Files
rustpt/src/scene.rs
Robert Garrett 309931b7f6 Replace util ctor's with constants
I don't need functions to create new vectors, I just want a constant
that I can clone. The compiler probably does the same thing in both
cases, but this is more semantically accurate to that goal.
2025-08-20 10:31:03 -05:00

344 lines
11 KiB
Rust

use crate::primitives::{Ray, Vec3};
use rand::Rng;
use rand::distr::Uniform;
use rand::rngs::SmallRng;
pub struct HitRecord {
pub p: Vec3,
pub normal: Vec3,
pub material: Material,
pub t: f32,
pub front_face: bool,
}
impl HitRecord {
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) {
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face {
outward_normal
} else {
-outward_normal
};
}
}
#[derive(Clone)]
pub enum Hittable {
Sphere {
center: Vec3,
radius: f32,
material: Material,
},
HittableList {
hittables: Vec<Hittable>,
},
}
impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self {
Hittable::HittableList { hittables } => hittables
.iter()
.map(|obj| -> Option<HitRecord> { obj.hit(r, t_min, t_max) })
.filter(|obj| obj.is_some())
.min_by(|lhs, rhs| {
let lhs = lhs.as_ref().unwrap();
let rhs = rhs.as_ref().unwrap();
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
})
.unwrap_or(None),
Hittable::Sphere {
center,
radius,
material,
} => {
let oc = r.orig - *center;
let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir);
let c = oc.length_squared() - radius * radius;
let discriminant = half_b * half_b - a * c;
if discriminant < 0.0 {
return None;
}
let sqrtd = discriminant.sqrt();
// nearest root that lies within tolerance
let mut root = (-half_b - sqrtd) / a;
if root < t_min || root > t_max {
root = (-half_b + sqrtd) / a;
if root < t_min || root > t_max {
return None;
}
}
let mut record = HitRecord {
p: r.at(root),
normal: (r.at(root) - *center) / *radius,
material: *material,
t: root,
front_face: false,
};
let outward_normal = (record.p - *center) / *radius;
record.set_face_normal(r, outward_normal);
Some(record)
}
}
}
pub fn push(&mut self, item: Hittable) {
if let Hittable::HittableList { hittables } = self {
hittables.push(item);
}
}
}
#[derive(Copy, Clone, Debug)]
pub enum Material {
Lambertian { albedo: Vec3 },
Metal { albedo: Vec3, fuzz: f32 },
Dielectric { index_refraction: f32 },
}
impl Material {
pub fn scatter(
&self,
ray_in: Ray,
rec: &HitRecord,
attenuation: &mut Vec3,
scattered: &mut Ray,
srng: &mut SmallRng,
) -> bool {
match self {
Material::Lambertian { albedo } => {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
// The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() {
// if near zero,
rec.normal // replace with normal
} else {
scatter_dir // else preserve current
};
//TODO: Revisit this out-parameter pattern
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
// using them at all)
*scattered = Ray {
orig: rec.p,
dir: scatter_dir,
};
*attenuation = *albedo; // deref on both sides? Wacky
true
}
Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(Vec3::as_unit(ray_in.dir), rec.normal);
*scattered = Ray {
orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
};
*attenuation = *albedo;
Vec3::dot(scattered.dir, rec.normal) > 0.0
}
Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ONES;
let refraction_ratio = if rec.front_face {
1.0 / index_refraction
} else {
*index_refraction
};
let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
let direction = if cannot_refract
|| Material::reflectance(cos_theta, refraction_ratio)
> srng.sample(distrib_zero_one)
{
Vec3::reflect(unit_direction, rec.normal)
} else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
};
*scattered = Ray {
orig: rec.p,
dir: direction,
};
true
}
}
}
fn reflectance(cosine: f32, ref_idx: f32) -> f32 {
// Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0;
r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0)
}
}
// Camera
pub fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}
pub struct Camera {
origin: Vec3,
lower_left_corner: Vec3,
horizontal: Vec3,
vertical: Vec3,
u: Vec3,
v: Vec3, /*w: Vec3,*/
lens_radius: f32,
}
impl Camera {
pub fn new(
lookfrom: Vec3,
lookat: Vec3,
vup: Vec3,
vfov: f32,
aspect_ratio: f32,
aperture: f32,
focus_dist: f32,
) -> Camera {
let theta = degrees_to_radians(vfov);
let h = (theta / 2.0).tan();
let vp_height = 2.0 * h;
let vp_width = aspect_ratio * vp_height;
let w = Vec3::as_unit(lookfrom - lookat);
let u = Vec3::as_unit(Vec3::cross(vup, w));
let v = Vec3::cross(w, u);
let orig = lookfrom;
let horiz = u * vp_width * focus_dist;
let verti = v * vp_height * focus_dist;
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
Camera {
origin: orig,
lower_left_corner,
horizontal: horiz,
vertical: verti,
u,
v, /* w,*/
lens_radius: aperture / 2.0,
}
}
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir =
self.lower_left_corner + self.horizontal * s + self.vertical * t - self.origin - offset;
Ray {
orig: self.origin + offset,
dir,
}
}
}
pub struct Scene {
pub camera: Camera,
pub world: Hittable,
}
impl Scene {
pub fn random_world(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian {
albedo: Vec3::new(0.5, 0.5, 0.5),
};
let mut world = Hittable::HittableList {
hittables: Vec::<Hittable>::new(),
};
world.push(Hittable::Sphere {
center: Vec3::new(0.0, -1000.0, 0.0),
radius: 1000.0,
material: mat_ground,
});
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
for a in -11..11 {
for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one);
let center = Vec3 {
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
y: 0.2,
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
};
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 {
// diffuse
let albedo =
Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo };
world.push(Hittable::Sphere {
center,
radius: 0.2,
material: sphere_material,
});
} else if choose_mat < 0.95 {
// metal
let distr_albedo = Uniform::new(0.5, 1.0).unwrap();
let distr_fuzz = Uniform::new(0.0, 0.5).unwrap();
let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz };
world.push(Hittable::Sphere {
center,
radius: 0.2,
material,
});
} else {
// glass
let material = Material::Dielectric {
index_refraction: 1.5,
};
world.push(Hittable::Sphere {
center,
radius: 0.2,
material,
});
};
}
}
}
let material1 = Material::Dielectric {
index_refraction: 1.5,
};
world.push(Hittable::Sphere {
center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0,
material: material1,
});
let material2 = Material::Lambertian {
albedo: Vec3::new(0.4, 0.2, 0.1),
};
world.push(Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0,
material: material2,
});
let material3 = Material::Metal {
albedo: Vec3::new(0.7, 0.6, 0.5),
fuzz: 0.0,
};
world.push(Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0,
material: material3,
});
world
}
}