169 lines
6.7 KiB
Rust
169 lines
6.7 KiB
Rust
/*
|
|
* // Copyright (c) Radzivon Bartoshyk 3/2025. All rights reserved.
|
|
* //
|
|
* // Redistribution and use in source and binary forms, with or without modification,
|
|
* // are permitted provided that the following conditions are met:
|
|
* //
|
|
* // 1. Redistributions of source code must retain the above copyright notice, this
|
|
* // list of conditions and the following disclaimer.
|
|
* //
|
|
* // 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* // this list of conditions and the following disclaimer in the documentation
|
|
* // and/or other materials provided with the distribution.
|
|
* //
|
|
* // 3. Neither the name of the copyright holder nor the names of its
|
|
* // contributors may be used to endorse or promote products derived from
|
|
* // this software without specific prior written permission.
|
|
* //
|
|
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
use crate::conversions::neon::hypercube::HypercubeNeon;
|
|
use crate::conversions::neon::interpolator::NeonVector;
|
|
use crate::{CmsError, DataColorSpace, InterpolationMethod, Stage};
|
|
use std::arch::aarch64::vgetq_lane_f32;
|
|
|
|
pub(crate) struct ACurves4x3Neon<'a, const DEPTH: usize> {
|
|
pub(crate) curve0: Box<[f32; 65536]>,
|
|
pub(crate) curve1: Box<[f32; 65536]>,
|
|
pub(crate) curve2: Box<[f32; 65536]>,
|
|
pub(crate) curve3: Box<[f32; 65536]>,
|
|
pub(crate) clut: &'a [f32],
|
|
pub(crate) grid_size: [u8; 4],
|
|
pub(crate) interpolation_method: InterpolationMethod,
|
|
pub(crate) pcs: DataColorSpace,
|
|
}
|
|
|
|
pub(crate) struct ACurves4x3NeonOptimizedNeon<'a> {
|
|
pub(crate) clut: &'a [f32],
|
|
pub(crate) grid_size: [u8; 4],
|
|
pub(crate) interpolation_method: InterpolationMethod,
|
|
pub(crate) pcs: DataColorSpace,
|
|
}
|
|
|
|
impl<const DEPTH: usize> ACurves4x3Neon<'_, DEPTH> {
|
|
fn transform_impl<Fetch: Fn(f32, f32, f32, f32) -> NeonVector>(
|
|
&self,
|
|
src: &[f32],
|
|
dst: &mut [f32],
|
|
fetch: Fetch,
|
|
) -> Result<(), CmsError> {
|
|
let scale_value = (DEPTH - 1) as f32;
|
|
|
|
assert_eq!(src.len() / 4, dst.len() / 3);
|
|
|
|
for (src, dst) in src.chunks_exact(4).zip(dst.chunks_exact_mut(3)) {
|
|
let a0 = (src[0] * scale_value).round().min(scale_value) as u16;
|
|
let a1 = (src[1] * scale_value).round().min(scale_value) as u16;
|
|
let a2 = (src[2] * scale_value).round().min(scale_value) as u16;
|
|
let a3 = (src[3] * scale_value).round().min(scale_value) as u16;
|
|
let c = self.curve0[a0 as usize];
|
|
let m = self.curve1[a1 as usize];
|
|
let y = self.curve2[a2 as usize];
|
|
let k = self.curve3[a3 as usize];
|
|
|
|
let v = fetch(c, m, y, k).v;
|
|
unsafe {
|
|
dst[0] = vgetq_lane_f32::<0>(v);
|
|
dst[1] = vgetq_lane_f32::<1>(v);
|
|
dst[2] = vgetq_lane_f32::<2>(v);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl ACurves4x3NeonOptimizedNeon<'_> {
|
|
fn transform_impl<Fetch: Fn(f32, f32, f32, f32) -> NeonVector>(
|
|
&self,
|
|
src: &[f32],
|
|
dst: &mut [f32],
|
|
fetch: Fetch,
|
|
) -> Result<(), CmsError> {
|
|
assert_eq!(src.len() / 4, dst.len() / 3);
|
|
|
|
for (src, dst) in src.chunks_exact(4).zip(dst.chunks_exact_mut(3)) {
|
|
let c = src[0];
|
|
let m = src[1];
|
|
let y = src[2];
|
|
let k = src[3];
|
|
|
|
let v = fetch(c, m, y, k).v;
|
|
unsafe {
|
|
dst[0] = vgetq_lane_f32::<0>(v);
|
|
dst[1] = vgetq_lane_f32::<1>(v);
|
|
dst[2] = vgetq_lane_f32::<2>(v);
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl<const DEPTH: usize> Stage for ACurves4x3Neon<'_, DEPTH> {
|
|
fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> {
|
|
let lut = HypercubeNeon::new(self.clut, self.grid_size, 3);
|
|
|
|
// If PCS is LAB then linear interpolation should be used
|
|
if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz {
|
|
return self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w));
|
|
}
|
|
|
|
match self.interpolation_method {
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Tetrahedral => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.tetra_vec3(x, y, z, w))?;
|
|
}
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Pyramid => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.pyramid_vec3(x, y, z, w))?;
|
|
}
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Prism => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.prism_vec3(x, y, z, w))?;
|
|
}
|
|
InterpolationMethod::Linear => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w))?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Stage for ACurves4x3NeonOptimizedNeon<'_> {
|
|
fn transform(&self, src: &[f32], dst: &mut [f32]) -> Result<(), CmsError> {
|
|
let lut = HypercubeNeon::new(self.clut, self.grid_size, 3);
|
|
|
|
// If PCS is LAB then linear interpolation should be used
|
|
if self.pcs == DataColorSpace::Lab || self.pcs == DataColorSpace::Xyz {
|
|
return self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w));
|
|
}
|
|
|
|
match self.interpolation_method {
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Tetrahedral => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.tetra_vec3(x, y, z, w))?;
|
|
}
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Pyramid => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.pyramid_vec3(x, y, z, w))?;
|
|
}
|
|
#[cfg(feature = "options")]
|
|
InterpolationMethod::Prism => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.prism_vec3(x, y, z, w))?;
|
|
}
|
|
InterpolationMethod::Linear => {
|
|
self.transform_impl(src, dst, |x, y, z, w| lut.quadlinear_vec3(x, y, z, w))?;
|
|
}
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|