193 lines
6.6 KiB
Rust
193 lines
6.6 KiB
Rust
use alloc::boxed::Box;
|
||
use alloc::vec::Vec;
|
||
use std::fmt;
|
||
use std::iter::FusedIterator;
|
||
|
||
use super::lazy_buffer::LazyBuffer;
|
||
use crate::adaptors::checked_binomial;
|
||
|
||
/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
|
||
///
|
||
/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
|
||
/// for more information.
|
||
#[derive(Clone)]
|
||
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
||
pub struct CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator,
|
||
I::Item: Clone,
|
||
{
|
||
indices: Box<[usize]>,
|
||
pool: LazyBuffer<I>,
|
||
first: bool,
|
||
}
|
||
|
||
impl<I> fmt::Debug for CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator + fmt::Debug,
|
||
I::Item: fmt::Debug + Clone,
|
||
{
|
||
debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
|
||
}
|
||
|
||
/// Create a new `CombinationsWithReplacement` from a clonable iterator.
|
||
pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator,
|
||
I::Item: Clone,
|
||
{
|
||
let indices = alloc::vec![0; k].into_boxed_slice();
|
||
let pool: LazyBuffer<I> = LazyBuffer::new(iter);
|
||
|
||
CombinationsWithReplacement {
|
||
indices,
|
||
pool,
|
||
first: true,
|
||
}
|
||
}
|
||
|
||
impl<I> CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator,
|
||
I::Item: Clone,
|
||
{
|
||
/// Increments indices representing the combination to advance to the next
|
||
/// (in lexicographic order by increasing sequence) combination.
|
||
///
|
||
/// Returns true if we've run out of combinations, false otherwise.
|
||
fn increment_indices(&mut self) -> bool {
|
||
// Check if we need to consume more from the iterator
|
||
// This will run while we increment our first index digit
|
||
self.pool.get_next();
|
||
|
||
// Work out where we need to update our indices
|
||
let mut increment = None;
|
||
for (i, indices_int) in self.indices.iter().enumerate().rev() {
|
||
if *indices_int < self.pool.len() - 1 {
|
||
increment = Some((i, indices_int + 1));
|
||
break;
|
||
}
|
||
}
|
||
match increment {
|
||
// If we can update the indices further
|
||
Some((increment_from, increment_value)) => {
|
||
// We need to update the rightmost non-max value
|
||
// and all those to the right
|
||
for i in &mut self.indices[increment_from..] {
|
||
*i = increment_value;
|
||
}
|
||
// TODO: once MSRV >= 1.50, use `fill` instead:
|
||
// self.indices[increment_from..].fill(increment_value);
|
||
false
|
||
}
|
||
// Otherwise, we're done
|
||
None => true,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<I> Iterator for CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator,
|
||
I::Item: Clone,
|
||
{
|
||
type Item = Vec<I::Item>;
|
||
|
||
fn next(&mut self) -> Option<Self::Item> {
|
||
if self.first {
|
||
// In empty edge cases, stop iterating immediately
|
||
if !(self.indices.is_empty() || self.pool.get_next()) {
|
||
return None;
|
||
}
|
||
self.first = false;
|
||
} else if self.increment_indices() {
|
||
return None;
|
||
}
|
||
Some(self.pool.get_at(&self.indices))
|
||
}
|
||
|
||
fn nth(&mut self, n: usize) -> Option<Self::Item> {
|
||
if self.first {
|
||
// In empty edge cases, stop iterating immediately
|
||
if !(self.indices.is_empty() || self.pool.get_next()) {
|
||
return None;
|
||
}
|
||
self.first = false;
|
||
} else if self.increment_indices() {
|
||
return None;
|
||
}
|
||
for _ in 0..n {
|
||
if self.increment_indices() {
|
||
return None;
|
||
}
|
||
}
|
||
Some(self.pool.get_at(&self.indices))
|
||
}
|
||
|
||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||
let (mut low, mut upp) = self.pool.size_hint();
|
||
low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
|
||
upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
|
||
(low, upp)
|
||
}
|
||
|
||
fn count(self) -> usize {
|
||
let Self {
|
||
indices,
|
||
pool,
|
||
first,
|
||
} = self;
|
||
let n = pool.count();
|
||
remaining_for(n, first, &indices).unwrap()
|
||
}
|
||
}
|
||
|
||
impl<I> FusedIterator for CombinationsWithReplacement<I>
|
||
where
|
||
I: Iterator,
|
||
I::Item: Clone,
|
||
{
|
||
}
|
||
|
||
/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
|
||
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
|
||
// With a "stars and bars" representation, choose k values with replacement from n values is
|
||
// like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
|
||
// to place k stars and therefore n - 1 bars.
|
||
// Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
|
||
let count = |n: usize, k: usize| {
|
||
let positions = if n == 0 {
|
||
k.saturating_sub(1)
|
||
} else {
|
||
(n - 1).checked_add(k)?
|
||
};
|
||
checked_binomial(positions, k)
|
||
};
|
||
let k = indices.len();
|
||
if first {
|
||
count(n, k)
|
||
} else {
|
||
// The algorithm is similar to the one for combinations *without replacement*,
|
||
// except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
|
||
|
||
// The combinations generated after the current one can be counted by counting as follows:
|
||
// - The subsequent combinations that differ in indices[0]:
|
||
// If subsequent combinations differ in indices[0], then their value for indices[0]
|
||
// must be at least 1 greater than the current indices[0].
|
||
// As indices is monotonically sorted, this means we can effectively choose k values with
|
||
// replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
|
||
// - The subsequent combinations with same indices[0], but differing indices[1]:
|
||
// Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
|
||
// leading to count(n - 1 - indices[1], k - 1) possibilities.
|
||
// - (...)
|
||
// - The subsequent combinations with same indices[0..=i], but differing indices[i]:
|
||
// Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
|
||
// Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
|
||
|
||
// Below, `n0` resembles indices[i].
|
||
indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
|
||
sum.checked_add(count(n - 1 - *n0, k - i)?)
|
||
})
|
||
}
|
||
}
|