Mid-Material save point

I get lazy with commits when following guided material. There's a design
challenge to approach, now. I'm saving here so I can revert changes in
case it goes sideways.

Materials are proving to be a little complicated in Rust semantics. The
Ray Tracing in a Weekend book uses shared_ptr's, but Rust doesn't really
like that. I'm doing references with lifetime annotations. Hopefully I
can get that the right way around to work out.

The materials themselves look like reasonable candidates for describing
as Enums. This takes away the ability to add new ones by simply impl'ing
a trait, but that was never gonna happen anyway. The code would be
modified and recompiled. There's no difference in maintenance cost if
that's a new struct impl'ing a trait, or adding enum members.
This commit is contained in:
2023-06-03 09:48:54 -05:00
commit 5cc0b49cd9
8 changed files with 830 additions and 0 deletions

52
src/camera.rs Normal file
View File

@@ -0,0 +1,52 @@
/*
* let viewport = (aspect_ratio * 2.0, 2.0);
let focal_length = 1.0;
let origin = Vec3::new(0.0, 0.0, 0.0);
let horizontal = Vec3::new(viewport.0, 0.0, 0.0);
let vertical = Vec3::new(0.0, viewport.1, 0.0);
let lower_left_corner = origin - horizontal/2.0 - vertical/2.0 - Vec3::new(0.0, 0.0, focal_length);
*/
use crate::vec3::Vec3;
use crate::ray::Ray;
pub struct Camera {
pub origin: Vec3,
pub lower_left_corner: Vec3,
pub horizontal: Vec3,
pub vertical: Vec3,
}
impl Camera {
pub fn new() -> Camera {
let aspect_ratio = 16.0 / 9.0;
let vp_height = 2.0;
let vp_width = aspect_ratio * vp_height;
let focal_length = 1.0;
let horiz = Vec3::new(vp_width, 0.0, 0.0);
let verti = Vec3::new(0.0, vp_height, 0.0);
let orig = Vec3::zero();
Camera{
origin: orig,
lower_left_corner: orig - horiz/2.0 - verti/2.0 - Vec3::new(0.0, 0.0, focal_length),
horizontal: horiz,
vertical: verti,
}
}
pub fn get_ray(&self, u: f32, v: f32) -> Ray {
let dir = self.lower_left_corner
+ self.horizontal * u
+ self.vertical * v
- self.origin;
Ray{
orig: self.origin,
dir,
}
}
}

66
src/hittable.rs Normal file
View File

@@ -0,0 +1,66 @@
use crate::vec3::Vec3;
use crate::ray::Ray;
use crate::material::Material;
pub struct HitRecord<'a>{
pub p: Vec3,
pub normal: Vec3,
pub material: Option<&'a Material>,
pub t: f32,
pub front_face: bool,
}
impl<'a> HitRecord<'a>{
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face { outward_normal } else { -outward_normal };
}
}
pub trait Hittable {
fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord>;
}
pub struct HittableList{
hittables: Vec<Box<dyn Hittable>>,
}
impl HittableList{
pub fn new() -> HittableList {
HittableList {
hittables: Vec::<Box<dyn Hittable>>::new()
}
}
pub fn add(&mut self, hittable: Box<dyn Hittable> ) -> () {
self.hittables.push(hittable);
}
pub fn clear(&mut self) -> () {
self.hittables.clear();
}
}
impl Hittable for HittableList{
fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord>{
let mut might_return = HitRecord {
p: Vec3::zero(),
normal: Vec3::zero(),
material: None,
t: t_max,
front_face: false,
};
let mut hit_anything = false;
for item in &self.hittables {
if let Some(record) = item.hit(r, t_min, might_return.t){
hit_anything = true;
might_return = record;
}
}
if hit_anything{
return Some(might_return);
} else { return None; }
}
}

116
src/main.rs Normal file
View File

@@ -0,0 +1,116 @@
mod vec3;
mod ray;
mod camera;
mod material;
mod hittable;
mod sphere;
use crate::vec3::Vec3;
use crate::ray::Ray;
use crate::sphere::Sphere;
use crate::hittable::{
Hittable,
HittableList,
};
use crate::camera::Camera;
use rand::{Rng, SeedableRng};
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
fn main() {
// image
let aspect_ratio = 16.0 / 9.0;
let image = (
400,
(400.0 / aspect_ratio) as i32
);
let samples_per_pixel = 100;
let max_depth = 50;
// world
let mut world = HittableList::new();
world.add(
Box::new(
Sphere{
center: Vec3{ x: 0.0, y: 0.0, z: -1.0},
radius: 0.5
material: None,
}
)
);
world.add(
Box::new(
Sphere{
center: Vec3{ x: 0.0, y: -100.5, z: -1.0 },
radius: 100.0,
material: None,
}
)
);
// camera
let cam = Camera::new();
// render
let mut small_rng = SmallRng::from_entropy();
let distrib = Uniform::new(0.0, 1.0);
println!("P3\n{} {}\n255", image.0, image.1);
for y in (0..image.1).rev() {
eprintln!("Scanlines remaining: {}", image.1 - y);
for x in 0..image.0 {
let mut color = Vec3::zero();
for _ in 0..samples_per_pixel {
let u = ((x as f32) + small_rng.sample(distrib)) / ((image.0 - 1) as f32);
let v = ((y as f32) + small_rng.sample(distrib)) / ((image.1 - 1) as f32);
let ray = cam.get_ray(u, v);
color+= ray_color(ray, &world, max_depth, &mut small_rng, distrib);
}
println!("{}", color.print_ppm(samples_per_pixel));
}
}
eprintln!("Done!");
}
fn ray_color(r: Ray, world: &HittableList, depth: u32, srng: &mut SmallRng, distrib: Uniform<f32> ) -> Vec3 {
// recursion depth guard
if depth == 0 {
return Vec3::new(0.0, 0.0, 0.0);
}
if let Some(rec) = world.hit(r, 0.001, f32::INFINITY){
let target = rec.p + rec.normal + Vec3::rand_unit_vector(srng, distrib);
return ray_color(
Ray{
orig: rec.p,
dir: target - rec.p,
},
world, depth, srng, distrib
) * 0.5;
}
let unitdir = Vec3::as_unit(&r.dir);
let t = 0.5 * (unitdir.y + 1.0);
return Vec3::ones() * (1.0 - t) + Vec3::new(0.5, 0.7, 1.0) * t
}
fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}
fn hit_sphere(center: Vec3, radius: f32, ray: &Ray) -> f32{
let oc = ray.orig - center;
let a = ray.dir.length_squared();
let half_b = Vec3::dot(oc, ray.dir);
let c = oc.length_squared() - radius*radius;
let discriminant = half_b*half_b - a*c;
if discriminant < 0.0 {
return -1.0;
} else {
return (-half_b - discriminant.sqrt()) / a;
}
}

13
src/material.rs Normal file
View File

@@ -0,0 +1,13 @@
use crate::ray::Ray;
use crate::hittable::HitRecord;
use crate::Vec3;
pub struct Material;
pub Scatter {
fn scatter(
ray_in: Ray, rec: HitRecord, attenuation: Vec3, scattered: Ray
) -> bool;
}

37
src/ray.rs Normal file
View File

@@ -0,0 +1,37 @@
use crate::vec3::Vec3;
use crate::hittable::{
Hittable,
HitRecord,
};
#[derive(Copy)]
#[derive(Clone)]
pub struct Ray{
pub orig: Vec3,
pub dir: Vec3,
}
impl Ray{
pub fn at(&self, t: f32) -> Vec3 {
self.orig + self.dir*t
}
}
#[cfg(test)]
mod test{
use super::*;
#[test]
fn check_lerp(){
let ray = Ray{
orig: Vec3::new(0.0, 0.0, 0.0),
dir: Vec3::new(1.0, 1.0, 0.0)
};
let half = ray.at(0.5);
assert_eq!(
half,
Vec3::new(0.5, 0.5, 0.0)
);
}
}

51
src/sphere.rs Normal file
View File

@@ -0,0 +1,51 @@
use crate::vec3::Vec3;
use crate::hittable::{
Hittable,
HitRecord,
};
use crate::material::Material;
use crate::ray::Ray;
pub struct Sphere<'a>{
pub center: Vec3,
pub radius: f32,
pub material: &'a Material,
}
impl<'a> Hittable for Sphere<'a> {
fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord>{
let oc = r.orig - self.center;
let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir);
let c = oc.length_squared() - self.radius * self.radius;
let discriminant = half_b*half_b - a*c;
if discriminant < 0.0 {
return None;
}
let sqrtd = discriminant.sqrt();
// nearest root that lies within tolerance
let root = (-half_b - sqrtd) / a;
if root < t_min || root > t_max {
let root = (-half_b + sqrtd) / a;
if root < t_min || root > t_max {
return None;
}
}
let mut record = HitRecord{
p: r.at(root),
normal: (r.at(root) - self.center) / self.radius,
material: Some(self.material),
t: root,
front_face: false,
};
let outward_normal = (record.p - self.center) / self.radius;
record.set_face_normal(r, outward_normal);
Some(record)
}
}

485
src/vec3.rs Normal file
View File

@@ -0,0 +1,485 @@
use std::ops::{
Add,
AddAssign,
Sub,
SubAssign,
Mul,
MulAssign,
Div,
DivAssign,
Neg,
};
use std::fmt;
use std::fmt::Display;
use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
#[derive(Copy)]
#[derive(Clone)]
#[derive(PartialEq)]
#[derive(PartialOrd)]
#[derive(Debug)]
pub struct Vec3{
pub x: f32,
pub y: f32,
pub z: f32,
}
impl Vec3{
pub fn new(x: f32, y: f32, z: f32) -> Vec3{
Vec3{x, y, z}
}
pub fn zero() -> Vec3{
Vec3{
x: 0.0,
y: 0.0,
z: 0.0,
}
}
pub fn ones() -> Vec3{
Vec3 {
x: 1.0,
y: 1.0,
z: 1.0
}
}
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
Vec3{
x: srng.sample(distrib),
y: srng.sample(distrib),
z: srng.sample(distrib),
}
}
pub fn rand_in_unit_sphere(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
loop {
let p = Vec3::rand(srng, distrib);
if p.length_squared() >= 1.0 { continue; }
else { return p; }
}
}
pub fn rand_unit_vector(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
return Vec3::as_unit(&Vec3::rand_in_unit_sphere(srng, distrib));
}
pub fn length(&self) -> f32 {
self.length_squared().sqrt()
}
pub fn length_squared(&self) -> f32 {
(self.x*self.x) + (self.y*self.y) + (self.z*self.z)
}
// roughly equivalent to the `void write_color(...)` in the book
pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
let scale = 1.0 / samples_per_pixel as f32;
// now with gamma correction
let r = (self.x * scale).sqrt();
let g = (self.y * scale).sqrt();
let b = (self.y * scale).sqrt();
let ir = (Vec3::clamp(r, 0.0, 0.999) * 256.0) as i32;
let ig = (Vec3::clamp(g, 0.0, 0.999) * 256.0) as i32;
let ib = (Vec3::clamp(b, 0.0, 0.999) * 256.0) as i32;
format!("{} {} {}", ir, ig, ib)
}
pub fn dot(left: Vec3, right: Vec3) -> f32{
left.x * right.x +
left.y * right.y +
left.z * right.z
}
pub fn cross(u: Vec3, v: Vec3) -> Vec3{
Vec3{
x: u.y * v.z - u.z * v.y,
y: u.z * v.x - u.x * v.z,
z: u.x * v.y - u.y * v.x
}
}
pub fn as_unit(v: &Vec3) -> Vec3 {
let len = v.length();
*v / len
}
fn clamp(input: f32, min: f32, max: f32) -> f32 {
if input < min {
return min;
} else if input > max {
return max;
} else {
return input;
}
}
}
impl Add for Vec3 {
type Output = Vec3;
fn add(self, other: Vec3) -> Vec3 {
Vec3{
x: self.x + other.x,
y: self.y + other.y,
z: self.z + other.z,
}
}
}
impl AddAssign for Vec3 {
fn add_assign(&mut self, other: Vec3){
*self = Self {
x: self.x + other.x,
y: self.y + other.y,
z: self.z + other.z
};
}
}
impl Sub for Vec3 {
type Output = Vec3;
fn sub(self, other: Vec3) -> Vec3 {
Vec3 {
x: self.x - other.x,
y: self.y - other.y,
z: self.z - other.z,
}
}
}
impl SubAssign for Vec3 {
fn sub_assign(&mut self, other: Vec3){
*self = Self {
x: self.x - other.x,
y: self.y - other.y,
z: self.z - other.z
};
}
}
impl Mul<Vec3> for Vec3 {
type Output = Vec3;
fn mul(self, other: Vec3) -> Vec3 {
Vec3 {
x: self.x * other.x,
y: self.y * other.y,
z: self.z * other.z,
}
}
}
impl Mul<f32> for Vec3{
type Output = Vec3;
fn mul(self, other: f32) -> Vec3 {
Vec3 {
x: self.x * other,
y: self.y * other,
z: self.z * other,
}
}
}
impl MulAssign<Vec3> for Vec3 {
fn mul_assign(&mut self, other: Vec3){
*self = Self {
x: self.x * other.x,
y: self.y * other.y,
z: self.z * other.z
};
}
}
impl MulAssign<f32> for Vec3{
fn mul_assign(&mut self, other: f32){
*self = Self {
x: self.x * other,
y: self.y * other,
z: self.z * other
};
}
}
impl Div<Vec3> for Vec3 {
type Output = Vec3;
fn div(self, other: Vec3) -> Vec3 {
Vec3 {
x: self.x / other.x,
y: self.y / other.y,
z: self.z / other.z,
}
}
}
impl Div<f32> for Vec3 {
type Output = Vec3;
fn div(self, other: f32) -> Vec3 {
Vec3 {
x: self.x / other,
y: self.y / other,
z: self.z / other,
}
}
}
impl DivAssign<Vec3> for Vec3 {
fn div_assign(&mut self, other: Vec3){
*self = Self {
x: self.x / other.x,
y: self.y / other.y,
z: self.z / other.z
};
}
}
impl DivAssign<f32> for Vec3 {
fn div_assign(&mut self, other: f32){
*self = Self {
x: self.x / other,
y: self.y / other,
z: self.z / other
};
}
}
impl Neg for Vec3{
type Output = Self;
fn neg(self) -> Self::Output {
Vec3{
x: -self.x,
y: -self.y,
z: -self.z,
}
}
}
impl Display for Vec3 {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let str = format!("{} {} {}", self.x, self.y, self.z);
fmt.write_str(&str)?;
Ok(())
}
}
#[cfg(test)]
mod test{
use super::*;
#[test]
fn test_add(){
let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.0, 0.0, 1.0);
let expected = Vec3::new(1.0, 1.0, 1.0);
assert_eq!( v1+v2, expected );
}
#[test]
fn test_add_assign(){
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
let v2 = Vec3::new(1.0, 0.0, 0.0);
let expected = Vec3::new(1.0, 1.0, 1.0);
v1+=v2;
assert_eq!( v1, expected );
}
#[test]
fn test_sub(){
let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.0, 0.0, 1.0);
let expected = Vec3::new(1.0, 1.0, -1.0);
assert_eq!( v1-v2, expected );
}
#[test]
fn test_sub_assign(){
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
let v2 = Vec3::new(1.0, 0.0, 0.0);
let expected = Vec3::new(-1.0, 1.0, 1.0);
v1-=v2;
assert_eq!( v1, expected );
}
#[test]
fn test_mul_vec(){
let v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 1.0, 0.7);
assert_eq!( v1*v2, expected );
}
#[test]
fn test_mul_float(){
let v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5;
let expected = Vec3::new(0.05, 0.25, 0.35);
assert_eq!( v1*f1, expected );
}
#[test]
fn test_mul_vec_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 1.0, 0.7);
v1*=v2;
assert_eq!( v1, expected );
}
#[test]
fn test_mul_float_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5;
let expected = Vec3::new(0.05, 0.25, 0.35);
v1*=f1;
assert_eq!( v1, expected );
}
#[test]
fn test_div_vec(){
let v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(0.5, 2.0, 1.0);
let expected = Vec3::new(0.2, 0.25, 0.7);
assert_eq!( v1/v2, expected );
}
#[test]
fn test_div_float(){
let v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5;
let expected = Vec3::new(0.2, 1.0, 1.4);
assert_eq!( v1/f1, expected );
}
#[test]
fn test_div_vec_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 0.25, 0.7);
v1/=v2;
assert_eq!( v1, expected );
}
#[test]
fn test_div_float_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5;
let expected = Vec3::new(0.2, 1., 1.4);
v1/=f1;
assert_eq!( v1, expected );
}
#[test]
fn test_length_squared(){
let v = Vec3::new(2.0, 0.0, 2.0);
let len = v.length_squared();
assert_eq!(len, 8.0);
}
#[test]
fn test_length(){
let v = Vec3::new(3.0, 4.0, 0.0);
let len = v.length();
assert_eq!(len, 5.0)
}
#[test]
fn test_dot_perpendicular(){
let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(0.0, 1.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), 0.0);
}
#[test]
fn test_dot_parallel(){
let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), 1.0);
}
#[test]
fn test_cross_perpendicular(){
let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(0.0, 1.0, 0.0);
let expected = Vec3::new(0.0, 0.0, 1.0);
assert_eq!(Vec3::cross(v1, v2), expected);
}
#[test]
fn test_cross_parallel(){
let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(1.0, 0.0, 0.0);
let expected = Vec3::new(0.0, 0.0, 0.0);
assert_eq!(Vec3::cross(v1, v2), expected);
}
#[test]
fn test_cross_111(){
let v1 = Vec3::new(1.0, 1.0, 1.0);
let v2 = Vec3::new(0.0, 1.0, 0.0);
let expected = Vec3::new(-1.0, 0.0, 1.0);
assert_eq!(Vec3::cross(v1, v2), expected);
}
#[test]
fn test_unit_shorten(){
let v = Vec3::new(2.0, 0.0, 0.0);
let expected = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::as_unit(&v), expected);
}
#[test]
fn test_unit_lengthen(){
let v = Vec3::new(0.5, 0.0, 0.0);
let expected = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::as_unit(&v), expected);
}
#[test]
fn test_unit_111(){
let v = Vec3::new(1.0, 1.0, 1.0);
let expected = Vec3::new(0.577350269,0.577350269,0.577350269);
assert!(Vec3::as_unit(&v) <= expected * 1.001); // within very small under-estimate
assert!(Vec3::as_unit(&v) >= expected * 0.999); // within very small over-estimate
}
}