3 Commits

Author SHA1 Message Date
987bbe1c98 Starting builder pattern for Camera
I'm going to change the Camera construction to use the builder pattern.
This means I need to implement trait Default for Camera, and then a
bunch of functions for setting the properties.
2024-04-27 12:03:05 -05:00
f2d1a892b7 Enable more warnings, fix a couple of them
Yay for a high quality compiler
2024-04-27 11:16:31 -05:00
8e37fd8e97 Library & multiple binaries
Been playing with EGUI, and I'm gonna patch in a GUI app. The CLI
version will need to kick around, too, but be separate from the GUI one.
Enter: A multi-target crate!
2024-01-28 13:30:42 -06:00
8 changed files with 519 additions and 469 deletions

1
.gitignore vendored
View File

@@ -1 +0,0 @@
/target

View File

@@ -1,10 +1,19 @@
[package]
name = "rustpt"
version = "0.1.0"
edition = "2024"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[[bin]]
name = "rustpt_cli"
path = "src/cli_tool.rs"
[[bin]]
name = "rustpt_gui"
path = "src/gui_tool.rs"
[dependencies]
rand = { version = "0.9", features = ["small_rng"] }
itertools = { version = "0.14" }
rand = { version = "0.8.5", features = ["small_rng"] }
itertools = { version = "0.11.0" }
eframe = "0.25.0"

View File

@@ -1,26 +1,33 @@
mod primitives;
mod renderer;
mod scene;
#![warn(clippy::all, rust_2018_idioms, rust_2018_compatibility)]
use rustpt::primitives::{
Vec2i,
Vec3,
};
use rustpt::scene::{
Camera,
Scene
};
use crate::primitives::{Vec2i, Vec3};
use crate::scene::{Camera, Scene};
use crate::renderer::{RenderProperties, Tile};
use rustpt::renderer::{
Tile,
RenderProperties,
};
use rand::SeedableRng;
use rand::rngs::SmallRng;
fn main() {
// image
let aspect_ratio = 3.0 / 2.0;
let image = Vec2i {
x: 400,
y: (400.0 / aspect_ratio) as i32,
y: (400.0 / aspect_ratio) as i32
};
let render_config = RenderProperties {
samples: 10,
bounces: 50,
bounces: 50
};
// random generator
@@ -37,7 +44,7 @@ fn main() {
0.1, // aperture
10.0, // dist_to_focus
),
world: Scene::random_world(&mut small_rng),
world: Scene::random_world(&mut small_rng)
};
// render

36
src/gui_tool.rs Normal file
View File

@@ -0,0 +1,36 @@
#![warn(clippy::all, rust_2018_idioms)]
use eframe::{egui, Frame};
fn main() -> Result<(), eframe::Error> {
let options = eframe::NativeOptions {
viewport: egui::ViewportBuilder::default()
.with_inner_size([800.0, 600.0])
.with_min_inner_size([50.0, 50.0])
.with_title("RustPT GUI Tool"),
..Default::default()
};
eframe::run_native(
"app name?",
options,
Box::new(
| cc | Box::new(RtApp::new(cc))
))
}
#[derive(Default)]
struct RtApp;
impl RtApp {
fn new(cc: &eframe::CreationContext<'_>) -> Self {
Self::default()
}
}
impl eframe::App for RtApp {
fn update(&mut self, ctx: &egui::Context, frame: &mut Frame) {
egui::SidePanel::left("Render Properties").show(ctx, |ui| {
ui.heading("Render Properties");
ui.label("")
});
}
}

4
src/lib.rs Normal file
View File

@@ -0,0 +1,4 @@
#![warn(clippy::all, rust_2018_idioms, rust_2018_compatibility)]
pub mod primitives;
pub mod scene;
pub mod renderer;

View File

@@ -1,10 +1,21 @@
use std::ops::{
Add,
AddAssign,
Sub,
SubAssign,
Mul,
MulAssign,
Div,
DivAssign,
Neg,
};
use std::fmt;
use std::fmt::Display;
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
use rand::Rng;
use rand::distr::Uniform;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub type Vec2i = Vec2<i32>;
pub type Vec2f = Vec2<f32>;
@@ -15,6 +26,7 @@ pub struct Vec2<T> {
pub y: T,
}
impl Vec2<f32> {
pub fn zero() -> Vec2<f32> {
Vec2{ x: 0.0, y: 0.0 }
@@ -25,44 +37,33 @@ impl Vec2<f32> {
}
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> {
Vec2 {
x: srng.sample(distrib),
y: srng.sample(distrib),
}
Vec2 { x: srng.sample(distrib), y: srng.sample(distrib) }
}
}
impl <T> Vec2<T>
where
T: std::ops::Mul,
{
where T: std::ops::Mul{
pub fn new(x: T, y: T) -> Vec2<T> {
Vec2{x, y}
}
}
impl <T> Add for Vec2 <T>
where
T: std::ops::Add<Output = T>,
{
where T: std::ops::Add<Output = T>{
type Output = Vec2<T>;
fn add(self, other: Vec2<T>) -> Vec2<T> {
Vec2 {
x: self.x + other.x,
y: self.y + other.y,
}
Vec2 { x: self.x + other.x, y: self.y + other.y }
}
}
impl <T> Mul for Vec2<T>
where
T: std::ops::Mul<Output = T>,
{
where T: std::ops::Mul<Output = T>{
type Output = Vec2<T>;
fn mul(self, other: Vec2<T>) -> Vec2<T> {
Vec2 {
x: self.x * other.x,
y: self.y * other.y,
y: self.y * other.y
}
}
}
@@ -72,7 +73,7 @@ impl Div<f32> for Vec2<f32> {
fn div(self, other: f32) -> Vec2<f32> {
Vec2 {
x: 1.0/other * self.x,
y: 1.0 / other * self.y,
y: 1.0/other * self.y
}
}
}
@@ -82,30 +83,25 @@ impl Div<i32> for Vec2<i32> {
fn div(self, other: i32) -> Vec2<i32> {
Vec2 {
x: self.x / other,
y: self.y / other,
y: self.y / other
}
}
}
impl <T> Div<Vec2<T>> for Vec2<T>
where
T: std::ops::Div<Output = T>,
{
where T: std::ops::Div<Output = T>{
type Output = Vec2<T>;
fn div(self, other: Vec2<T>) -> Vec2<T> {
Vec2 {
x: self.x / other.x,
y: self.y / other.y,
y: self.y / other.y
}
}
}
impl <T> Display for Vec2<T>
where
T: Display,
{
// nested type still needs to have Display
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
where T: Display { // nested type still needs to have Display
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let str = format!("{} {}", self.x, self.y);
fmt.write_str(&str)
}
@@ -135,7 +131,7 @@ impl Vec3 {
Vec3 {
x: 1.0,
y: 1.0,
z: 1.0,
z: 1.0
}
}
@@ -148,14 +144,11 @@ impl Vec3 {
}
pub fn rand_in_unit_sphere(srng: &mut SmallRng) -> Vec3 {
let distrib = Uniform::new(-1.0, 1.0).unwrap();
let distrib = Uniform::new(-1.0, 1.0);
loop {
let p = Vec3::rand(srng, distrib);
if p.length_squared() >= 1.0 {
continue;
} else {
return p;
}
if p.length_squared() >= 1.0 { continue; }
else { return p; }
}
}
@@ -163,20 +156,17 @@ impl Vec3 {
let distrib = Uniform::new(-1.0, 1.0);
loop {
let p = Vec3 {
x: srng.sample(distrib.unwrap()),
y: srng.sample(distrib.unwrap()),
x: srng.sample(distrib),
y: srng.sample(distrib),
z: 0.0,
};
if p.length_squared() >= 1.0 {
continue;
} else {
return p;
}
if p.length_squared() >= 1.0 { continue; }
else { return p; }
}
}
pub fn rand_unit_vector(srng: &mut SmallRng) -> Vec3 {
Vec3::as_unit(Vec3::rand_in_unit_sphere(srng))
return Vec3::as_unit(Vec3::rand_in_unit_sphere(srng));
}
pub fn length(&self) -> f32 {
@@ -189,6 +179,7 @@ impl Vec3 {
// roughly equivalent to the `void write_color(...)` in the book
pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
let scale = 1.0 / samples_per_pixel as f32;
// now with gamma correction
@@ -204,11 +195,14 @@ impl Vec3 {
pub fn near_zero(&self) -> bool {
let epsilon: f32 = 1e-4;
self.x.abs() < epsilon && self.y.abs() < epsilon && self.z.abs() < epsilon
return
self.x.abs() < epsilon &&
self.y.abs() < epsilon &&
self.z.abs() < epsilon
}
pub fn reflect(v: Vec3, n: Vec3) -> Vec3 {
v - n * Vec3::dot(v, n) * 2.0
return v - n * Vec3::dot(v, n) * 2.0;
}
pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 {
@@ -219,14 +213,16 @@ impl Vec3 {
}
pub fn dot(left: Vec3, right: Vec3) -> f32{
left.x * right.x + left.y * right.y + left.z * right.z
left.x * right.x +
left.y * right.y +
left.z * right.z
}
pub fn cross(u: Vec3, v: Vec3) -> Vec3{
Vec3{
x: u.y * v.z - u.z * v.y,
y: u.z * v.x - u.x * v.z,
z: u.x * v.y - u.y * v.x,
z: u.x * v.y - u.y * v.x
}
}
@@ -234,6 +230,7 @@ impl Vec3 {
let len = v.length();
v / len
}
}
impl Add for Vec3 {
type Output = Vec3;
@@ -251,7 +248,7 @@ impl AddAssign for Vec3 {
*self = Self {
x: self.x + other.x,
y: self.y + other.y,
z: self.z + other.z,
z: self.z + other.z
};
}
}
@@ -272,7 +269,7 @@ impl SubAssign for Vec3 {
*self = Self {
x: self.x - other.x,
y: self.y - other.y,
z: self.z - other.z,
z: self.z - other.z
};
}
}
@@ -304,7 +301,7 @@ impl MulAssign<Vec3> for Vec3 {
*self = Self {
x: self.x * other.x,
y: self.y * other.y,
z: self.z * other.z,
z: self.z * other.z
};
}
}
@@ -314,7 +311,7 @@ impl MulAssign<f32> for Vec3 {
*self = Self {
x: self.x * other,
y: self.y * other,
z: self.z * other,
z: self.z * other
};
}
}
@@ -346,7 +343,7 @@ impl DivAssign<Vec3> for Vec3 {
*self = Self {
x: self.x / other.x,
y: self.y / other.y,
z: self.z / other.z,
z: self.z / other.z
};
}
}
@@ -356,7 +353,7 @@ impl DivAssign<f32> for Vec3 {
*self = Self {
x: self.x / other,
y: self.y / other,
z: self.z / other,
z: self.z / other
};
}
}
@@ -373,10 +370,11 @@ impl Neg for Vec3 {
}
impl Display for Vec3 {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
let str = format!("{} {} {}", self.x, self.y, self.z);
fmt.write_str(&str)?;
Ok(())
}
}
@@ -660,6 +658,7 @@ mod test {
let refl = Vec3::reflect(ray, normal);
let expected = Vec3::new(-1.0, 0.0, 0.0);
assert!(refl == expected);
}
#[test]
@@ -667,6 +666,7 @@ mod test {
let ray = Vec3::new(1.0, 0.0, 0.0);
let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0));
let refl = Vec3::reflect(ray, normal);
let expected = Vec3::new(0.0, 1.0, 0.0);
let diff = refl - expected;
@@ -678,9 +678,12 @@ mod test {
fn check_lerp(){
let ray = Ray{
orig: Vec3::new(0.0, 0.0, 0.0),
dir: Vec3::new(1.0, 1.0, 0.0),
dir: Vec3::new(1.0, 1.0, 0.0)
};
let half = ray.at(0.5);
assert_eq!(half, Vec3::new(0.5, 0.5, 0.0));
assert_eq!(
half,
Vec3::new(0.5, 0.5, 0.0)
);
}
}

View File

@@ -1,15 +1,21 @@
use crate::primitives::{Ray, Rect, Vec2f, Vec2i, Vec3};
use crate::scene::{Hittable, Scene};
use crate::primitives::{
Vec2i,
Vec2f,
Vec3,
Ray,
Rect,
};
use crate::scene::{
Hittable,
Scene,
};
use rand::rngs::SmallRng;
use itertools::{self, Itertools};
const SKY_COLOR: Vec3 = Vec3 {
x: 0.5,
y: 0.7,
z: 1.0,
};
const SKY_COLOR: Vec3 = Vec3 { x: 0.5, y: 0.7, z: 1.0};
pub struct RenderProperties {
pub samples: u32, // samples are averaged results over a pixel
@@ -22,7 +28,10 @@ fn to_uv(coord: Vec2i, img_size: Vec2i) -> Vec2f {
Vec2f::new(u, v)
}
fn ray_color(r: Ray, surface: &Hittable, depth: u32, rng: &mut SmallRng) -> Vec3 {
fn ray_color(
r: Ray, surface: &Hittable, depth: u32,
rng: &mut SmallRng,
) -> Vec3 {
// recursion guard
if depth == 0 {
return Vec3::zero();
@@ -35,22 +44,26 @@ fn ray_color(r: Ray, surface: &Hittable, depth: u32, rng: &mut SmallRng) -> Vec3
dir: Vec3::zero(),
};
let mut attenuation = Vec3::zero();
if record
.material
.scatter(r, &record, &mut attenuation, &mut scattered, rng)
{
return attenuation * ray_color(scattered, surface, depth - 1, rng);
if record.material.scatter(
r,
&record,
&mut attenuation,
&mut scattered,
rng
) {
return attenuation * ray_color(
scattered, surface, depth-1, rng
);
}
} // TODO: explicit else block
// Rust gets angry about the inner if{} block because it evaluates to ()
// when the else path is taken. This is a problem for a function
// that returns Vec3 and not ().
{
// when nothing is struck, return sky color
{ // when nothing is struck, return sky color
let unitdir = Vec3::as_unit(r.dir);
let t = 0.5 * (unitdir.y + 1.0);
Vec3::ones() * (1.0 - t) + SKY_COLOR * t
return Vec3::ones() * (1.0 - t) + SKY_COLOR * t
}
}
@@ -62,14 +75,18 @@ fn sample_pixel(
// Supplied by the execution environment (the thread)
rng: &mut SmallRng,
) -> Vec3{
(0..render_props.samples).fold(Vec3::zero(), |color, _sample| -> Vec3 {
(0..render_props.samples)
.fold(
Vec3::zero(),
|color, _sample| -> Vec3 {
let uv = to_uv(coord, img_size);
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
if ray.dir.x.is_nan() {
panic!("Ray dir.x is NAN");
}
color + ray_color(ray, &scene.world, render_props.bounces, rng)
})
}
)
}
pub struct Tile {
@@ -85,25 +102,22 @@ impl Tile {
properties: &RenderProperties, // TODO: Place image size in render properties?
rng: &mut SmallRng,
) -> Self {
let pixel_iter =
(bounds.y..(bounds.y + bounds.h)).cartesian_product(bounds.x..(bounds.x + bounds.w));
let pixels = pixel_iter
.map(|coord| -> Vec3 {
let pixel_iter = (bounds.y..(bounds.y + bounds.h))
.cartesian_product( bounds.x..(bounds.x + bounds.w));
let pixels = pixel_iter.map(
|coord| -> Vec3 {
sample_pixel(
Vec2i {
x: coord.1,
y: coord.0,
},
Vec2i{x: coord.1, y: coord.0},
scene,
properties,
img_size,
rng,
)
})
.collect();
}
).collect();
Self {
_bounds: bounds,
pixels,
pixels
}
}
pub fn render_line(
@@ -114,16 +128,11 @@ impl Tile {
rng: &mut SmallRng, // rng utils
) -> Self {
Tile::render_tile(
Rect {
x: 0,
y,
w: img_size.x,
h: 1,
},
Rect{ x: 0, y, w: img_size.x, h: 1 },
img_size,
scene,
properties,
rng,
rng
)
}
}

View File

@@ -1,8 +1,9 @@
use crate::primitives::{Ray, Vec3};
use crate::primitives::{Vec3, Ray};
use rand::Rng;
use rand::distr::Uniform;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub struct HitRecord{
pub p: Vec3,
@@ -13,47 +14,34 @@ pub struct HitRecord {
}
impl HitRecord{
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) {
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face {
outward_normal
} else {
-outward_normal
};
self.normal = if self.front_face { outward_normal } else { -outward_normal };
}
}
#[derive (Clone)]
pub enum Hittable {
Sphere {
center: Vec3,
radius: f32,
material: Material,
},
HittableList {
hittables: Vec<Hittable>,
},
Sphere { center: Vec3, radius: f32, material: Material },
HittableList { hittables: Vec<Hittable> }
}
impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self {
Hittable::HittableList { hittables } => hittables
.iter()
.map(|obj| -> Option<HitRecord> { obj.hit(r, t_min, t_max) })
.filter(|obj| obj.is_some())
Hittable::HittableList { hittables } => {
hittables.iter()
.map( |obj| -> Option<HitRecord> {
obj.hit(r, t_min, t_max)
}).filter(|obj| obj.is_some())
.min_by(|lhs, rhs| {
let lhs = lhs.as_ref().unwrap();
let rhs = rhs.as_ref().unwrap();
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
})
.unwrap_or(None),
}).unwrap_or(None)
}
Hittable::Sphere {
center,
radius,
material,
} => {
Hittable::Sphere { center, radius, material } => {
let oc = r.orig - *center;
let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir);
@@ -93,6 +81,7 @@ impl Hittable {
}
}
#[derive(Copy, Clone, Debug)]
pub enum Material{
Lambertian { albedo: Vec3 },
@@ -114,8 +103,7 @@ impl Material {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
// The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() {
// if near zero,
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
rec.normal // replace with normal
} else {
scatter_dir // else preserve current
@@ -126,48 +114,44 @@ impl Material {
// using them at all)
*scattered = Ray{
orig: rec.p,
dir: scatter_dir,
dir: scatter_dir
};
*attenuation = *albedo; // deref on both sides? Wacky
true
}
return true;
},
Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(Vec3::as_unit(ray_in.dir), rec.normal);
let reflected = Vec3::reflect(
Vec3::as_unit(ray_in.dir),
rec.normal
);
*scattered = Ray{
orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
};
*attenuation = *albedo;
Vec3::dot(scattered.dir, rec.normal) > 0.0
}
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
},
Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ones();
let refraction_ratio = if rec.front_face {
1.0 / index_refraction
} else {
*index_refraction
};
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
let direction = if cannot_refract
|| Material::reflectance(cos_theta, refraction_ratio)
> srng.sample(distrib_zero_one)
{
let distrib_zero_one = Uniform::new(0.0, 1.0);
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
Vec3::reflect(unit_direction, rec.normal)
} else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
};
*scattered = Ray {
orig: rec.p,
dir: direction,
dir: direction
};
true
}
return true;
},
}
}
@@ -175,7 +159,7 @@ impl Material {
// Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0;
r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0)
return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
}
}
@@ -190,21 +174,42 @@ pub struct Camera {
lower_left_corner: Vec3,
horizontal: Vec3,
vertical: Vec3,
u: Vec3,
v: Vec3, /*w: Vec3,*/
u: Vec3, v: Vec3, /*w: Vec3,*/
lens_radius: f32,
}
impl Camera {
pub fn new(
lookfrom: Vec3,
lookat: Vec3,
vup: Vec3,
vfov: f32,
aspect_ratio: f32,
aperture: f32,
focus_dist: f32,
) -> Camera {
pub fn new() -> Camera {
Self::default()
}
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir = self.lower_left_corner
+ self.horizontal * s
+ self.vertical * t
- self.origin - offset;
Ray{
orig: self.origin + offset,
dir,
}
}
}
impl Default for Camera {
fn default() -> Self {
// defaults are the same as the hard-coded properties passed from main
// ... except for the `lookfrom` position: (13.0, 2.0, 3.0) became (10.0, 0..)
let lookfrom = Vec3::new(10.0, 0.0, 0.0);
let lookat = Vec3 { x: 1.0, y: 0.0, z: 0.0 };
let vup = Vec3::new(0.0, 1.0, 0.0);
let vfov = 20.0;
let aspect_ratio = 3.0 / 2.0;
let aperture = 0.1;
let focus_dist = 10.0;
let theta = degrees_to_radians(vfov);
let h = (theta / 2.0).tan();
let vp_height = 2.0 * h;
@@ -224,24 +229,12 @@ impl Camera {
lower_left_corner,
horizontal: horiz,
vertical: verti,
u,
v, /* w,*/
u, v, /* w,*/
lens_radius: aperture / 2.0,
}
}
}
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir =
self.lower_left_corner + self.horizontal * s + self.vertical * t - self.origin - offset;
Ray {
orig: self.origin + offset,
dir,
}
}
}
pub struct Scene {
pub camera: Camera,
@@ -250,20 +243,12 @@ pub struct Scene {
impl Scene {
pub fn random_world(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian {
albedo: Vec3::new(0.5, 0.5, 0.5),
};
let mut world = Hittable::HittableList {
hittables: Vec::<Hittable>::new(),
};
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
world.push(Hittable::Sphere {
center: Vec3::new(0.0, -1000.0, 0.0),
radius: 1000.0,
material: mat_ground,
});
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: mat_ground });
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
let distrib_zero_one = Uniform::new(0.0, 1.0);
for a in -11..11 {
for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one);
@@ -273,70 +258,68 @@ impl Scene {
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
};
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 {
// diffuse
let albedo =
Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo };
world.push(Hittable::Sphere {
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: sphere_material,
});
}
);
} else if choose_mat < 0.95 {
// metal
let distr_albedo = Uniform::new(0.5, 1.0).unwrap();
let distr_fuzz = Uniform::new(0.0, 0.5).unwrap();
let distr_albedo = Uniform::new(0.5, 1.0);
let distr_fuzz = Uniform::new(0.0, 0.5);
let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz };
world.push(Hittable::Sphere {
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material,
});
material: material,
}
);
} else {
// glass
let material = Material::Dielectric {
index_refraction: 1.5,
};
world.push(Hittable::Sphere {
let material = Material::Dielectric { index_refraction: 1.5 };
world.push(
Hittable::Sphere{
center,
radius: 0.2,
material,
});
material: material,
}
);
};
}
}
}
let material1 = Material::Dielectric {
index_refraction: 1.5,
};
let material1 = Material::Dielectric { index_refraction: 1.5 };
world.push( Hittable::Sphere{
center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0,
material: material1,
material: material1
});
let material2 = Material::Lambertian {
albedo: Vec3::new(0.4, 0.2, 0.1),
};
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
world.push( Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0,
material: material2,
material: material2
});
let material3 = Material::Metal {
albedo: Vec3::new(0.7, 0.6, 0.5),
fuzz: 0.0,
};
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
world.push( Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0,
material: material3,
material: material3
});
world
}