]
fn neg(self) -> Vec2 {
Vec2 {
x: -self.x,
y: -self.y,
}
}
}