Files
another-boids-in-rust/vendor/image/src/math/utils.rs

168 lines
5.5 KiB
Rust

//! Shared mathematical utility functions.
use std::cmp::max;
use std::ops::{Add, Mul};
use num_traits::MulAdd;
#[cfg(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
))]
#[inline(always)]
/// Uses fused multiply add when available
///
/// It is important not to call it if FMA flag is not turned on,
/// Rust inserts libc `fmaf` based implementation here if FMA is clearly not available at compile time.
/// This needs for speed only, one rounding error don't do anything useful here, thus it's blocked when
/// we can't detect FMA availability at compile time.
pub(crate) fn multiply_accumulate<
T: Copy + Mul<T, Output = T> + Add<T, Output = T> + MulAdd<T, Output = T>,
>(
acc: T,
a: T,
b: T,
) -> T {
MulAdd::mul_add(a, b, acc)
}
#[inline(always)]
#[cfg(not(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
)))]
pub(crate) fn multiply_accumulate<
T: Copy + Mul<T, Output = T> + Add<T, Output = T> + MulAdd<T, Output = T>,
>(
acc: T,
a: T,
b: T,
) -> T {
acc + a * b
}
/// Calculates the width and height an image should be resized to.
/// This preserves aspect ratio, and based on the `fill` parameter
/// will either fill the dimensions to fit inside the smaller constraint
/// (will overflow the specified bounds on one axis to preserve
/// aspect ratio), or will shrink so that both dimensions are
/// completely contained within the given `width` and `height`,
/// with empty space on one axis.
pub(crate) fn resize_dimensions(
width: u32,
height: u32,
nwidth: u32,
nheight: u32,
fill: bool,
) -> (u32, u32) {
let wratio = f64::from(nwidth) / f64::from(width);
let hratio = f64::from(nheight) / f64::from(height);
let ratio = if fill {
f64::max(wratio, hratio)
} else {
f64::min(wratio, hratio)
};
let nw = max((f64::from(width) * ratio).round() as u64, 1);
let nh = max((f64::from(height) * ratio).round() as u64, 1);
if nw > u64::from(u32::MAX) {
let ratio = f64::from(u32::MAX) / f64::from(width);
(u32::MAX, max((f64::from(height) * ratio).round() as u32, 1))
} else if nh > u64::from(u32::MAX) {
let ratio = f64::from(u32::MAX) / f64::from(height);
(max((f64::from(width) * ratio).round() as u32, 1), u32::MAX)
} else {
(nw as u32, nh as u32)
}
}
#[cfg(test)]
mod test {
quickcheck! {
fn resize_bounds_correctly_width(old_w: u32, new_w: u32) -> bool {
if old_w == 0 || new_w == 0 { return true; }
// In this case, the scaling is limited by scaling of height.
// We could check that case separately but it does not conform to the same expectation.
if u64::from(new_w) * 400u64 >= u64::from(old_w) * u64::from(u32::MAX) { return true; }
let result = super::resize_dimensions(old_w, 400, new_w, u32::MAX, false);
let exact = (400_f64 * f64::from(new_w) / f64::from(old_w)).round() as u32;
result.0 == new_w && result.1 == exact.max(1)
}
}
quickcheck! {
fn resize_bounds_correctly_height(old_h: u32, new_h: u32) -> bool {
if old_h == 0 || new_h == 0 { return true; }
// In this case, the scaling is limited by scaling of width.
// We could check that case separately but it does not conform to the same expectation.
if 400u64 * u64::from(new_h) >= u64::from(old_h) * u64::from(u32::MAX) { return true; }
let result = super::resize_dimensions(400, old_h, u32::MAX, new_h, false);
let exact = (400_f64 * f64::from(new_h) / f64::from(old_h)).round() as u32;
result.1 == new_h && result.0 == exact.max(1)
}
}
#[test]
fn resize_handles_fill() {
let result = super::resize_dimensions(100, 200, 200, 500, true);
assert!(result.0 == 250);
assert!(result.1 == 500);
let result = super::resize_dimensions(200, 100, 500, 200, true);
assert!(result.0 == 500);
assert!(result.1 == 250);
}
#[test]
fn resize_never_rounds_to_zero() {
let result = super::resize_dimensions(1, 150, 128, 128, false);
assert!(result.0 > 0);
assert!(result.1 > 0);
}
#[test]
fn resize_handles_overflow() {
let result = super::resize_dimensions(100, u32::MAX, 200, u32::MAX, true);
assert!(result.0 == 100);
assert!(result.1 == u32::MAX);
let result = super::resize_dimensions(u32::MAX, 100, u32::MAX, 200, true);
assert!(result.0 == u32::MAX);
assert!(result.1 == 100);
}
#[test]
fn resize_rounds() {
// Only truncation will result in (3840, 2229) and (2160, 3719)
let result = super::resize_dimensions(4264, 2476, 3840, 2160, true);
assert_eq!(result, (3840, 2230));
let result = super::resize_dimensions(2476, 4264, 2160, 3840, false);
assert_eq!(result, (2160, 3720));
}
#[test]
fn resize_handles_zero() {
let result = super::resize_dimensions(0, 100, 100, 100, false);
assert_eq!(result, (1, 100));
let result = super::resize_dimensions(100, 0, 100, 100, false);
assert_eq!(result, (100, 1));
let result = super::resize_dimensions(100, 100, 0, 100, false);
assert_eq!(result, (1, 1));
let result = super::resize_dimensions(100, 100, 100, 0, false);
assert_eq!(result, (1, 1));
}
}