168 lines
5.5 KiB
Rust
168 lines
5.5 KiB
Rust
//! Shared mathematical utility functions.
|
|
use std::cmp::max;
|
|
use std::ops::{Add, Mul};
|
|
|
|
use num_traits::MulAdd;
|
|
|
|
#[cfg(any(
|
|
all(
|
|
any(target_arch = "x86", target_arch = "x86_64"),
|
|
target_feature = "fma"
|
|
),
|
|
all(target_arch = "aarch64", target_feature = "neon")
|
|
))]
|
|
#[inline(always)]
|
|
/// Uses fused multiply add when available
|
|
///
|
|
/// It is important not to call it if FMA flag is not turned on,
|
|
/// Rust inserts libc `fmaf` based implementation here if FMA is clearly not available at compile time.
|
|
/// This needs for speed only, one rounding error don't do anything useful here, thus it's blocked when
|
|
/// we can't detect FMA availability at compile time.
|
|
pub(crate) fn multiply_accumulate<
|
|
T: Copy + Mul<T, Output = T> + Add<T, Output = T> + MulAdd<T, Output = T>,
|
|
>(
|
|
acc: T,
|
|
a: T,
|
|
b: T,
|
|
) -> T {
|
|
MulAdd::mul_add(a, b, acc)
|
|
}
|
|
|
|
#[inline(always)]
|
|
#[cfg(not(any(
|
|
all(
|
|
any(target_arch = "x86", target_arch = "x86_64"),
|
|
target_feature = "fma"
|
|
),
|
|
all(target_arch = "aarch64", target_feature = "neon")
|
|
)))]
|
|
pub(crate) fn multiply_accumulate<
|
|
T: Copy + Mul<T, Output = T> + Add<T, Output = T> + MulAdd<T, Output = T>,
|
|
>(
|
|
acc: T,
|
|
a: T,
|
|
b: T,
|
|
) -> T {
|
|
acc + a * b
|
|
}
|
|
|
|
/// Calculates the width and height an image should be resized to.
|
|
/// This preserves aspect ratio, and based on the `fill` parameter
|
|
/// will either fill the dimensions to fit inside the smaller constraint
|
|
/// (will overflow the specified bounds on one axis to preserve
|
|
/// aspect ratio), or will shrink so that both dimensions are
|
|
/// completely contained within the given `width` and `height`,
|
|
/// with empty space on one axis.
|
|
pub(crate) fn resize_dimensions(
|
|
width: u32,
|
|
height: u32,
|
|
nwidth: u32,
|
|
nheight: u32,
|
|
fill: bool,
|
|
) -> (u32, u32) {
|
|
let wratio = f64::from(nwidth) / f64::from(width);
|
|
let hratio = f64::from(nheight) / f64::from(height);
|
|
|
|
let ratio = if fill {
|
|
f64::max(wratio, hratio)
|
|
} else {
|
|
f64::min(wratio, hratio)
|
|
};
|
|
|
|
let nw = max((f64::from(width) * ratio).round() as u64, 1);
|
|
let nh = max((f64::from(height) * ratio).round() as u64, 1);
|
|
|
|
if nw > u64::from(u32::MAX) {
|
|
let ratio = f64::from(u32::MAX) / f64::from(width);
|
|
(u32::MAX, max((f64::from(height) * ratio).round() as u32, 1))
|
|
} else if nh > u64::from(u32::MAX) {
|
|
let ratio = f64::from(u32::MAX) / f64::from(height);
|
|
(max((f64::from(width) * ratio).round() as u32, 1), u32::MAX)
|
|
} else {
|
|
(nw as u32, nh as u32)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
quickcheck! {
|
|
fn resize_bounds_correctly_width(old_w: u32, new_w: u32) -> bool {
|
|
if old_w == 0 || new_w == 0 { return true; }
|
|
// In this case, the scaling is limited by scaling of height.
|
|
// We could check that case separately but it does not conform to the same expectation.
|
|
if u64::from(new_w) * 400u64 >= u64::from(old_w) * u64::from(u32::MAX) { return true; }
|
|
|
|
let result = super::resize_dimensions(old_w, 400, new_w, u32::MAX, false);
|
|
let exact = (400_f64 * f64::from(new_w) / f64::from(old_w)).round() as u32;
|
|
result.0 == new_w && result.1 == exact.max(1)
|
|
}
|
|
}
|
|
|
|
quickcheck! {
|
|
fn resize_bounds_correctly_height(old_h: u32, new_h: u32) -> bool {
|
|
if old_h == 0 || new_h == 0 { return true; }
|
|
// In this case, the scaling is limited by scaling of width.
|
|
// We could check that case separately but it does not conform to the same expectation.
|
|
if 400u64 * u64::from(new_h) >= u64::from(old_h) * u64::from(u32::MAX) { return true; }
|
|
|
|
let result = super::resize_dimensions(400, old_h, u32::MAX, new_h, false);
|
|
let exact = (400_f64 * f64::from(new_h) / f64::from(old_h)).round() as u32;
|
|
result.1 == new_h && result.0 == exact.max(1)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn resize_handles_fill() {
|
|
let result = super::resize_dimensions(100, 200, 200, 500, true);
|
|
assert!(result.0 == 250);
|
|
assert!(result.1 == 500);
|
|
|
|
let result = super::resize_dimensions(200, 100, 500, 200, true);
|
|
assert!(result.0 == 500);
|
|
assert!(result.1 == 250);
|
|
}
|
|
|
|
#[test]
|
|
fn resize_never_rounds_to_zero() {
|
|
let result = super::resize_dimensions(1, 150, 128, 128, false);
|
|
assert!(result.0 > 0);
|
|
assert!(result.1 > 0);
|
|
}
|
|
|
|
#[test]
|
|
fn resize_handles_overflow() {
|
|
let result = super::resize_dimensions(100, u32::MAX, 200, u32::MAX, true);
|
|
assert!(result.0 == 100);
|
|
assert!(result.1 == u32::MAX);
|
|
|
|
let result = super::resize_dimensions(u32::MAX, 100, u32::MAX, 200, true);
|
|
assert!(result.0 == u32::MAX);
|
|
assert!(result.1 == 100);
|
|
}
|
|
|
|
#[test]
|
|
fn resize_rounds() {
|
|
// Only truncation will result in (3840, 2229) and (2160, 3719)
|
|
let result = super::resize_dimensions(4264, 2476, 3840, 2160, true);
|
|
assert_eq!(result, (3840, 2230));
|
|
|
|
let result = super::resize_dimensions(2476, 4264, 2160, 3840, false);
|
|
assert_eq!(result, (2160, 3720));
|
|
}
|
|
|
|
#[test]
|
|
fn resize_handles_zero() {
|
|
let result = super::resize_dimensions(0, 100, 100, 100, false);
|
|
assert_eq!(result, (1, 100));
|
|
|
|
let result = super::resize_dimensions(100, 0, 100, 100, false);
|
|
assert_eq!(result, (100, 1));
|
|
|
|
let result = super::resize_dimensions(100, 100, 0, 100, false);
|
|
assert_eq!(result, (1, 1));
|
|
|
|
let result = super::resize_dimensions(100, 100, 100, 0, false);
|
|
assert_eq!(result, (1, 1));
|
|
}
|
|
}
|