autoformat the project
This commit is contained in:
37
src/main.rs
37
src/main.rs
@@ -1,37 +1,26 @@
|
||||
|
||||
mod primitives;
|
||||
mod scene;
|
||||
mod renderer;
|
||||
mod scene;
|
||||
|
||||
use crate::primitives::{
|
||||
Vec2i,
|
||||
Vec3,
|
||||
};
|
||||
use crate::scene::{
|
||||
Camera,
|
||||
Scene
|
||||
};
|
||||
use crate::primitives::{Vec2i, Vec3};
|
||||
use crate::scene::{Camera, Scene};
|
||||
|
||||
use crate::renderer::{
|
||||
Tile,
|
||||
RenderProperties,
|
||||
};
|
||||
use crate::renderer::{RenderProperties, Tile};
|
||||
|
||||
use rand::SeedableRng;
|
||||
use rand::rngs::SmallRng;
|
||||
|
||||
|
||||
fn main() {
|
||||
// image
|
||||
let aspect_ratio = 3.0 / 2.0;
|
||||
let image = Vec2i {
|
||||
x: 400,
|
||||
y: (400.0 / aspect_ratio) as i32
|
||||
y: (400.0 / aspect_ratio) as i32,
|
||||
};
|
||||
|
||||
let render_config = RenderProperties {
|
||||
samples: 10,
|
||||
bounces: 50
|
||||
bounces: 50,
|
||||
};
|
||||
|
||||
// random generator
|
||||
@@ -41,20 +30,20 @@ fn main() {
|
||||
let scene = Scene {
|
||||
camera: Camera::new(
|
||||
Vec3::new(13.0, 2.0, 3.0), // lookfrom
|
||||
Vec3::zero(), // lookat
|
||||
Vec3::new(0.0, 1.0, 0.0), // vup
|
||||
Vec3::zero(), // lookat
|
||||
Vec3::new(0.0, 1.0, 0.0), // vup
|
||||
20.0,
|
||||
aspect_ratio,
|
||||
0.1, // aperture
|
||||
aspect_ratio,
|
||||
0.1, // aperture
|
||||
10.0, // dist_to_focus
|
||||
),
|
||||
world: Scene::random_world(&mut small_rng)
|
||||
world: Scene::random_world(&mut small_rng),
|
||||
};
|
||||
|
||||
|
||||
// render
|
||||
// The render loop should now be a job submission mechanism
|
||||
// Iterate lines, submitting them as tasks to the thread.
|
||||
println!("P3\n{} {}\n255", image.x, image.y);
|
||||
println!("P3\n{} {}\n255", image.x, image.y);
|
||||
// TILE BASED RENDERER
|
||||
// let tile = Tile::render_tile(
|
||||
// Rect { x: 0, y: 0, w: image.x, h: image.y },
|
||||
|
||||
@@ -1,106 +1,110 @@
|
||||
|
||||
use std::ops::{
|
||||
Add,
|
||||
AddAssign,
|
||||
Sub,
|
||||
SubAssign,
|
||||
Mul,
|
||||
MulAssign,
|
||||
Div,
|
||||
DivAssign,
|
||||
Neg,
|
||||
};
|
||||
use std::fmt;
|
||||
use std::fmt::Display;
|
||||
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
||||
|
||||
use rand::Rng;
|
||||
use rand::rngs::SmallRng;
|
||||
use rand::distr::Uniform;
|
||||
use rand::rngs::SmallRng;
|
||||
|
||||
pub type Vec2i = Vec2<i32>;
|
||||
pub type Vec2f = Vec2<f32>;
|
||||
|
||||
#[derive (Clone, Copy, PartialEq, PartialOrd, Debug)]
|
||||
pub struct Vec2<T>{
|
||||
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
|
||||
pub struct Vec2<T> {
|
||||
pub x: T,
|
||||
pub y: T,
|
||||
}
|
||||
|
||||
|
||||
impl Vec2<f32> {
|
||||
pub fn zero() -> Vec2<f32> {
|
||||
Vec2{ x: 0.0, y: 0.0 }
|
||||
Vec2 { x: 0.0, y: 0.0 }
|
||||
}
|
||||
|
||||
pub fn ones() -> Vec2<f32> {
|
||||
Vec2{ x: 1.0, y: 1.0 }
|
||||
Vec2 { x: 1.0, y: 1.0 }
|
||||
}
|
||||
|
||||
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> {
|
||||
Vec2 { x: srng.sample(distrib), y: srng.sample(distrib) }
|
||||
Vec2 {
|
||||
x: srng.sample(distrib),
|
||||
y: srng.sample(distrib),
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
impl <T> Vec2<T>
|
||||
where T: std::ops::Mul{
|
||||
impl<T> Vec2<T>
|
||||
where
|
||||
T: std::ops::Mul,
|
||||
{
|
||||
pub fn new(x: T, y: T) -> Vec2<T> {
|
||||
Vec2{x, y}
|
||||
Vec2 { x, y }
|
||||
}
|
||||
}
|
||||
|
||||
impl <T> Add for Vec2 <T>
|
||||
where T: std::ops::Add<Output = T>{
|
||||
impl<T> Add for Vec2<T>
|
||||
where
|
||||
T: std::ops::Add<Output = T>,
|
||||
{
|
||||
type Output = Vec2<T>;
|
||||
fn add(self, other: Vec2<T>) -> Vec2<T> {
|
||||
Vec2 { x: self.x + other.x, y: self.y + other.y }
|
||||
Vec2 {
|
||||
x: self.x + other.x,
|
||||
y: self.y + other.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl <T> Mul for Vec2<T>
|
||||
where T: std::ops::Mul<Output = T>{
|
||||
impl<T> Mul for Vec2<T>
|
||||
where
|
||||
T: std::ops::Mul<Output = T>,
|
||||
{
|
||||
type Output = Vec2<T>;
|
||||
fn mul(self, other: Vec2<T>) -> Vec2<T> {
|
||||
Vec2 {
|
||||
x: self.x * other.x,
|
||||
y: self.y * other.y
|
||||
y: self.y * other.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<f32> for Vec2<f32>{
|
||||
impl Div<f32> for Vec2<f32> {
|
||||
type Output = Vec2<f32>;
|
||||
fn div(self, other: f32) -> Vec2<f32> {
|
||||
Vec2 {
|
||||
x: 1.0/other * self.x,
|
||||
y: 1.0/other * self.y
|
||||
x: 1.0 / other * self.x,
|
||||
y: 1.0 / other * self.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<i32> for Vec2<i32>{
|
||||
impl Div<i32> for Vec2<i32> {
|
||||
type Output = Vec2<i32>;
|
||||
fn div(self, other: i32) -> Vec2<i32> {
|
||||
Vec2 {
|
||||
x: self.x / other,
|
||||
y: self.y / other
|
||||
y: self.y / other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl <T> Div<Vec2<T>> for Vec2<T>
|
||||
where T: std::ops::Div<Output = T>{
|
||||
impl<T> Div<Vec2<T>> for Vec2<T>
|
||||
where
|
||||
T: std::ops::Div<Output = T>,
|
||||
{
|
||||
type Output = Vec2<T>;
|
||||
fn div(self, other: Vec2<T>) -> Vec2<T> {
|
||||
Vec2 {
|
||||
x: self.x / other.x,
|
||||
y: self.y / other.y
|
||||
y: self.y / other.y,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl <T> Display for Vec2<T>
|
||||
where T: Display { // nested type still needs to have Display
|
||||
impl<T> Display for Vec2<T>
|
||||
where
|
||||
T: Display,
|
||||
{
|
||||
// nested type still needs to have Display
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||
let str = format!("{} {}", self.x, self.y);
|
||||
fmt.write_str(&str)
|
||||
@@ -108,35 +112,35 @@ where T: Display { // nested type still needs to have Display
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
|
||||
pub struct Vec3{
|
||||
pub x: f32,
|
||||
pub y: f32,
|
||||
pub z: f32,
|
||||
pub struct Vec3 {
|
||||
pub x: f32,
|
||||
pub y: f32,
|
||||
pub z: f32,
|
||||
}
|
||||
|
||||
impl Vec3{
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Vec3{
|
||||
Vec3{x, y, z}
|
||||
}
|
||||
impl Vec3 {
|
||||
pub fn new(x: f32, y: f32, z: f32) -> Vec3 {
|
||||
Vec3 { x, y, z }
|
||||
}
|
||||
|
||||
pub fn zero() -> Vec3{
|
||||
Vec3{
|
||||
pub fn zero() -> Vec3 {
|
||||
Vec3 {
|
||||
x: 0.0,
|
||||
y: 0.0,
|
||||
z: 0.0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn ones() -> Vec3{
|
||||
pub fn ones() -> Vec3 {
|
||||
Vec3 {
|
||||
x: 1.0,
|
||||
y: 1.0,
|
||||
z: 1.0
|
||||
z: 1.0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
|
||||
Vec3{
|
||||
Vec3 {
|
||||
x: srng.sample(distrib),
|
||||
y: srng.sample(distrib),
|
||||
z: srng.sample(distrib),
|
||||
@@ -147,8 +151,11 @@ impl Vec3{
|
||||
let distrib = Uniform::new(-1.0, 1.0).unwrap();
|
||||
loop {
|
||||
let p = Vec3::rand(srng, distrib);
|
||||
if p.length_squared() >= 1.0 { continue; }
|
||||
else { return p; }
|
||||
if p.length_squared() >= 1.0 {
|
||||
continue;
|
||||
} else {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -160,8 +167,11 @@ impl Vec3{
|
||||
y: srng.sample(distrib.unwrap()),
|
||||
z: 0.0,
|
||||
};
|
||||
if p.length_squared() >= 1.0 { continue; }
|
||||
else { return p; }
|
||||
if p.length_squared() >= 1.0 {
|
||||
continue;
|
||||
} else {
|
||||
return p;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -169,42 +179,38 @@ impl Vec3{
|
||||
return Vec3::as_unit(Vec3::rand_in_unit_sphere(srng));
|
||||
}
|
||||
|
||||
pub fn length(&self) -> f32 {
|
||||
self.length_squared().sqrt()
|
||||
}
|
||||
pub fn length(&self) -> f32 {
|
||||
self.length_squared().sqrt()
|
||||
}
|
||||
|
||||
pub fn length_squared(&self) -> f32 {
|
||||
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
|
||||
}
|
||||
|
||||
pub fn length_squared(&self) -> f32 {
|
||||
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
|
||||
}
|
||||
|
||||
// roughly equivalent to the `void write_color(...)` in the book
|
||||
pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
|
||||
|
||||
let scale = 1.0 / samples_per_pixel as f32;
|
||||
|
||||
|
||||
// now with gamma correction
|
||||
let r = (self.x * scale).sqrt();
|
||||
let g = (self.y * scale).sqrt();
|
||||
let b = (self.z * scale).sqrt();
|
||||
|
||||
let ir = (r.clamp( 0.0, 0.999) * 256.0) as i32;
|
||||
let ig = (g.clamp( 0.0, 0.999) * 256.0) as i32;
|
||||
let ib = (b.clamp( 0.0, 0.999) * 256.0) as i32;
|
||||
|
||||
let ir = (r.clamp(0.0, 0.999) * 256.0) as i32;
|
||||
let ig = (g.clamp(0.0, 0.999) * 256.0) as i32;
|
||||
let ib = (b.clamp(0.0, 0.999) * 256.0) as i32;
|
||||
format!("{} {} {}", ir, ig, ib)
|
||||
}
|
||||
|
||||
|
||||
pub fn near_zero(&self) -> bool {
|
||||
let epsilon: f32 = 1e-4;
|
||||
return
|
||||
self.x.abs() < epsilon &&
|
||||
self.y.abs() < epsilon &&
|
||||
self.z.abs() < epsilon
|
||||
return self.x.abs() < epsilon && self.y.abs() < epsilon && self.z.abs() < epsilon;
|
||||
}
|
||||
|
||||
|
||||
pub fn reflect(v: Vec3, n: Vec3) -> Vec3 {
|
||||
return v - n * Vec3::dot(v, n) * 2.0;
|
||||
}
|
||||
|
||||
|
||||
pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 {
|
||||
let cos_theta = Vec3::dot(-uv, n).min(1.0);
|
||||
let r_out_perp = (uv + n * cos_theta) * etai_over_etat;
|
||||
@@ -212,156 +218,153 @@ impl Vec3{
|
||||
r_out_perp + r_out_parallel
|
||||
}
|
||||
|
||||
pub fn dot(left: Vec3, right: Vec3) -> f32{
|
||||
left.x * right.x +
|
||||
left.y * right.y +
|
||||
left.z * right.z
|
||||
pub fn dot(left: Vec3, right: Vec3) -> f32 {
|
||||
left.x * right.x + left.y * right.y + left.z * right.z
|
||||
}
|
||||
|
||||
pub fn cross(u: Vec3, v: Vec3) -> Vec3{
|
||||
Vec3{
|
||||
|
||||
pub fn cross(u: Vec3, v: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: u.y * v.z - u.z * v.y,
|
||||
y: u.z * v.x - u.x * v.z,
|
||||
z: u.x * v.y - u.y * v.x
|
||||
z: u.x * v.y - u.y * v.x,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn as_unit(v: Vec3) -> Vec3 {
|
||||
let len = v.length();
|
||||
v / len
|
||||
}
|
||||
|
||||
}
|
||||
impl Add for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn add(self, other: Vec3) -> Vec3 {
|
||||
Vec3{
|
||||
x: self.x + other.x,
|
||||
y: self.y + other.y,
|
||||
z: self.z + other.z,
|
||||
}
|
||||
}
|
||||
type Output = Vec3;
|
||||
fn add(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x + other.x,
|
||||
y: self.y + other.y,
|
||||
z: self.z + other.z,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for Vec3 {
|
||||
fn add_assign(&mut self, other: Vec3){
|
||||
*self = Self {
|
||||
x: self.x + other.x,
|
||||
y: self.y + other.y,
|
||||
z: self.z + other.z
|
||||
};
|
||||
}
|
||||
fn add_assign(&mut self, other: Vec3) {
|
||||
*self = Self {
|
||||
x: self.x + other.x,
|
||||
y: self.y + other.y,
|
||||
z: self.z + other.z,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn sub(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x - other.x,
|
||||
y: self.y - other.y,
|
||||
z: self.z - other.z,
|
||||
}
|
||||
}
|
||||
type Output = Vec3;
|
||||
fn sub(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x - other.x,
|
||||
y: self.y - other.y,
|
||||
z: self.z - other.z,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for Vec3 {
|
||||
fn sub_assign(&mut self, other: Vec3){
|
||||
*self = Self {
|
||||
x: self.x - other.x,
|
||||
y: self.y - other.y,
|
||||
z: self.z - other.z
|
||||
};
|
||||
}
|
||||
fn sub_assign(&mut self, other: Vec3) {
|
||||
*self = Self {
|
||||
x: self.x - other.x,
|
||||
y: self.y - other.y,
|
||||
z: self.z - other.z,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<Vec3> for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn mul(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x * other.x,
|
||||
y: self.y * other.y,
|
||||
z: self.z * other.z,
|
||||
}
|
||||
}
|
||||
type Output = Vec3;
|
||||
fn mul(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x * other.x,
|
||||
y: self.y * other.y,
|
||||
z: self.z * other.z,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul<f32> for Vec3{
|
||||
type Output = Vec3;
|
||||
fn mul(self, other: f32) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x * other,
|
||||
y: self.y * other,
|
||||
z: self.z * other,
|
||||
}
|
||||
}
|
||||
impl Mul<f32> for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn mul(self, other: f32) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x * other,
|
||||
y: self.y * other,
|
||||
z: self.z * other,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign<Vec3> for Vec3 {
|
||||
fn mul_assign(&mut self, other: Vec3){
|
||||
*self = Self {
|
||||
x: self.x * other.x,
|
||||
y: self.y * other.y,
|
||||
z: self.z * other.z
|
||||
};
|
||||
}
|
||||
fn mul_assign(&mut self, other: Vec3) {
|
||||
*self = Self {
|
||||
x: self.x * other.x,
|
||||
y: self.y * other.y,
|
||||
z: self.z * other.z,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign<f32> for Vec3{
|
||||
fn mul_assign(&mut self, other: f32){
|
||||
*self = Self {
|
||||
x: self.x * other,
|
||||
y: self.y * other,
|
||||
z: self.z * other
|
||||
};
|
||||
}
|
||||
impl MulAssign<f32> for Vec3 {
|
||||
fn mul_assign(&mut self, other: f32) {
|
||||
*self = Self {
|
||||
x: self.x * other,
|
||||
y: self.y * other,
|
||||
z: self.z * other,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<Vec3> for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn div(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x / other.x,
|
||||
y: self.y / other.y,
|
||||
z: self.z / other.z,
|
||||
}
|
||||
}
|
||||
type Output = Vec3;
|
||||
fn div(self, other: Vec3) -> Vec3 {
|
||||
Vec3 {
|
||||
x: self.x / other.x,
|
||||
y: self.y / other.y,
|
||||
z: self.z / other.z,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Div<f32> for Vec3 {
|
||||
type Output = Vec3;
|
||||
fn div(self, other: f32) -> Vec3 {
|
||||
Vec3 {
|
||||
x: 1.0/other * self.x,
|
||||
y: 1.0/other * self.y,
|
||||
z: 1.0/other * self.z,
|
||||
}
|
||||
}
|
||||
type Output = Vec3;
|
||||
fn div(self, other: f32) -> Vec3 {
|
||||
Vec3 {
|
||||
x: 1.0 / other * self.x,
|
||||
y: 1.0 / other * self.y,
|
||||
z: 1.0 / other * self.z,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign<Vec3> for Vec3 {
|
||||
fn div_assign(&mut self, other: Vec3){
|
||||
*self = Self {
|
||||
x: self.x / other.x,
|
||||
y: self.y / other.y,
|
||||
z: self.z / other.z
|
||||
};
|
||||
}
|
||||
fn div_assign(&mut self, other: Vec3) {
|
||||
*self = Self {
|
||||
x: self.x / other.x,
|
||||
y: self.y / other.y,
|
||||
z: self.z / other.z,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign<f32> for Vec3 {
|
||||
fn div_assign(&mut self, other: f32){
|
||||
*self = Self {
|
||||
x: self.x / other,
|
||||
y: self.y / other,
|
||||
z: self.z / other
|
||||
};
|
||||
}
|
||||
fn div_assign(&mut self, other: f32) {
|
||||
*self = Self {
|
||||
x: self.x / other,
|
||||
y: self.y / other,
|
||||
z: self.z / other,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Vec3{
|
||||
impl Neg for Vec3 {
|
||||
type Output = Self;
|
||||
fn neg(self) -> Self::Output {
|
||||
Vec3{
|
||||
Vec3 {
|
||||
x: -self.x,
|
||||
y: -self.y,
|
||||
z: -self.z,
|
||||
@@ -370,27 +373,26 @@ impl Neg for Vec3{
|
||||
}
|
||||
|
||||
impl Display for Vec3 {
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||
let str = format!("{} {} {}", self.x, self.y, self.z);
|
||||
fmt.write_str(&str)?;
|
||||
Ok(())
|
||||
|
||||
}
|
||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||
let str = format!("{} {} {}", self.x, self.y, self.z);
|
||||
fmt.write_str(&str)?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Ray{
|
||||
pub struct Ray {
|
||||
pub orig: Vec3,
|
||||
pub dir: Vec3,
|
||||
}
|
||||
|
||||
impl Ray{
|
||||
impl Ray {
|
||||
pub fn at(&self, t: f32) -> Vec3 {
|
||||
self.orig + self.dir*t
|
||||
self.orig + self.dir * t
|
||||
}
|
||||
}
|
||||
|
||||
#[derive (Copy, Clone)]
|
||||
#[derive(Copy, Clone)]
|
||||
pub struct Rect {
|
||||
pub x: i32,
|
||||
pub y: i32,
|
||||
@@ -398,11 +400,11 @@ pub struct Rect {
|
||||
pub h: i32,
|
||||
}
|
||||
|
||||
impl Rect{
|
||||
impl Rect {
|
||||
pub fn pos(&self) -> Vec2i {
|
||||
Vec2i {
|
||||
x: self.x,
|
||||
y: self.y,
|
||||
y: self.y,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -415,188 +417,188 @@ impl Rect{
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test{
|
||||
mod test {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_add(){
|
||||
fn test_add() {
|
||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(1.0, 1.0, 1.0);
|
||||
|
||||
assert_eq!( v1+v2, expected );
|
||||
assert_eq!(v1 + v2, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_add_assign(){
|
||||
fn test_add_assign() {
|
||||
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
let expected = Vec3::new(1.0, 1.0, 1.0);
|
||||
|
||||
v1+=v2;
|
||||
assert_eq!( v1, expected );
|
||||
v1 += v2;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sub(){
|
||||
fn test_sub() {
|
||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(1.0, 1.0, -1.0);
|
||||
|
||||
assert_eq!( v1-v2, expected );
|
||||
assert_eq!(v1 - v2, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sub_assign(){
|
||||
fn test_sub_assign() {
|
||||
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
let expected = Vec3::new(-1.0, 1.0, 1.0);
|
||||
|
||||
v1-=v2;
|
||||
assert_eq!( v1, expected );
|
||||
v1 -= v2;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul_vec(){
|
||||
fn test_mul_vec() {
|
||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(0.1, 1.0, 0.7);
|
||||
|
||||
assert_eq!( v1*v2, expected );
|
||||
assert_eq!(v1 * v2, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul_float(){
|
||||
fn test_mul_float() {
|
||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let f1 = 0.5;
|
||||
|
||||
let expected = Vec3::new(0.05, 0.25, 0.35);
|
||||
|
||||
assert_eq!( v1*f1, expected );
|
||||
assert_eq!(v1 * f1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul_vec_assign(){
|
||||
fn test_mul_vec_assign() {
|
||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(0.1, 1.0, 0.7);
|
||||
|
||||
v1*=v2;
|
||||
assert_eq!( v1, expected );
|
||||
v1 *= v2;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul_float_assign(){
|
||||
fn test_mul_float_assign() {
|
||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let f1 = 0.5;
|
||||
|
||||
let expected = Vec3::new(0.05, 0.25, 0.35);
|
||||
|
||||
v1*=f1;
|
||||
assert_eq!( v1, expected );
|
||||
|
||||
v1 *= f1;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_vec(){
|
||||
fn test_div_vec() {
|
||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let v2 = Vec3::new(0.5, 2.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(0.2, 0.25, 0.7);
|
||||
|
||||
assert_eq!( v1/v2, expected );
|
||||
assert_eq!(v1 / v2, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_float(){
|
||||
fn test_div_float() {
|
||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let f1 = 0.5;
|
||||
|
||||
let expected = Vec3::new(0.2, 1.0, 1.4);
|
||||
|
||||
assert_eq!( v1/f1, expected );
|
||||
assert_eq!(v1 / f1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_vec_assign(){
|
||||
fn test_div_vec_assign() {
|
||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||
|
||||
let expected = Vec3::new(0.1, 0.25, 0.7);
|
||||
|
||||
v1/=v2;
|
||||
assert_eq!( v1, expected );
|
||||
v1 /= v2;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div_float_assign(){
|
||||
fn test_div_float_assign() {
|
||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||
let f1 = 0.5;
|
||||
|
||||
let expected = Vec3::new(0.2, 1., 1.4);
|
||||
|
||||
v1/=f1;
|
||||
assert_eq!( v1, expected );
|
||||
|
||||
v1 /= f1;
|
||||
assert_eq!(v1, expected);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_length_squared(){
|
||||
fn test_length_squared() {
|
||||
let v = Vec3::new(2.0, 0.0, 2.0);
|
||||
let len = v.length_squared();
|
||||
assert_eq!(len, 8.0);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_length(){
|
||||
fn test_length() {
|
||||
let v = Vec3::new(3.0, 4.0, 0.0);
|
||||
let len = v.length();
|
||||
assert_eq!(len, 5.0)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dot_perpendicular(){
|
||||
fn test_dot_perpendicular() {
|
||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||
assert_eq!(Vec3::dot(v1, v2), 0.0);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_dot_parallel(){
|
||||
fn test_dot_parallel() {
|
||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||
assert_eq!(Vec3::dot(v1, v2), 1.0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dot_acute(){
|
||||
fn test_dot_acute() {
|
||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||
let v2 = Vec3::new(0.5, 1.0, 0.0);
|
||||
assert_eq!(Vec3::dot(v1, v2), 1.5);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_dot_obtuse(){
|
||||
fn test_dot_obtuse() {
|
||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||
let v2 = Vec3::new(0.5, -1.0, 0.0);
|
||||
assert_eq!(Vec3::dot(v1, v2), -0.5);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_cross_perpendicular(){
|
||||
fn test_cross_perpendicular() {
|
||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||
|
||||
let expected = Vec3::new(0.0, 0.0, 1.0);
|
||||
assert_eq!(Vec3::cross(v1, v2), expected);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_cross_parallel(){
|
||||
fn test_cross_parallel() {
|
||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
@@ -606,7 +608,7 @@ mod test{
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_cross_111(){
|
||||
fn test_cross_111() {
|
||||
let v1 = Vec3::new(1.0, 1.0, 1.0);
|
||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||
|
||||
@@ -616,32 +618,32 @@ mod test{
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_unit_shorten(){
|
||||
fn test_unit_shorten() {
|
||||
let v = Vec3::new(2.0, 0.0, 0.0);
|
||||
let expected = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
|
||||
assert_eq!(Vec3::as_unit(v), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_unit_lengthen(){
|
||||
fn test_unit_lengthen() {
|
||||
let v = Vec3::new(0.5, 0.0, 0.0);
|
||||
let expected = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
|
||||
assert_eq!(Vec3::as_unit(v), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_unit_111(){
|
||||
fn test_unit_111() {
|
||||
let v = Vec3::new(1.0, 1.0, 1.0);
|
||||
let expected = Vec3::new(0.577350269,0.577350269,0.577350269);
|
||||
let expected = Vec3::new(0.577350269, 0.577350269, 0.577350269);
|
||||
|
||||
assert!(Vec3::as_unit(v) <= expected * 1.001); // within very small under-estimate
|
||||
assert!(Vec3::as_unit(v) >= expected * 0.999); // within very small over-estimate
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_reflect_flat(){
|
||||
fn test_reflect_flat() {
|
||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||
let normal = Vec3::new(-1.0, 0.0, 0.0);
|
||||
|
||||
@@ -649,24 +651,22 @@ mod test{
|
||||
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
||||
assert!(refl == expected);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_reflect_flat_back(){
|
||||
fn test_reflect_flat_back() {
|
||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||
let normal = Vec3::new(1.0, 0.0, 0.0);
|
||||
|
||||
let refl = Vec3::reflect(ray, normal);
|
||||
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
||||
assert!(refl == expected);
|
||||
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_reflect_45(){
|
||||
fn test_reflect_45() {
|
||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||
let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0));
|
||||
|
||||
|
||||
let refl = Vec3::reflect(ray, normal);
|
||||
let expected = Vec3::new(0.0, 1.0, 0.0);
|
||||
let diff = refl - expected;
|
||||
@@ -675,15 +675,12 @@ mod test{
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn check_lerp(){
|
||||
let ray = Ray{
|
||||
fn check_lerp() {
|
||||
let ray = Ray {
|
||||
orig: Vec3::new(0.0, 0.0, 0.0),
|
||||
dir: Vec3::new(1.0, 1.0, 0.0)
|
||||
dir: Vec3::new(1.0, 1.0, 0.0),
|
||||
};
|
||||
let half = ray.at(0.5);
|
||||
assert_eq!(
|
||||
half,
|
||||
Vec3::new(0.5, 0.5, 0.0)
|
||||
);
|
||||
assert_eq!(half, Vec3::new(0.5, 0.5, 0.0));
|
||||
}
|
||||
}
|
||||
|
||||
105
src/renderer.rs
105
src/renderer.rs
@@ -1,21 +1,15 @@
|
||||
|
||||
use crate::primitives::{
|
||||
Vec2i,
|
||||
Vec2f,
|
||||
Vec3,
|
||||
Ray,
|
||||
Rect,
|
||||
};
|
||||
use crate::scene::{
|
||||
Hittable,
|
||||
Scene,
|
||||
};
|
||||
use crate::primitives::{Ray, Rect, Vec2f, Vec2i, Vec3};
|
||||
use crate::scene::{Hittable, Scene};
|
||||
|
||||
use rand::rngs::SmallRng;
|
||||
|
||||
use itertools::{self, Itertools};
|
||||
|
||||
const SKY_COLOR: Vec3 = Vec3 { x: 0.5, y: 0.7, z: 1.0};
|
||||
const SKY_COLOR: Vec3 = Vec3 {
|
||||
x: 0.5,
|
||||
y: 0.7,
|
||||
z: 1.0,
|
||||
};
|
||||
|
||||
pub struct RenderProperties {
|
||||
pub samples: u32, // samples are averaged results over a pixel
|
||||
@@ -28,65 +22,54 @@ fn to_uv(coord: Vec2i, img_size: Vec2i) -> Vec2f {
|
||||
Vec2f::new(u, v)
|
||||
}
|
||||
|
||||
fn ray_color(
|
||||
r: Ray, surface: &Hittable, depth: u32,
|
||||
rng: &mut SmallRng,
|
||||
) -> Vec3 {
|
||||
fn ray_color(r: Ray, surface: &Hittable, depth: u32, rng: &mut SmallRng) -> Vec3 {
|
||||
// recursion guard
|
||||
if depth == 0 {
|
||||
return Vec3::zero();
|
||||
}
|
||||
|
||||
|
||||
// cast a ray, interrogate hit record
|
||||
if let Some(record) = surface.hit(r, 0.001, f32::INFINITY){
|
||||
if let Some(record) = surface.hit(r, 0.001, f32::INFINITY) {
|
||||
let mut scattered = Ray {
|
||||
orig: Vec3::zero(),
|
||||
dir: Vec3::zero(),
|
||||
};
|
||||
let mut attenuation = Vec3::zero();
|
||||
if record.material.scatter(
|
||||
r,
|
||||
&record,
|
||||
&mut attenuation,
|
||||
&mut scattered,
|
||||
rng
|
||||
) {
|
||||
return attenuation * ray_color(
|
||||
scattered, surface, depth-1, rng
|
||||
);
|
||||
if record
|
||||
.material
|
||||
.scatter(r, &record, &mut attenuation, &mut scattered, rng)
|
||||
{
|
||||
return attenuation * ray_color(scattered, surface, depth - 1, rng);
|
||||
}
|
||||
} // TODO: explicit else block
|
||||
// Rust gets angry about the inner if{} block because it evaluates to ()
|
||||
// when the else path is taken. This is a problem for a function
|
||||
// that returns Vec3 and not ().
|
||||
|
||||
{ // when nothing is struck, return sky color
|
||||
{
|
||||
// when nothing is struck, return sky color
|
||||
let unitdir = Vec3::as_unit(r.dir);
|
||||
let t = 0.5 * (unitdir.y + 1.0);
|
||||
return Vec3::ones() * (1.0 - t) + SKY_COLOR * t
|
||||
return Vec3::ones() * (1.0 - t) + SKY_COLOR * t;
|
||||
}
|
||||
}
|
||||
|
||||
fn sample_pixel(
|
||||
coord: Vec2i, // location in image/screen space
|
||||
scene: &Scene, // scene we're drawing
|
||||
coord: Vec2i, // location in image/screen space
|
||||
scene: &Scene, // scene we're drawing
|
||||
render_props: &RenderProperties,
|
||||
img_size: Vec2i,
|
||||
// Supplied by the execution environment (the thread)
|
||||
rng: &mut SmallRng,
|
||||
) -> Vec3{
|
||||
(0..render_props.samples)
|
||||
.fold(
|
||||
Vec3::zero(),
|
||||
|color, _sample| -> Vec3 {
|
||||
let uv = to_uv(coord, img_size);
|
||||
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
|
||||
if ray.dir.x.is_nan() {
|
||||
panic!("Ray dir.x is NAN");
|
||||
}
|
||||
color + ray_color(ray, &scene.world, render_props.bounces, rng)
|
||||
) -> Vec3 {
|
||||
(0..render_props.samples).fold(Vec3::zero(), |color, _sample| -> Vec3 {
|
||||
let uv = to_uv(coord, img_size);
|
||||
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
|
||||
if ray.dir.x.is_nan() {
|
||||
panic!("Ray dir.x is NAN");
|
||||
}
|
||||
)
|
||||
color + ray_color(ray, &scene.world, render_props.bounces, rng)
|
||||
})
|
||||
}
|
||||
|
||||
pub struct Tile {
|
||||
@@ -96,28 +79,31 @@ pub struct Tile {
|
||||
|
||||
impl Tile {
|
||||
pub fn render_tile(
|
||||
bounds: Rect, // bounds of the region to render
|
||||
img_size: Vec2i, // final image resolution (needed for proper UV mapping)
|
||||
bounds: Rect, // bounds of the region to render
|
||||
img_size: Vec2i, // final image resolution (needed for proper UV mapping)
|
||||
scene: &Scene,
|
||||
properties: &RenderProperties, // TODO: Place image size in render properties?
|
||||
rng: &mut SmallRng,
|
||||
) -> Self {
|
||||
let pixel_iter = (bounds.y..(bounds.y + bounds.h))
|
||||
.cartesian_product( bounds.x..(bounds.x + bounds.w));
|
||||
let pixels = pixel_iter.map(
|
||||
|coord| -> Vec3 {
|
||||
let pixel_iter =
|
||||
(bounds.y..(bounds.y + bounds.h)).cartesian_product(bounds.x..(bounds.x + bounds.w));
|
||||
let pixels = pixel_iter
|
||||
.map(|coord| -> Vec3 {
|
||||
sample_pixel(
|
||||
Vec2i{x: coord.1, y: coord.0},
|
||||
Vec2i {
|
||||
x: coord.1,
|
||||
y: coord.0,
|
||||
},
|
||||
scene,
|
||||
properties,
|
||||
img_size,
|
||||
rng,
|
||||
)
|
||||
}
|
||||
).collect();
|
||||
})
|
||||
.collect();
|
||||
Self {
|
||||
_bounds: bounds,
|
||||
pixels
|
||||
pixels,
|
||||
}
|
||||
}
|
||||
pub fn render_line(
|
||||
@@ -128,11 +114,16 @@ impl Tile {
|
||||
rng: &mut SmallRng, // rng utils
|
||||
) -> Self {
|
||||
Tile::render_tile(
|
||||
Rect{ x: 0, y, w: img_size.x, h: 1 },
|
||||
Rect {
|
||||
x: 0,
|
||||
y,
|
||||
w: img_size.x,
|
||||
h: 1,
|
||||
},
|
||||
img_size,
|
||||
scene,
|
||||
properties,
|
||||
rng
|
||||
rng,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
205
src/scene.rs
205
src/scene.rs
@@ -1,11 +1,10 @@
|
||||
|
||||
use crate::primitives::{Vec3, Ray};
|
||||
use crate::primitives::{Ray, Vec3};
|
||||
|
||||
use rand::Rng;
|
||||
use rand::rngs::SmallRng;
|
||||
use rand::distr::Uniform;
|
||||
use rand::rngs::SmallRng;
|
||||
|
||||
pub struct HitRecord{
|
||||
pub struct HitRecord {
|
||||
pub p: Vec3,
|
||||
pub normal: Vec3,
|
||||
pub material: Material,
|
||||
@@ -13,40 +12,53 @@ pub struct HitRecord{
|
||||
pub front_face: bool,
|
||||
}
|
||||
|
||||
impl HitRecord{
|
||||
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
|
||||
impl HitRecord {
|
||||
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> () {
|
||||
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
|
||||
self.normal = if self.front_face { outward_normal } else { -outward_normal };
|
||||
self.normal = if self.front_face {
|
||||
outward_normal
|
||||
} else {
|
||||
-outward_normal
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
#[derive (Clone)]
|
||||
#[derive(Clone)]
|
||||
pub enum Hittable {
|
||||
Sphere { center: Vec3, radius: f32, material: Material },
|
||||
HittableList { hittables: Vec<Hittable> }
|
||||
Sphere {
|
||||
center: Vec3,
|
||||
radius: f32,
|
||||
material: Material,
|
||||
},
|
||||
HittableList {
|
||||
hittables: Vec<Hittable>,
|
||||
},
|
||||
}
|
||||
|
||||
impl Hittable {
|
||||
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
|
||||
match self {
|
||||
Hittable::HittableList { hittables } => {
|
||||
hittables.iter()
|
||||
.map( |obj| -> Option<HitRecord> {
|
||||
obj.hit(r, t_min, t_max)
|
||||
}).filter(|obj| obj.is_some())
|
||||
Hittable::HittableList { hittables } => hittables
|
||||
.iter()
|
||||
.map(|obj| -> Option<HitRecord> { obj.hit(r, t_min, t_max) })
|
||||
.filter(|obj| obj.is_some())
|
||||
.min_by(|lhs, rhs| {
|
||||
let lhs = lhs.as_ref().unwrap();
|
||||
let rhs = rhs.as_ref().unwrap();
|
||||
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
|
||||
}).unwrap_or(None)
|
||||
}
|
||||
})
|
||||
.unwrap_or(None),
|
||||
|
||||
Hittable::Sphere { center, radius, material } => {
|
||||
Hittable::Sphere {
|
||||
center,
|
||||
radius,
|
||||
material,
|
||||
} => {
|
||||
let oc = r.orig - *center;
|
||||
let a = r.dir.length_squared();
|
||||
let half_b = Vec3::dot(oc, r.dir);
|
||||
let c = oc.length_squared() - radius * radius;
|
||||
let discriminant = half_b*half_b - a*c;
|
||||
let discriminant = half_b * half_b - a * c;
|
||||
|
||||
if discriminant < 0.0 {
|
||||
return None;
|
||||
@@ -61,7 +73,7 @@ impl Hittable {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
let mut record = HitRecord{
|
||||
let mut record = HitRecord {
|
||||
p: r.at(root),
|
||||
normal: (r.at(root) - *center) / *radius,
|
||||
material: *material,
|
||||
@@ -81,11 +93,10 @@ impl Hittable {
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum Material{
|
||||
pub enum Material {
|
||||
Lambertian { albedo: Vec3 },
|
||||
Metal { albedo:Vec3, fuzz: f32 },
|
||||
Metal { albedo: Vec3, fuzz: f32 },
|
||||
Dielectric { index_refraction: f32 },
|
||||
}
|
||||
|
||||
@@ -103,55 +114,60 @@ impl Material {
|
||||
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
|
||||
// The compiler might be smart enough to compute this ^^^ just once. In which case,
|
||||
// I don't need to do this weird dance. Oh well. It'll work.
|
||||
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
|
||||
rec.normal // replace with normal
|
||||
let scatter_dir = if scatter_dir.near_zero() {
|
||||
// if near zero,
|
||||
rec.normal // replace with normal
|
||||
} else {
|
||||
scatter_dir // else preserve current
|
||||
scatter_dir // else preserve current
|
||||
};
|
||||
|
||||
//TODO: Revisit this out-parameter pattern
|
||||
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
|
||||
// using them at all)
|
||||
*scattered = Ray{
|
||||
*scattered = Ray {
|
||||
orig: rec.p,
|
||||
dir: scatter_dir
|
||||
dir: scatter_dir,
|
||||
};
|
||||
*attenuation = *albedo; // deref on both sides? Wacky
|
||||
return true;
|
||||
},
|
||||
}
|
||||
Material::Metal { albedo, fuzz } => {
|
||||
let reflected = Vec3::reflect(
|
||||
Vec3::as_unit(ray_in.dir),
|
||||
rec.normal
|
||||
);
|
||||
*scattered = Ray{
|
||||
let reflected = Vec3::reflect(Vec3::as_unit(ray_in.dir), rec.normal);
|
||||
*scattered = Ray {
|
||||
orig: rec.p,
|
||||
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
|
||||
};
|
||||
*attenuation = *albedo;
|
||||
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
|
||||
},
|
||||
}
|
||||
Material::Dielectric { index_refraction } => {
|
||||
*attenuation = Vec3::ones();
|
||||
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
|
||||
|
||||
let refraction_ratio = if rec.front_face {
|
||||
1.0 / index_refraction
|
||||
} else {
|
||||
*index_refraction
|
||||
};
|
||||
|
||||
let unit_direction = Vec3::as_unit(ray_in.dir);
|
||||
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
|
||||
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
|
||||
|
||||
let cannot_refract = refraction_ratio * sin_theta > 1.0;
|
||||
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
|
||||
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
|
||||
let direction = if cannot_refract
|
||||
|| Material::reflectance(cos_theta, refraction_ratio)
|
||||
> srng.sample(distrib_zero_one)
|
||||
{
|
||||
Vec3::reflect(unit_direction, rec.normal)
|
||||
} else {
|
||||
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
|
||||
};
|
||||
*scattered = Ray {
|
||||
orig: rec.p,
|
||||
dir: direction
|
||||
dir: direction,
|
||||
};
|
||||
return true;
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -174,7 +190,8 @@ pub struct Camera {
|
||||
lower_left_corner: Vec3,
|
||||
horizontal: Vec3,
|
||||
vertical: Vec3,
|
||||
u: Vec3, v: Vec3, /*w: Vec3,*/
|
||||
u: Vec3,
|
||||
v: Vec3, /*w: Vec3,*/
|
||||
lens_radius: f32,
|
||||
}
|
||||
|
||||
@@ -186,7 +203,7 @@ impl Camera {
|
||||
vfov: f32,
|
||||
aspect_ratio: f32,
|
||||
aperture: f32,
|
||||
focus_dist: f32
|
||||
focus_dist: f32,
|
||||
) -> Camera {
|
||||
let theta = degrees_to_radians(vfov);
|
||||
let h = (theta / 2.0).tan();
|
||||
@@ -202,12 +219,13 @@ impl Camera {
|
||||
let verti = v * vp_height * focus_dist;
|
||||
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
|
||||
|
||||
Camera{
|
||||
Camera {
|
||||
origin: orig,
|
||||
lower_left_corner,
|
||||
horizontal: horiz,
|
||||
vertical: verti,
|
||||
u, v, /* w,*/
|
||||
u,
|
||||
v, /* w,*/
|
||||
lens_radius: aperture / 2.0,
|
||||
}
|
||||
}
|
||||
@@ -216,18 +234,15 @@ impl Camera {
|
||||
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
|
||||
let offset = self.u * rd.x + self.v * rd.y;
|
||||
|
||||
let dir = self.lower_left_corner
|
||||
+ self.horizontal * s
|
||||
+ self.vertical * t
|
||||
- self.origin - offset;
|
||||
Ray{
|
||||
let dir =
|
||||
self.lower_left_corner + self.horizontal * s + self.vertical * t - self.origin - offset;
|
||||
Ray {
|
||||
orig: self.origin + offset,
|
||||
dir,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub struct Scene {
|
||||
pub camera: Camera,
|
||||
pub world: Hittable,
|
||||
@@ -235,11 +250,19 @@ pub struct Scene {
|
||||
|
||||
impl Scene {
|
||||
pub fn random_world(srng: &mut SmallRng) -> Hittable {
|
||||
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
|
||||
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
|
||||
|
||||
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: mat_ground });
|
||||
|
||||
let mat_ground = Material::Lambertian {
|
||||
albedo: Vec3::new(0.5, 0.5, 0.5),
|
||||
};
|
||||
let mut world = Hittable::HittableList {
|
||||
hittables: Vec::<Hittable>::new(),
|
||||
};
|
||||
|
||||
world.push(Hittable::Sphere {
|
||||
center: Vec3::new(0.0, -1000.0, 0.0),
|
||||
radius: 1000.0,
|
||||
material: mat_ground,
|
||||
});
|
||||
|
||||
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
|
||||
for a in -11..11 {
|
||||
for b in -11..11 {
|
||||
@@ -250,18 +273,16 @@ impl Scene {
|
||||
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
|
||||
};
|
||||
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
|
||||
|
||||
if choose_mat < 0.8 {
|
||||
// diffuse
|
||||
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
|
||||
let albedo =
|
||||
Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
|
||||
let sphere_material = Material::Lambertian { albedo };
|
||||
world.push(
|
||||
Hittable::Sphere {
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: sphere_material,
|
||||
}
|
||||
);
|
||||
world.push(Hittable::Sphere {
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: sphere_material,
|
||||
});
|
||||
} else if choose_mat < 0.95 {
|
||||
// metal
|
||||
let distr_albedo = Uniform::new(0.5, 1.0).unwrap();
|
||||
@@ -270,49 +291,53 @@ impl Scene {
|
||||
let albedo = Vec3::rand(srng, distr_albedo);
|
||||
let fuzz = srng.sample(distr_fuzz);
|
||||
let material = Material::Metal { albedo, fuzz };
|
||||
world.push(
|
||||
Hittable::Sphere {
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: material,
|
||||
}
|
||||
);
|
||||
world.push(Hittable::Sphere {
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: material,
|
||||
});
|
||||
} else {
|
||||
// glass
|
||||
let material = Material::Dielectric { index_refraction: 1.5 };
|
||||
world.push(
|
||||
Hittable::Sphere{
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: material,
|
||||
}
|
||||
);
|
||||
|
||||
let material = Material::Dielectric {
|
||||
index_refraction: 1.5,
|
||||
};
|
||||
world.push(Hittable::Sphere {
|
||||
center,
|
||||
radius: 0.2,
|
||||
material: material,
|
||||
});
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let material1 = Material::Dielectric { index_refraction: 1.5 };
|
||||
world.push( Hittable::Sphere{
|
||||
let material1 = Material::Dielectric {
|
||||
index_refraction: 1.5,
|
||||
};
|
||||
world.push(Hittable::Sphere {
|
||||
center: Vec3::new(0.0, 1.0, 0.0),
|
||||
radius: 1.0,
|
||||
material: material1
|
||||
material: material1,
|
||||
});
|
||||
|
||||
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
|
||||
world.push( Hittable::Sphere {
|
||||
let material2 = Material::Lambertian {
|
||||
albedo: Vec3::new(0.4, 0.2, 0.1),
|
||||
};
|
||||
world.push(Hittable::Sphere {
|
||||
center: Vec3::new(-4.0, 1.0, 0.0),
|
||||
radius: 1.0,
|
||||
material: material2
|
||||
material: material2,
|
||||
});
|
||||
|
||||
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
|
||||
world.push( Hittable::Sphere {
|
||||
let material3 = Material::Metal {
|
||||
albedo: Vec3::new(0.7, 0.6, 0.5),
|
||||
fuzz: 0.0,
|
||||
};
|
||||
world.push(Hittable::Sphere {
|
||||
center: Vec3::new(4.0, 1.0, 0.0),
|
||||
radius: 1.0,
|
||||
material: material3
|
||||
material: material3,
|
||||
});
|
||||
world
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user