Files
rustpt/src/main.rs
Robert Garrett 9873c5596d feat: Output ordering!
As results come from the dispatcher('s return channel) they are pushed
into a vector to be reordered. They're sorted in reverse-order so that
they can be popped from the vector. Upon receipt and buffering of a
scanline, a loop checks the tail of the buffer to see if it's the
next-to-write element. Since the tail is popped off, this loop can run
until this condition is not met.
2023-06-25 12:11:30 -05:00

286 lines
9.7 KiB
Rust

mod vec3;
mod ray;
mod camera;
mod material;
mod hittable;
mod thread_utils;
use crate::vec3::Vec3;
use crate::ray::Ray;
use crate::hittable::Hittable;
use crate::material::Material;
use crate::camera::Camera;
use crate::thread_utils::RenderCommand;
use rand::{Rng, SeedableRng};
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
use std::thread;
fn main() {
// image
let aspect_ratio = 3.0 / 2.0;
let image = (
400,
(400.0 / aspect_ratio) as i32
);
let samples_per_pixel: u32 = 10;
let max_depth = 50;
// random generator
let mut small_rng = SmallRng::seed_from_u64(0);
// world
let world = random_scene(&mut small_rng);
// camera
let lookfrom = Vec3::new(13.0, 2.0, 3.0);
let lookat = Vec3::zero();
let vup = Vec3::new(0.0, 1.0, 0.0);
let dist_to_focus = 10.0;
let aperture = 0.1;
let cam = Camera::new(
lookfrom,
lookat,
vup,
20.0,
aspect_ratio,
aperture,
dist_to_focus
);
// render
// The render loop should now be a job submission mechanism
// Iterate lines, submitting them as tasks to the thread.
println!("P3\n{} {}\n255", image.0, image.1);
let context = RenderContext {
camera: cam,
image,
max_depth,
samples_per_pixel,
world,
};
thread::scope(|s| {
let (mut dispatcher, scanline_receiver) = thread_utils::Dispatcher::new(&small_rng);
s.spawn(move || {
for y in (0..image.1).rev() {
eprintln!("Submitting scanline: {}", y);
let job = RenderCommand::Line { line_num: y, context: context.clone() };
dispatcher.submit_job(job);
}
//TODO: Dispatcher shutdown mechanism
// Just gonna take advantage of the round-robin dispatching to
// get a stop command to each thread
dispatcher.submit_job(RenderCommand::Stop);
dispatcher.submit_job(RenderCommand::Stop);
dispatcher.submit_job(RenderCommand::Stop);
dispatcher.submit_job(RenderCommand::Stop);
// ... also I happen to know there are 4 threads.
});
/*
* Store received results in the segments buffer.
* Some will land before their previous segments and will need to be held
* until the next-to-write arrives.
*
* Elements are sorted in reverse order so that they can be popped from the
* Vec quickly.
*
* The queue is scanned every single time a new item is received. In the
* happy path where the received item is next-up, it'll be buffered, checked
* and then printed. In the case where it isn't, it'll get buffered and
* stick around for more loops. When the next-to-write finally lands, it
* means the n+1 element is up, now. If that element is already in the buffer
* we want to write it out. Hence the loop that scans the whole buffer each
* receive.
*
* TODO: There could be an up-front conditional that checks to see if the
* received item *is* the next-to-write and skip the buffering step.
* But I need to make the concept work at all, first.
*/
let mut raster_segments = Vec::<thread_utils::RenderResult>::new();
let mut sl_output_index = image.1-1; // scanlines count down, start at image height.
while let Ok(scanline) = scanline_receiver.recv() {
eprintln!("Received scanline: {}", scanline.line_num);
raster_segments.push(scanline);
raster_segments.sort_by( |a, b| b.cmp(a) );
loop {
if raster_segments.len() == 0 { break; } // can this ever happen? Not while every
// single element gets pushed to the
// buffer first. With the happy path
// short-circuit noted above, it could.
let last_ind = raster_segments.len() - 1;
if raster_segments[last_ind].line_num == sl_output_index{
let scanline = raster_segments.pop().unwrap();
print_scanline(scanline, samples_per_pixel);
sl_output_index -= 1;
} else {
break;
}
}
}
eprintln!("Size of raster_segments at finish: {}", raster_segments.len());
});
// TODO: Dispatcher shutdown mechanism. Right now, we might technically be leaking threads.
eprintln!("Done!");
}
fn print_scanline(scanline: thread_utils::RenderResult, samples_per_pixel: u32){
eprintln!("Printing scanline num: {}", scanline.line_num);
for color in &scanline.line {
println!("{}", color.print_ppm(samples_per_pixel));
}
}
#[derive (Clone)]
pub struct RenderContext{
image: (i32, i32),
samples_per_pixel: u32,
max_depth: u32,
world: Hittable,
camera: Camera,
}
fn render_line(y: i32, small_rng: &mut SmallRng, context: RenderContext ) -> Vec<Vec3> {
let distrib_zero_one = Uniform::new(0.0, 1.0);
let distrib_plusminus_one = Uniform::new(-1.0, 1.0);
let mut line = Vec::<Vec3>::new();
for x in 0..context.image.0 {
let mut color = Vec3::zero();
for _ in 0..context.samples_per_pixel {
let u = ((x as f32) + small_rng.sample(distrib_zero_one)) / ((context.image.0 - 1) as f32);
let v = ((y as f32) + small_rng.sample(distrib_zero_one)) / ((context.image.1 - 1) as f32);
let ray = context.camera.get_ray(u, v, small_rng);
color+= ray_color(ray, &context.world, context.max_depth, small_rng, distrib_plusminus_one);
}
line.push(color);
}
return line;
}
fn ray_color(r: Ray, world: &Hittable, depth: u32, srng: &mut SmallRng, distrib: Uniform<f32> ) -> Vec3 {
// recursion depth guard
if depth == 0 {
return Vec3::zero();
}
if let Some(rec) = world.hit(r, 0.001, f32::INFINITY){
let mut scattered = Ray {
orig: Vec3::zero(),
dir: Vec3::zero()
};
let mut attenuation = Vec3::zero();
match rec.material {
Some(mat) => {
if mat.scatter(r, rec, &mut attenuation, &mut scattered, srng) {
return attenuation * ray_color(scattered, world, depth-1, srng, distrib);
};
},
None => return Vec3::zero(),
}
}
let unitdir = Vec3::as_unit(r.dir);
let t = 0.5 * (unitdir.y + 1.0);
return Vec3::ones() * (1.0 - t) + Vec3::new(0.5, 0.7, 1.0) * t
}
fn random_scene(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: Some(mat_ground) });
let distrib_zero_one = Uniform::new(0.0, 1.0);
for a in -11..11 {
for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one);
let center = Vec3 {
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
y: 0.2,
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
};
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 {
// diffuse
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: Some(sphere_material),
}
);
} else if choose_mat < 0.95 {
// metal
let distr_albedo = Uniform::new(0.5, 1.0);
let distr_fuzz = Uniform::new(0.0, 0.5);
let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: Some(material),
}
);
} else {
// glass
let material = Material::Dielectric { index_refraction: 1.5 };
world.push(
Hittable::Sphere{
center,
radius: 0.2,
material: Some(material),
}
);
};
}
}
}
let material1 = Material::Dielectric { index_refraction: 1.5 };
world.push( Hittable::Sphere{
center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0,
material: Some(material1)
});
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
world.push( Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0,
material: Some(material2)
});
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
world.push( Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0,
material: Some(material3)
});
return world;
}
pub fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}