3 Commits

Author SHA1 Message Date
987bbe1c98 Starting builder pattern for Camera
I'm going to change the Camera construction to use the builder pattern.
This means I need to implement trait Default for Camera, and then a
bunch of functions for setting the properties.
2024-04-27 12:03:05 -05:00
f2d1a892b7 Enable more warnings, fix a couple of them
Yay for a high quality compiler
2024-04-27 11:16:31 -05:00
8e37fd8e97 Library & multiple binaries
Been playing with EGUI, and I'm gonna patch in a GUI app. The CLI
version will need to kick around, too, but be separate from the GUI one.
Enter: A multi-target crate!
2024-01-28 13:30:42 -06:00
8 changed files with 519 additions and 469 deletions

1
.gitignore vendored
View File

@@ -1 +0,0 @@
/target

View File

@@ -1,10 +1,19 @@
[package] [package]
name = "rustpt" name = "rustpt"
version = "0.1.0" version = "0.1.0"
edition = "2024" edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html # See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[[bin]]
name = "rustpt_cli"
path = "src/cli_tool.rs"
[[bin]]
name = "rustpt_gui"
path = "src/gui_tool.rs"
[dependencies] [dependencies]
rand = { version = "0.9", features = ["small_rng"] } rand = { version = "0.8.5", features = ["small_rng"] }
itertools = { version = "0.14" } itertools = { version = "0.11.0" }
eframe = "0.25.0"

View File

@@ -1,26 +1,33 @@
mod primitives; #![warn(clippy::all, rust_2018_idioms, rust_2018_compatibility)]
mod renderer; use rustpt::primitives::{
mod scene; Vec2i,
Vec3,
};
use rustpt::scene::{
Camera,
Scene
};
use crate::primitives::{Vec2i, Vec3}; use rustpt::renderer::{
use crate::scene::{Camera, Scene}; Tile,
RenderProperties,
use crate::renderer::{RenderProperties, Tile}; };
use rand::SeedableRng; use rand::SeedableRng;
use rand::rngs::SmallRng; use rand::rngs::SmallRng;
fn main() { fn main() {
// image // image
let aspect_ratio = 3.0 / 2.0; let aspect_ratio = 3.0 / 2.0;
let image = Vec2i { let image = Vec2i {
x: 400, x: 400,
y: (400.0 / aspect_ratio) as i32, y: (400.0 / aspect_ratio) as i32
}; };
let render_config = RenderProperties { let render_config = RenderProperties {
samples: 10, samples: 10,
bounces: 50, bounces: 50
}; };
// random generator // random generator
@@ -30,20 +37,20 @@ fn main() {
let scene = Scene { let scene = Scene {
camera: Camera::new( camera: Camera::new(
Vec3::new(13.0, 2.0, 3.0), // lookfrom Vec3::new(13.0, 2.0, 3.0), // lookfrom
Vec3::zero(), // lookat Vec3::zero(), // lookat
Vec3::new(0.0, 1.0, 0.0), // vup Vec3::new(0.0, 1.0, 0.0), // vup
20.0, 20.0,
aspect_ratio, aspect_ratio,
0.1, // aperture 0.1, // aperture
10.0, // dist_to_focus 10.0, // dist_to_focus
), ),
world: Scene::random_world(&mut small_rng), world: Scene::random_world(&mut small_rng)
}; };
// render // render
// The render loop should now be a job submission mechanism // The render loop should now be a job submission mechanism
// Iterate lines, submitting them as tasks to the thread. // Iterate lines, submitting them as tasks to the thread.
println!("P3\n{} {}\n255", image.x, image.y); println!("P3\n{} {}\n255", image.x, image.y);
// TILE BASED RENDERER // TILE BASED RENDERER
// let tile = Tile::render_tile( // let tile = Tile::render_tile(
// Rect { x: 0, y: 0, w: image.x, h: image.y }, // Rect { x: 0, y: 0, w: image.x, h: image.y },

36
src/gui_tool.rs Normal file
View File

@@ -0,0 +1,36 @@
#![warn(clippy::all, rust_2018_idioms)]
use eframe::{egui, Frame};
fn main() -> Result<(), eframe::Error> {
let options = eframe::NativeOptions {
viewport: egui::ViewportBuilder::default()
.with_inner_size([800.0, 600.0])
.with_min_inner_size([50.0, 50.0])
.with_title("RustPT GUI Tool"),
..Default::default()
};
eframe::run_native(
"app name?",
options,
Box::new(
| cc | Box::new(RtApp::new(cc))
))
}
#[derive(Default)]
struct RtApp;
impl RtApp {
fn new(cc: &eframe::CreationContext<'_>) -> Self {
Self::default()
}
}
impl eframe::App for RtApp {
fn update(&mut self, ctx: &egui::Context, frame: &mut Frame) {
egui::SidePanel::left("Render Properties").show(ctx, |ui| {
ui.heading("Render Properties");
ui.label("")
});
}
}

4
src/lib.rs Normal file
View File

@@ -0,0 +1,4 @@
#![warn(clippy::all, rust_2018_idioms, rust_2018_compatibility)]
pub mod primitives;
pub mod scene;
pub mod renderer;

View File

@@ -1,146 +1,142 @@
use std::ops::{
Add,
AddAssign,
Sub,
SubAssign,
Mul,
MulAssign,
Div,
DivAssign,
Neg,
};
use std::fmt; use std::fmt;
use std::fmt::Display; use std::fmt::Display;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand::Rng; use rand::Rng;
use rand::distr::Uniform;
use rand::rngs::SmallRng; use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub type Vec2i = Vec2<i32>; pub type Vec2i = Vec2<i32>;
pub type Vec2f = Vec2<f32>; pub type Vec2f = Vec2<f32>;
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)] #[derive (Clone, Copy, PartialEq, PartialOrd, Debug)]
pub struct Vec2<T> { pub struct Vec2<T>{
pub x: T, pub x: T,
pub y: T, pub y: T,
} }
impl Vec2<f32> { impl Vec2<f32> {
pub fn zero() -> Vec2<f32> { pub fn zero() -> Vec2<f32> {
Vec2 { x: 0.0, y: 0.0 } Vec2{ x: 0.0, y: 0.0 }
} }
pub fn ones() -> Vec2<f32> { pub fn ones() -> Vec2<f32> {
Vec2 { x: 1.0, y: 1.0 } Vec2{ x: 1.0, y: 1.0 }
} }
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> { pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> {
Vec2 { Vec2 { x: srng.sample(distrib), y: srng.sample(distrib) }
x: srng.sample(distrib),
y: srng.sample(distrib),
}
} }
} }
impl<T> Vec2<T> impl <T> Vec2<T>
where where T: std::ops::Mul{
T: std::ops::Mul,
{
pub fn new(x: T, y: T) -> Vec2<T> { pub fn new(x: T, y: T) -> Vec2<T> {
Vec2 { x, y } Vec2{x, y}
} }
} }
impl<T> Add for Vec2<T> impl <T> Add for Vec2 <T>
where where T: std::ops::Add<Output = T>{
T: std::ops::Add<Output = T>,
{
type Output = Vec2<T>; type Output = Vec2<T>;
fn add(self, other: Vec2<T>) -> Vec2<T> { fn add(self, other: Vec2<T>) -> Vec2<T> {
Vec2 { Vec2 { x: self.x + other.x, y: self.y + other.y }
x: self.x + other.x,
y: self.y + other.y,
}
} }
} }
impl<T> Mul for Vec2<T> impl <T> Mul for Vec2<T>
where where T: std::ops::Mul<Output = T>{
T: std::ops::Mul<Output = T>,
{
type Output = Vec2<T>; type Output = Vec2<T>;
fn mul(self, other: Vec2<T>) -> Vec2<T> { fn mul(self, other: Vec2<T>) -> Vec2<T> {
Vec2 { Vec2 {
x: self.x * other.x, x: self.x * other.x,
y: self.y * other.y, y: self.y * other.y
} }
} }
} }
impl Div<f32> for Vec2<f32> { impl Div<f32> for Vec2<f32>{
type Output = Vec2<f32>; type Output = Vec2<f32>;
fn div(self, other: f32) -> Vec2<f32> { fn div(self, other: f32) -> Vec2<f32> {
Vec2 { Vec2 {
x: 1.0 / other * self.x, x: 1.0/other * self.x,
y: 1.0 / other * self.y, y: 1.0/other * self.y
} }
} }
} }
impl Div<i32> for Vec2<i32> { impl Div<i32> for Vec2<i32>{
type Output = Vec2<i32>; type Output = Vec2<i32>;
fn div(self, other: i32) -> Vec2<i32> { fn div(self, other: i32) -> Vec2<i32> {
Vec2 { Vec2 {
x: self.x / other, x: self.x / other,
y: self.y / other, y: self.y / other
} }
} }
} }
impl<T> Div<Vec2<T>> for Vec2<T> impl <T> Div<Vec2<T>> for Vec2<T>
where where T: std::ops::Div<Output = T>{
T: std::ops::Div<Output = T>,
{
type Output = Vec2<T>; type Output = Vec2<T>;
fn div(self, other: Vec2<T>) -> Vec2<T> { fn div(self, other: Vec2<T>) -> Vec2<T> {
Vec2 { Vec2 {
x: self.x / other.x, x: self.x / other.x,
y: self.y / other.y, y: self.y / other.y
} }
} }
} }
impl<T> Display for Vec2<T> impl <T> Display for Vec2<T>
where where T: Display { // nested type still needs to have Display
T: Display, fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
{
// nested type still needs to have Display
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let str = format!("{} {}", self.x, self.y); let str = format!("{} {}", self.x, self.y);
fmt.write_str(&str) fmt.write_str(&str)
} }
} }
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)] #[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Vec3 { pub struct Vec3{
pub x: f32, pub x: f32,
pub y: f32, pub y: f32,
pub z: f32, pub z: f32,
} }
impl Vec3 { impl Vec3{
pub fn new(x: f32, y: f32, z: f32) -> Vec3 { pub fn new(x: f32, y: f32, z: f32) -> Vec3{
Vec3 { x, y, z } Vec3{x, y, z}
} }
pub fn zero() -> Vec3 { pub fn zero() -> Vec3{
Vec3 { Vec3{
x: 0.0, x: 0.0,
y: 0.0, y: 0.0,
z: 0.0, z: 0.0,
} }
} }
pub fn ones() -> Vec3 { pub fn ones() -> Vec3{
Vec3 { Vec3 {
x: 1.0, x: 1.0,
y: 1.0, y: 1.0,
z: 1.0, z: 1.0
} }
} }
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 { pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
Vec3 { Vec3{
x: srng.sample(distrib), x: srng.sample(distrib),
y: srng.sample(distrib), y: srng.sample(distrib),
z: srng.sample(distrib), z: srng.sample(distrib),
@@ -148,14 +144,11 @@ impl Vec3 {
} }
pub fn rand_in_unit_sphere(srng: &mut SmallRng) -> Vec3 { pub fn rand_in_unit_sphere(srng: &mut SmallRng) -> Vec3 {
let distrib = Uniform::new(-1.0, 1.0).unwrap(); let distrib = Uniform::new(-1.0, 1.0);
loop { loop {
let p = Vec3::rand(srng, distrib); let p = Vec3::rand(srng, distrib);
if p.length_squared() >= 1.0 { if p.length_squared() >= 1.0 { continue; }
continue; else { return p; }
} else {
return p;
}
} }
} }
@@ -163,54 +156,55 @@ impl Vec3 {
let distrib = Uniform::new(-1.0, 1.0); let distrib = Uniform::new(-1.0, 1.0);
loop { loop {
let p = Vec3 { let p = Vec3 {
x: srng.sample(distrib.unwrap()), x: srng.sample(distrib),
y: srng.sample(distrib.unwrap()), y: srng.sample(distrib),
z: 0.0, z: 0.0,
}; };
if p.length_squared() >= 1.0 { if p.length_squared() >= 1.0 { continue; }
continue; else { return p; }
} else {
return p;
}
} }
} }
pub fn rand_unit_vector(srng: &mut SmallRng) -> Vec3 { pub fn rand_unit_vector(srng: &mut SmallRng) -> Vec3 {
Vec3::as_unit(Vec3::rand_in_unit_sphere(srng)) return Vec3::as_unit(Vec3::rand_in_unit_sphere(srng));
} }
pub fn length(&self) -> f32 { pub fn length(&self) -> f32 {
self.length_squared().sqrt() self.length_squared().sqrt()
} }
pub fn length_squared(&self) -> f32 {
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
}
pub fn length_squared(&self) -> f32 {
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
}
// roughly equivalent to the `void write_color(...)` in the book // roughly equivalent to the `void write_color(...)` in the book
pub fn print_ppm(&self, samples_per_pixel: u32) -> String { pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
let scale = 1.0 / samples_per_pixel as f32;
let scale = 1.0 / samples_per_pixel as f32;
// now with gamma correction // now with gamma correction
let r = (self.x * scale).sqrt(); let r = (self.x * scale).sqrt();
let g = (self.y * scale).sqrt(); let g = (self.y * scale).sqrt();
let b = (self.z * scale).sqrt(); let b = (self.z * scale).sqrt();
let ir = (r.clamp(0.0, 0.999) * 256.0) as i32; let ir = (r.clamp( 0.0, 0.999) * 256.0) as i32;
let ig = (g.clamp(0.0, 0.999) * 256.0) as i32; let ig = (g.clamp( 0.0, 0.999) * 256.0) as i32;
let ib = (b.clamp(0.0, 0.999) * 256.0) as i32; let ib = (b.clamp( 0.0, 0.999) * 256.0) as i32;
format!("{} {} {}", ir, ig, ib) format!("{} {} {}", ir, ig, ib)
} }
pub fn near_zero(&self) -> bool { pub fn near_zero(&self) -> bool {
let epsilon: f32 = 1e-4; let epsilon: f32 = 1e-4;
self.x.abs() < epsilon && self.y.abs() < epsilon && self.z.abs() < epsilon return
self.x.abs() < epsilon &&
self.y.abs() < epsilon &&
self.z.abs() < epsilon
} }
pub fn reflect(v: Vec3, n: Vec3) -> Vec3 { pub fn reflect(v: Vec3, n: Vec3) -> Vec3 {
v - n * Vec3::dot(v, n) * 2.0 return v - n * Vec3::dot(v, n) * 2.0;
} }
pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 { pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 {
let cos_theta = Vec3::dot(-uv, n).min(1.0); let cos_theta = Vec3::dot(-uv, n).min(1.0);
let r_out_perp = (uv + n * cos_theta) * etai_over_etat; let r_out_perp = (uv + n * cos_theta) * etai_over_etat;
@@ -218,153 +212,156 @@ impl Vec3 {
r_out_perp + r_out_parallel r_out_perp + r_out_parallel
} }
pub fn dot(left: Vec3, right: Vec3) -> f32 { pub fn dot(left: Vec3, right: Vec3) -> f32{
left.x * right.x + left.y * right.y + left.z * right.z left.x * right.x +
left.y * right.y +
left.z * right.z
} }
pub fn cross(u: Vec3, v: Vec3) -> Vec3 { pub fn cross(u: Vec3, v: Vec3) -> Vec3{
Vec3 { Vec3{
x: u.y * v.z - u.z * v.y, x: u.y * v.z - u.z * v.y,
y: u.z * v.x - u.x * v.z, y: u.z * v.x - u.x * v.z,
z: u.x * v.y - u.y * v.x, z: u.x * v.y - u.y * v.x
} }
} }
pub fn as_unit(v: Vec3) -> Vec3 { pub fn as_unit(v: Vec3) -> Vec3 {
let len = v.length(); let len = v.length();
v / len v / len
} }
} }
impl Add for Vec3 { impl Add for Vec3 {
type Output = Vec3; type Output = Vec3;
fn add(self, other: Vec3) -> Vec3 { fn add(self, other: Vec3) -> Vec3 {
Vec3 { Vec3{
x: self.x + other.x, x: self.x + other.x,
y: self.y + other.y, y: self.y + other.y,
z: self.z + other.z, z: self.z + other.z,
} }
} }
} }
impl AddAssign for Vec3 { impl AddAssign for Vec3 {
fn add_assign(&mut self, other: Vec3) { fn add_assign(&mut self, other: Vec3){
*self = Self { *self = Self {
x: self.x + other.x, x: self.x + other.x,
y: self.y + other.y, y: self.y + other.y,
z: self.z + other.z, z: self.z + other.z
}; };
} }
} }
impl Sub for Vec3 { impl Sub for Vec3 {
type Output = Vec3; type Output = Vec3;
fn sub(self, other: Vec3) -> Vec3 { fn sub(self, other: Vec3) -> Vec3 {
Vec3 { Vec3 {
x: self.x - other.x, x: self.x - other.x,
y: self.y - other.y, y: self.y - other.y,
z: self.z - other.z, z: self.z - other.z,
} }
} }
} }
impl SubAssign for Vec3 { impl SubAssign for Vec3 {
fn sub_assign(&mut self, other: Vec3) { fn sub_assign(&mut self, other: Vec3){
*self = Self { *self = Self {
x: self.x - other.x, x: self.x - other.x,
y: self.y - other.y, y: self.y - other.y,
z: self.z - other.z, z: self.z - other.z
}; };
} }
} }
impl Mul<Vec3> for Vec3 { impl Mul<Vec3> for Vec3 {
type Output = Vec3; type Output = Vec3;
fn mul(self, other: Vec3) -> Vec3 { fn mul(self, other: Vec3) -> Vec3 {
Vec3 { Vec3 {
x: self.x * other.x, x: self.x * other.x,
y: self.y * other.y, y: self.y * other.y,
z: self.z * other.z, z: self.z * other.z,
} }
} }
} }
impl Mul<f32> for Vec3 { impl Mul<f32> for Vec3{
type Output = Vec3; type Output = Vec3;
fn mul(self, other: f32) -> Vec3 { fn mul(self, other: f32) -> Vec3 {
Vec3 { Vec3 {
x: self.x * other, x: self.x * other,
y: self.y * other, y: self.y * other,
z: self.z * other, z: self.z * other,
} }
} }
} }
impl MulAssign<Vec3> for Vec3 { impl MulAssign<Vec3> for Vec3 {
fn mul_assign(&mut self, other: Vec3) { fn mul_assign(&mut self, other: Vec3){
*self = Self { *self = Self {
x: self.x * other.x, x: self.x * other.x,
y: self.y * other.y, y: self.y * other.y,
z: self.z * other.z, z: self.z * other.z
}; };
} }
} }
impl MulAssign<f32> for Vec3 { impl MulAssign<f32> for Vec3{
fn mul_assign(&mut self, other: f32) { fn mul_assign(&mut self, other: f32){
*self = Self { *self = Self {
x: self.x * other, x: self.x * other,
y: self.y * other, y: self.y * other,
z: self.z * other, z: self.z * other
}; };
} }
} }
impl Div<Vec3> for Vec3 { impl Div<Vec3> for Vec3 {
type Output = Vec3; type Output = Vec3;
fn div(self, other: Vec3) -> Vec3 { fn div(self, other: Vec3) -> Vec3 {
Vec3 { Vec3 {
x: self.x / other.x, x: self.x / other.x,
y: self.y / other.y, y: self.y / other.y,
z: self.z / other.z, z: self.z / other.z,
} }
} }
} }
impl Div<f32> for Vec3 { impl Div<f32> for Vec3 {
type Output = Vec3; type Output = Vec3;
fn div(self, other: f32) -> Vec3 { fn div(self, other: f32) -> Vec3 {
Vec3 { Vec3 {
x: 1.0 / other * self.x, x: 1.0/other * self.x,
y: 1.0 / other * self.y, y: 1.0/other * self.y,
z: 1.0 / other * self.z, z: 1.0/other * self.z,
} }
} }
} }
impl DivAssign<Vec3> for Vec3 { impl DivAssign<Vec3> for Vec3 {
fn div_assign(&mut self, other: Vec3) { fn div_assign(&mut self, other: Vec3){
*self = Self { *self = Self {
x: self.x / other.x, x: self.x / other.x,
y: self.y / other.y, y: self.y / other.y,
z: self.z / other.z, z: self.z / other.z
}; };
} }
} }
impl DivAssign<f32> for Vec3 { impl DivAssign<f32> for Vec3 {
fn div_assign(&mut self, other: f32) { fn div_assign(&mut self, other: f32){
*self = Self { *self = Self {
x: self.x / other, x: self.x / other,
y: self.y / other, y: self.y / other,
z: self.z / other, z: self.z / other
}; };
} }
} }
impl Neg for Vec3 { impl Neg for Vec3{
type Output = Self; type Output = Self;
fn neg(self) -> Self::Output { fn neg(self) -> Self::Output {
Vec3 { Vec3{
x: -self.x, x: -self.x,
y: -self.y, y: -self.y,
z: -self.z, z: -self.z,
@@ -373,26 +370,27 @@ impl Neg for Vec3 {
} }
impl Display for Vec3 { impl Display for Vec3 {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let str = format!("{} {} {}", self.x, self.y, self.z); let str = format!("{} {} {}", self.x, self.y, self.z);
fmt.write_str(&str)?; fmt.write_str(&str)?;
Ok(()) Ok(())
}
}
} }
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
pub struct Ray { pub struct Ray{
pub orig: Vec3, pub orig: Vec3,
pub dir: Vec3, pub dir: Vec3,
} }
impl Ray { impl Ray{
pub fn at(&self, t: f32) -> Vec3 { pub fn at(&self, t: f32) -> Vec3 {
self.orig + self.dir * t self.orig + self.dir*t
} }
} }
#[derive(Copy, Clone)] #[derive (Copy, Clone)]
pub struct Rect { pub struct Rect {
pub x: i32, pub x: i32,
pub y: i32, pub y: i32,
@@ -400,11 +398,11 @@ pub struct Rect {
pub h: i32, pub h: i32,
} }
impl Rect { impl Rect{
pub fn pos(&self) -> Vec2i { pub fn pos(&self) -> Vec2i {
Vec2i { Vec2i {
x: self.x, x: self.x,
y: self.y, y: self.y,
} }
} }
@@ -417,188 +415,188 @@ impl Rect {
} }
#[cfg(test)] #[cfg(test)]
mod test { mod test{
use super::*; use super::*;
#[test] #[test]
fn test_add() { fn test_add(){
let v1 = Vec3::new(1.0, 1.0, 0.0); let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.0, 0.0, 1.0); let v2 = Vec3::new(0.0, 0.0, 1.0);
let expected = Vec3::new(1.0, 1.0, 1.0); let expected = Vec3::new(1.0, 1.0, 1.0);
assert_eq!(v1 + v2, expected); assert_eq!( v1+v2, expected );
} }
#[test] #[test]
fn test_add_assign() { fn test_add_assign(){
let mut v1 = Vec3::new(0.0, 1.0, 1.0); let mut v1 = Vec3::new(0.0, 1.0, 1.0);
let v2 = Vec3::new(1.0, 0.0, 0.0); let v2 = Vec3::new(1.0, 0.0, 0.0);
let expected = Vec3::new(1.0, 1.0, 1.0); let expected = Vec3::new(1.0, 1.0, 1.0);
v1 += v2; v1+=v2;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_sub() { fn test_sub(){
let v1 = Vec3::new(1.0, 1.0, 0.0); let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.0, 0.0, 1.0); let v2 = Vec3::new(0.0, 0.0, 1.0);
let expected = Vec3::new(1.0, 1.0, -1.0); let expected = Vec3::new(1.0, 1.0, -1.0);
assert_eq!(v1 - v2, expected); assert_eq!( v1-v2, expected );
} }
#[test] #[test]
fn test_sub_assign() { fn test_sub_assign(){
let mut v1 = Vec3::new(0.0, 1.0, 1.0); let mut v1 = Vec3::new(0.0, 1.0, 1.0);
let v2 = Vec3::new(1.0, 0.0, 0.0); let v2 = Vec3::new(1.0, 0.0, 0.0);
let expected = Vec3::new(-1.0, 1.0, 1.0); let expected = Vec3::new(-1.0, 1.0, 1.0);
v1 -= v2; v1-=v2;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_mul_vec() { fn test_mul_vec(){
let v1 = Vec3::new(0.1, 0.5, 0.7); let v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0); let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 1.0, 0.7); let expected = Vec3::new(0.1, 1.0, 0.7);
assert_eq!(v1 * v2, expected); assert_eq!( v1*v2, expected );
} }
#[test] #[test]
fn test_mul_float() { fn test_mul_float(){
let v1 = Vec3::new(0.1, 0.5, 0.7); let v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5; let f1 = 0.5;
let expected = Vec3::new(0.05, 0.25, 0.35); let expected = Vec3::new(0.05, 0.25, 0.35);
assert_eq!(v1 * f1, expected); assert_eq!( v1*f1, expected );
} }
#[test] #[test]
fn test_mul_vec_assign() { fn test_mul_vec_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7); let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0); let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 1.0, 0.7); let expected = Vec3::new(0.1, 1.0, 0.7);
v1 *= v2; v1*=v2;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_mul_float_assign() { fn test_mul_float_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7); let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5; let f1 = 0.5;
let expected = Vec3::new(0.05, 0.25, 0.35); let expected = Vec3::new(0.05, 0.25, 0.35);
v1 *= f1; v1*=f1;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_div_vec() { fn test_div_vec(){
let v1 = Vec3::new(0.1, 0.5, 0.7); let v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(0.5, 2.0, 1.0); let v2 = Vec3::new(0.5, 2.0, 1.0);
let expected = Vec3::new(0.2, 0.25, 0.7); let expected = Vec3::new(0.2, 0.25, 0.7);
assert_eq!(v1 / v2, expected); assert_eq!( v1/v2, expected );
} }
#[test] #[test]
fn test_div_float() { fn test_div_float(){
let v1 = Vec3::new(0.1, 0.5, 0.7); let v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5; let f1 = 0.5;
let expected = Vec3::new(0.2, 1.0, 1.4); let expected = Vec3::new(0.2, 1.0, 1.4);
assert_eq!(v1 / f1, expected); assert_eq!( v1/f1, expected );
} }
#[test] #[test]
fn test_div_vec_assign() { fn test_div_vec_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7); let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let v2 = Vec3::new(1.0, 2.0, 1.0); let v2 = Vec3::new(1.0, 2.0, 1.0);
let expected = Vec3::new(0.1, 0.25, 0.7); let expected = Vec3::new(0.1, 0.25, 0.7);
v1 /= v2; v1/=v2;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_div_float_assign() { fn test_div_float_assign(){
let mut v1 = Vec3::new(0.1, 0.5, 0.7); let mut v1 = Vec3::new(0.1, 0.5, 0.7);
let f1 = 0.5; let f1 = 0.5;
let expected = Vec3::new(0.2, 1., 1.4); let expected = Vec3::new(0.2, 1., 1.4);
v1 /= f1; v1/=f1;
assert_eq!(v1, expected); assert_eq!( v1, expected );
} }
#[test] #[test]
fn test_length_squared() { fn test_length_squared(){
let v = Vec3::new(2.0, 0.0, 2.0); let v = Vec3::new(2.0, 0.0, 2.0);
let len = v.length_squared(); let len = v.length_squared();
assert_eq!(len, 8.0); assert_eq!(len, 8.0);
} }
#[test] #[test]
fn test_length() { fn test_length(){
let v = Vec3::new(3.0, 4.0, 0.0); let v = Vec3::new(3.0, 4.0, 0.0);
let len = v.length(); let len = v.length();
assert_eq!(len, 5.0) assert_eq!(len, 5.0)
} }
#[test] #[test]
fn test_dot_perpendicular() { fn test_dot_perpendicular(){
let v1 = Vec3::new(1.0, 0.0, 0.0); let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(0.0, 1.0, 0.0); let v2 = Vec3::new(0.0, 1.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), 0.0); assert_eq!(Vec3::dot(v1, v2), 0.0);
} }
#[test] #[test]
fn test_dot_parallel() { fn test_dot_parallel(){
let v1 = Vec3::new(1.0, 0.0, 0.0); let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(1.0, 0.0, 0.0); let v2 = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), 1.0); assert_eq!(Vec3::dot(v1, v2), 1.0);
} }
#[test] #[test]
fn test_dot_acute() { fn test_dot_acute(){
let v1 = Vec3::new(1.0, 1.0, 0.0); let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.5, 1.0, 0.0); let v2 = Vec3::new(0.5, 1.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), 1.5); assert_eq!(Vec3::dot(v1, v2), 1.5);
} }
#[test] #[test]
fn test_dot_obtuse() { fn test_dot_obtuse(){
let v1 = Vec3::new(1.0, 1.0, 0.0); let v1 = Vec3::new(1.0, 1.0, 0.0);
let v2 = Vec3::new(0.5, -1.0, 0.0); let v2 = Vec3::new(0.5, -1.0, 0.0);
assert_eq!(Vec3::dot(v1, v2), -0.5); assert_eq!(Vec3::dot(v1, v2), -0.5);
} }
#[test] #[test]
fn test_cross_perpendicular() { fn test_cross_perpendicular(){
let v1 = Vec3::new(1.0, 0.0, 0.0); let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(0.0, 1.0, 0.0); let v2 = Vec3::new(0.0, 1.0, 0.0);
let expected = Vec3::new(0.0, 0.0, 1.0); let expected = Vec3::new(0.0, 0.0, 1.0);
assert_eq!(Vec3::cross(v1, v2), expected); assert_eq!(Vec3::cross(v1, v2), expected);
} }
#[test] #[test]
fn test_cross_parallel() { fn test_cross_parallel(){
let v1 = Vec3::new(1.0, 0.0, 0.0); let v1 = Vec3::new(1.0, 0.0, 0.0);
let v2 = Vec3::new(1.0, 0.0, 0.0); let v2 = Vec3::new(1.0, 0.0, 0.0);
@@ -608,7 +606,7 @@ mod test {
} }
#[test] #[test]
fn test_cross_111() { fn test_cross_111(){
let v1 = Vec3::new(1.0, 1.0, 1.0); let v1 = Vec3::new(1.0, 1.0, 1.0);
let v2 = Vec3::new(0.0, 1.0, 0.0); let v2 = Vec3::new(0.0, 1.0, 0.0);
@@ -618,32 +616,32 @@ mod test {
} }
#[test] #[test]
fn test_unit_shorten() { fn test_unit_shorten(){
let v = Vec3::new(2.0, 0.0, 0.0); let v = Vec3::new(2.0, 0.0, 0.0);
let expected = Vec3::new(1.0, 0.0, 0.0); let expected = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::as_unit(v), expected); assert_eq!(Vec3::as_unit(v), expected);
} }
#[test] #[test]
fn test_unit_lengthen() { fn test_unit_lengthen(){
let v = Vec3::new(0.5, 0.0, 0.0); let v = Vec3::new(0.5, 0.0, 0.0);
let expected = Vec3::new(1.0, 0.0, 0.0); let expected = Vec3::new(1.0, 0.0, 0.0);
assert_eq!(Vec3::as_unit(v), expected); assert_eq!(Vec3::as_unit(v), expected);
} }
#[test] #[test]
fn test_unit_111() { fn test_unit_111(){
let v = Vec3::new(1.0, 1.0, 1.0); let v = Vec3::new(1.0, 1.0, 1.0);
let expected = Vec3::new(0.577350269, 0.577350269, 0.577350269); let expected = Vec3::new(0.577350269,0.577350269,0.577350269);
assert!(Vec3::as_unit(v) <= expected * 1.001); // within very small under-estimate assert!(Vec3::as_unit(v) <= expected * 1.001); // within very small under-estimate
assert!(Vec3::as_unit(v) >= expected * 0.999); // within very small over-estimate assert!(Vec3::as_unit(v) >= expected * 0.999); // within very small over-estimate
} }
#[test] #[test]
fn test_reflect_flat() { fn test_reflect_flat(){
let ray = Vec3::new(1.0, 0.0, 0.0); let ray = Vec3::new(1.0, 0.0, 0.0);
let normal = Vec3::new(-1.0, 0.0, 0.0); let normal = Vec3::new(-1.0, 0.0, 0.0);
@@ -651,22 +649,24 @@ mod test {
let expected = Vec3::new(-1.0, 0.0, 0.0); let expected = Vec3::new(-1.0, 0.0, 0.0);
assert!(refl == expected); assert!(refl == expected);
} }
#[test] #[test]
fn test_reflect_flat_back() { fn test_reflect_flat_back(){
let ray = Vec3::new(1.0, 0.0, 0.0); let ray = Vec3::new(1.0, 0.0, 0.0);
let normal = Vec3::new(1.0, 0.0, 0.0); let normal = Vec3::new(1.0, 0.0, 0.0);
let refl = Vec3::reflect(ray, normal); let refl = Vec3::reflect(ray, normal);
let expected = Vec3::new(-1.0, 0.0, 0.0); let expected = Vec3::new(-1.0, 0.0, 0.0);
assert!(refl == expected); assert!(refl == expected);
} }
#[test] #[test]
fn test_reflect_45() { fn test_reflect_45(){
let ray = Vec3::new(1.0, 0.0, 0.0); let ray = Vec3::new(1.0, 0.0, 0.0);
let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0)); let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0));
let refl = Vec3::reflect(ray, normal); let refl = Vec3::reflect(ray, normal);
let expected = Vec3::new(0.0, 1.0, 0.0); let expected = Vec3::new(0.0, 1.0, 0.0);
let diff = refl - expected; let diff = refl - expected;
@@ -675,12 +675,15 @@ mod test {
} }
#[test] #[test]
fn check_lerp() { fn check_lerp(){
let ray = Ray { let ray = Ray{
orig: Vec3::new(0.0, 0.0, 0.0), orig: Vec3::new(0.0, 0.0, 0.0),
dir: Vec3::new(1.0, 1.0, 0.0), dir: Vec3::new(1.0, 1.0, 0.0)
}; };
let half = ray.at(0.5); let half = ray.at(0.5);
assert_eq!(half, Vec3::new(0.5, 0.5, 0.0)); assert_eq!(
half,
Vec3::new(0.5, 0.5, 0.0)
);
} }
} }

View File

@@ -1,15 +1,21 @@
use crate::primitives::{Ray, Rect, Vec2f, Vec2i, Vec3};
use crate::scene::{Hittable, Scene}; use crate::primitives::{
Vec2i,
Vec2f,
Vec3,
Ray,
Rect,
};
use crate::scene::{
Hittable,
Scene,
};
use rand::rngs::SmallRng; use rand::rngs::SmallRng;
use itertools::{self, Itertools}; use itertools::{self, Itertools};
const SKY_COLOR: Vec3 = Vec3 { const SKY_COLOR: Vec3 = Vec3 { x: 0.5, y: 0.7, z: 1.0};
x: 0.5,
y: 0.7,
z: 1.0,
};
pub struct RenderProperties { pub struct RenderProperties {
pub samples: u32, // samples are averaged results over a pixel pub samples: u32, // samples are averaged results over a pixel
@@ -22,54 +28,65 @@ fn to_uv(coord: Vec2i, img_size: Vec2i) -> Vec2f {
Vec2f::new(u, v) Vec2f::new(u, v)
} }
fn ray_color(r: Ray, surface: &Hittable, depth: u32, rng: &mut SmallRng) -> Vec3 { fn ray_color(
r: Ray, surface: &Hittable, depth: u32,
rng: &mut SmallRng,
) -> Vec3 {
// recursion guard // recursion guard
if depth == 0 { if depth == 0 {
return Vec3::zero(); return Vec3::zero();
} }
// cast a ray, interrogate hit record // cast a ray, interrogate hit record
if let Some(record) = surface.hit(r, 0.001, f32::INFINITY) { if let Some(record) = surface.hit(r, 0.001, f32::INFINITY){
let mut scattered = Ray { let mut scattered = Ray {
orig: Vec3::zero(), orig: Vec3::zero(),
dir: Vec3::zero(), dir: Vec3::zero(),
}; };
let mut attenuation = Vec3::zero(); let mut attenuation = Vec3::zero();
if record if record.material.scatter(
.material r,
.scatter(r, &record, &mut attenuation, &mut scattered, rng) &record,
{ &mut attenuation,
return attenuation * ray_color(scattered, surface, depth - 1, rng); &mut scattered,
rng
) {
return attenuation * ray_color(
scattered, surface, depth-1, rng
);
} }
} // TODO: explicit else block } // TODO: explicit else block
// Rust gets angry about the inner if{} block because it evaluates to () // Rust gets angry about the inner if{} block because it evaluates to ()
// when the else path is taken. This is a problem for a function // when the else path is taken. This is a problem for a function
// that returns Vec3 and not (). // that returns Vec3 and not ().
{ { // when nothing is struck, return sky color
// when nothing is struck, return sky color
let unitdir = Vec3::as_unit(r.dir); let unitdir = Vec3::as_unit(r.dir);
let t = 0.5 * (unitdir.y + 1.0); let t = 0.5 * (unitdir.y + 1.0);
Vec3::ones() * (1.0 - t) + SKY_COLOR * t return Vec3::ones() * (1.0 - t) + SKY_COLOR * t
} }
} }
fn sample_pixel( fn sample_pixel(
coord: Vec2i, // location in image/screen space coord: Vec2i, // location in image/screen space
scene: &Scene, // scene we're drawing scene: &Scene, // scene we're drawing
render_props: &RenderProperties, render_props: &RenderProperties,
img_size: Vec2i, img_size: Vec2i,
// Supplied by the execution environment (the thread) // Supplied by the execution environment (the thread)
rng: &mut SmallRng, rng: &mut SmallRng,
) -> Vec3 { ) -> Vec3{
(0..render_props.samples).fold(Vec3::zero(), |color, _sample| -> Vec3 { (0..render_props.samples)
let uv = to_uv(coord, img_size); .fold(
let ray = scene.camera.get_ray(uv.x, uv.y, rng); Vec3::zero(),
if ray.dir.x.is_nan() { |color, _sample| -> Vec3 {
panic!("Ray dir.x is NAN"); let uv = to_uv(coord, img_size);
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
if ray.dir.x.is_nan() {
panic!("Ray dir.x is NAN");
}
color + ray_color(ray, &scene.world, render_props.bounces, rng)
} }
color + ray_color(ray, &scene.world, render_props.bounces, rng) )
})
} }
pub struct Tile { pub struct Tile {
@@ -79,31 +96,28 @@ pub struct Tile {
impl Tile { impl Tile {
pub fn render_tile( pub fn render_tile(
bounds: Rect, // bounds of the region to render bounds: Rect, // bounds of the region to render
img_size: Vec2i, // final image resolution (needed for proper UV mapping) img_size: Vec2i, // final image resolution (needed for proper UV mapping)
scene: &Scene, scene: &Scene,
properties: &RenderProperties, // TODO: Place image size in render properties? properties: &RenderProperties, // TODO: Place image size in render properties?
rng: &mut SmallRng, rng: &mut SmallRng,
) -> Self { ) -> Self {
let pixel_iter = let pixel_iter = (bounds.y..(bounds.y + bounds.h))
(bounds.y..(bounds.y + bounds.h)).cartesian_product(bounds.x..(bounds.x + bounds.w)); .cartesian_product( bounds.x..(bounds.x + bounds.w));
let pixels = pixel_iter let pixels = pixel_iter.map(
.map(|coord| -> Vec3 { |coord| -> Vec3 {
sample_pixel( sample_pixel(
Vec2i { Vec2i{x: coord.1, y: coord.0},
x: coord.1,
y: coord.0,
},
scene, scene,
properties, properties,
img_size, img_size,
rng, rng,
) )
}) }
.collect(); ).collect();
Self { Self {
_bounds: bounds, _bounds: bounds,
pixels, pixels
} }
} }
pub fn render_line( pub fn render_line(
@@ -114,16 +128,11 @@ impl Tile {
rng: &mut SmallRng, // rng utils rng: &mut SmallRng, // rng utils
) -> Self { ) -> Self {
Tile::render_tile( Tile::render_tile(
Rect { Rect{ x: 0, y, w: img_size.x, h: 1 },
x: 0,
y,
w: img_size.x,
h: 1,
},
img_size, img_size,
scene, scene,
properties, properties,
rng, rng
) )
} }
} }

View File

@@ -1,10 +1,11 @@
use crate::primitives::{Ray, Vec3};
use crate::primitives::{Vec3, Ray};
use rand::Rng; use rand::Rng;
use rand::distr::Uniform;
use rand::rngs::SmallRng; use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub struct HitRecord { pub struct HitRecord{
pub p: Vec3, pub p: Vec3,
pub normal: Vec3, pub normal: Vec3,
pub material: Material, pub material: Material,
@@ -12,53 +13,40 @@ pub struct HitRecord {
pub front_face: bool, pub front_face: bool,
} }
impl HitRecord { impl HitRecord{
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) { pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0; self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face { self.normal = if self.front_face { outward_normal } else { -outward_normal };
outward_normal
} else {
-outward_normal
};
} }
} }
#[derive(Clone)] #[derive (Clone)]
pub enum Hittable { pub enum Hittable {
Sphere { Sphere { center: Vec3, radius: f32, material: Material },
center: Vec3, HittableList { hittables: Vec<Hittable> }
radius: f32,
material: Material,
},
HittableList {
hittables: Vec<Hittable>,
},
} }
impl Hittable { impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> { pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self { match self {
Hittable::HittableList { hittables } => hittables Hittable::HittableList { hittables } => {
.iter() hittables.iter()
.map(|obj| -> Option<HitRecord> { obj.hit(r, t_min, t_max) }) .map( |obj| -> Option<HitRecord> {
.filter(|obj| obj.is_some()) obj.hit(r, t_min, t_max)
}).filter(|obj| obj.is_some())
.min_by(|lhs, rhs| { .min_by(|lhs, rhs| {
let lhs = lhs.as_ref().unwrap(); let lhs = lhs.as_ref().unwrap();
let rhs = rhs.as_ref().unwrap(); let rhs = rhs.as_ref().unwrap();
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??") lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
}) }).unwrap_or(None)
.unwrap_or(None), }
Hittable::Sphere { Hittable::Sphere { center, radius, material } => {
center,
radius,
material,
} => {
let oc = r.orig - *center; let oc = r.orig - *center;
let a = r.dir.length_squared(); let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir); let half_b = Vec3::dot(oc, r.dir);
let c = oc.length_squared() - radius * radius; let c = oc.length_squared() - radius * radius;
let discriminant = half_b * half_b - a * c; let discriminant = half_b*half_b - a*c;
if discriminant < 0.0 { if discriminant < 0.0 {
return None; return None;
@@ -73,7 +61,7 @@ impl Hittable {
return None; return None;
} }
} }
let mut record = HitRecord { let mut record = HitRecord{
p: r.at(root), p: r.at(root),
normal: (r.at(root) - *center) / *radius, normal: (r.at(root) - *center) / *radius,
material: *material, material: *material,
@@ -93,10 +81,11 @@ impl Hittable {
} }
} }
#[derive(Copy, Clone, Debug)] #[derive(Copy, Clone, Debug)]
pub enum Material { pub enum Material{
Lambertian { albedo: Vec3 }, Lambertian { albedo: Vec3 },
Metal { albedo: Vec3, fuzz: f32 }, Metal { albedo:Vec3, fuzz: f32 },
Dielectric { index_refraction: f32 }, Dielectric { index_refraction: f32 },
} }
@@ -114,60 +103,55 @@ impl Material {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng); let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
// The compiler might be smart enough to compute this ^^^ just once. In which case, // The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work. // I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() { let scatter_dir = if scatter_dir.near_zero() { // if near zero,
// if near zero, rec.normal // replace with normal
rec.normal // replace with normal
} else { } else {
scatter_dir // else preserve current scatter_dir // else preserve current
}; };
//TODO: Revisit this out-parameter pattern //TODO: Revisit this out-parameter pattern
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not // It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
// using them at all) // using them at all)
*scattered = Ray { *scattered = Ray{
orig: rec.p, orig: rec.p,
dir: scatter_dir, dir: scatter_dir
}; };
*attenuation = *albedo; // deref on both sides? Wacky *attenuation = *albedo; // deref on both sides? Wacky
true return true;
} },
Material::Metal { albedo, fuzz } => { Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(Vec3::as_unit(ray_in.dir), rec.normal); let reflected = Vec3::reflect(
*scattered = Ray { Vec3::as_unit(ray_in.dir),
rec.normal
);
*scattered = Ray{
orig: rec.p, orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz, dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
}; };
*attenuation = *albedo; *attenuation = *albedo;
Vec3::dot(scattered.dir, rec.normal) > 0.0 return Vec3::dot(scattered.dir, rec.normal) > 0.0;
} },
Material::Dielectric { index_refraction } => { Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ones(); *attenuation = Vec3::ones();
let refraction_ratio = if rec.front_face { let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
1.0 / index_refraction
} else {
*index_refraction
};
let unit_direction = Vec3::as_unit(ray_in.dir); let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0); let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt(); let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0; let cannot_refract = refraction_ratio * sin_theta > 1.0;
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap(); let distrib_zero_one = Uniform::new(0.0, 1.0);
let direction = if cannot_refract let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
|| Material::reflectance(cos_theta, refraction_ratio)
> srng.sample(distrib_zero_one)
{
Vec3::reflect(unit_direction, rec.normal) Vec3::reflect(unit_direction, rec.normal)
} else { } else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio) Vec3::refract(unit_direction, rec.normal, refraction_ratio)
}; };
*scattered = Ray { *scattered = Ray {
orig: rec.p, orig: rec.p,
dir: direction, dir: direction
}; };
true return true;
} },
} }
} }
@@ -175,7 +159,7 @@ impl Material {
// Schlick's approximation for reflectance. // Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx); let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0; let r0 = r0 * r0;
r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0) return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
} }
} }
@@ -190,21 +174,42 @@ pub struct Camera {
lower_left_corner: Vec3, lower_left_corner: Vec3,
horizontal: Vec3, horizontal: Vec3,
vertical: Vec3, vertical: Vec3,
u: Vec3, u: Vec3, v: Vec3, /*w: Vec3,*/
v: Vec3, /*w: Vec3,*/
lens_radius: f32, lens_radius: f32,
} }
impl Camera { impl Camera {
pub fn new( pub fn new() -> Camera {
lookfrom: Vec3, Self::default()
lookat: Vec3, }
vup: Vec3,
vfov: f32, pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
aspect_ratio: f32, let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
aperture: f32, let offset = self.u * rd.x + self.v * rd.y;
focus_dist: f32,
) -> Camera { let dir = self.lower_left_corner
+ self.horizontal * s
+ self.vertical * t
- self.origin - offset;
Ray{
orig: self.origin + offset,
dir,
}
}
}
impl Default for Camera {
fn default() -> Self {
// defaults are the same as the hard-coded properties passed from main
// ... except for the `lookfrom` position: (13.0, 2.0, 3.0) became (10.0, 0..)
let lookfrom = Vec3::new(10.0, 0.0, 0.0);
let lookat = Vec3 { x: 1.0, y: 0.0, z: 0.0 };
let vup = Vec3::new(0.0, 1.0, 0.0);
let vfov = 20.0;
let aspect_ratio = 3.0 / 2.0;
let aperture = 0.1;
let focus_dist = 10.0;
let theta = degrees_to_radians(vfov); let theta = degrees_to_radians(vfov);
let h = (theta / 2.0).tan(); let h = (theta / 2.0).tan();
let vp_height = 2.0 * h; let vp_height = 2.0 * h;
@@ -219,30 +224,18 @@ impl Camera {
let verti = v * vp_height * focus_dist; let verti = v * vp_height * focus_dist;
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist; let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
Camera { Camera{
origin: orig, origin: orig,
lower_left_corner, lower_left_corner,
horizontal: horiz, horizontal: horiz,
vertical: verti, vertical: verti,
u, u, v, /* w,*/
v, /* w,*/
lens_radius: aperture / 2.0, lens_radius: aperture / 2.0,
} }
} }
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir =
self.lower_left_corner + self.horizontal * s + self.vertical * t - self.origin - offset;
Ray {
orig: self.origin + offset,
dir,
}
}
} }
pub struct Scene { pub struct Scene {
pub camera: Camera, pub camera: Camera,
pub world: Hittable, pub world: Hittable,
@@ -250,20 +243,12 @@ pub struct Scene {
impl Scene { impl Scene {
pub fn random_world(srng: &mut SmallRng) -> Hittable { pub fn random_world(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian { let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
albedo: Vec3::new(0.5, 0.5, 0.5), let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
};
let mut world = Hittable::HittableList { world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: mat_ground });
hittables: Vec::<Hittable>::new(),
}; let distrib_zero_one = Uniform::new(0.0, 1.0);
world.push(Hittable::Sphere {
center: Vec3::new(0.0, -1000.0, 0.0),
radius: 1000.0,
material: mat_ground,
});
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
for a in -11..11 { for a in -11..11 {
for b in -11..11 { for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one); let choose_mat = srng.sample(distrib_zero_one);
@@ -273,71 +258,69 @@ impl Scene {
z: b as f32 + 0.9 * srng.sample(distrib_zero_one), z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
}; };
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 { if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 { if choose_mat < 0.8 {
// diffuse // diffuse
let albedo = let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo }; let sphere_material = Material::Lambertian { albedo };
world.push(Hittable::Sphere { world.push(
center, Hittable::Sphere {
radius: 0.2, center,
material: sphere_material, radius: 0.2,
}); material: sphere_material,
}
);
} else if choose_mat < 0.95 { } else if choose_mat < 0.95 {
// metal // metal
let distr_albedo = Uniform::new(0.5, 1.0).unwrap(); let distr_albedo = Uniform::new(0.5, 1.0);
let distr_fuzz = Uniform::new(0.0, 0.5).unwrap(); let distr_fuzz = Uniform::new(0.0, 0.5);
let albedo = Vec3::rand(srng, distr_albedo); let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz); let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz }; let material = Material::Metal { albedo, fuzz };
world.push(Hittable::Sphere { world.push(
center, Hittable::Sphere {
radius: 0.2, center,
material, radius: 0.2,
}); material: material,
}
);
} else { } else {
// glass // glass
let material = Material::Dielectric { let material = Material::Dielectric { index_refraction: 1.5 };
index_refraction: 1.5, world.push(
}; Hittable::Sphere{
world.push(Hittable::Sphere { center,
center, radius: 0.2,
radius: 0.2, material: material,
material, }
}); );
}; };
} }
} }
} }
let material1 = Material::Dielectric { let material1 = Material::Dielectric { index_refraction: 1.5 };
index_refraction: 1.5, world.push( Hittable::Sphere{
};
world.push(Hittable::Sphere {
center: Vec3::new(0.0, 1.0, 0.0), center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0, radius: 1.0,
material: material1, material: material1
}); });
let material2 = Material::Lambertian { let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
albedo: Vec3::new(0.4, 0.2, 0.1), world.push( Hittable::Sphere {
};
world.push(Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0), center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0, radius: 1.0,
material: material2, material: material2
}); });
let material3 = Material::Metal { let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
albedo: Vec3::new(0.7, 0.6, 0.5), world.push( Hittable::Sphere {
fuzz: 0.0,
};
world.push(Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0), center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0, radius: 1.0,
material: material3, material: material3
}); });
world world
} }
} }