Files
rustpt/src/material.rs
2023-06-06 18:06:59 -05:00

93 lines
3.3 KiB
Rust

use crate::ray::Ray;
use crate::hittable::HitRecord;
use crate::vec3;
use crate::vec3::Vec3;
use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
#[derive(Copy, Clone, Debug)]
pub enum Material{
Lambertian { albedo: Vec3 },
Metal { albedo:Vec3, fuzz: f32 },
Dielectric { index_refraction: f32 },
}
impl Material {
pub fn scatter(
&self,
ray_in: Ray,
rec: HitRecord,
attenuation: &mut Vec3,
scattered: &mut Ray,
srng: &mut SmallRng,
distrib: Uniform<f32>,
) -> bool {
match self {
Material::Lambertian { albedo } => {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng, distrib);
// The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
rec.normal // replace with normal
} else {
scatter_dir // else preserve current
};
//TODO: Revisit this out-parameter pattern
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
// using them at all)
*scattered = Ray{
orig: rec.p,
dir: scatter_dir
};
*attenuation = *albedo; // deref on both sides? Wacky
return true;
},
Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(
Vec3::as_unit(ray_in.dir),
rec.normal
);
*scattered = Ray{
orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng, distrib) * *fuzz,
};
*attenuation = *albedo;
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
},
Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ones();
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = vec3::min(Vec3::dot(-unit_direction, rec.normal), 1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib) {
Vec3::reflect(unit_direction, rec.normal)
} else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
};
*scattered = Ray {
orig: rec.p,
dir: direction
};
return true;
},
}
}
fn reflectance(cosine: f32, ref_idx: f32) -> f32 {
// Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0;
return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
}
}