Gathered up the scene components

After nearly a month of not touching the project, I've finally finished
collecting the scene parts. :l

With that, the rearrange is complete. On to the next thing!
This commit is contained in:
2023-09-17 12:16:33 -05:00
parent 76233f82a4
commit 4ce43e12af
6 changed files with 249 additions and 252 deletions

View File

@@ -1,64 +0,0 @@
use crate::primitives::{Vec3, Ray};
use crate::degrees_to_radians;
use rand::rngs::SmallRng;
#[derive (Clone, Copy)]
pub struct Camera {
origin: Vec3,
lower_left_corner: Vec3,
horizontal: Vec3,
vertical: Vec3,
u: Vec3, v: Vec3, /*w: Vec3,*/
lens_radius: f32,
}
impl Camera {
pub fn new(
lookfrom: Vec3,
lookat: Vec3,
vup: Vec3,
vfov: f32,
aspect_ratio: f32,
aperture: f32,
focus_dist: f32
) -> Camera {
let theta = degrees_to_radians(vfov);
let h = (theta / 2.0).tan();
let vp_height = 2.0 * h;
let vp_width = aspect_ratio * vp_height;
let w = Vec3::as_unit(lookfrom - lookat);
let u = Vec3::as_unit(Vec3::cross(vup, w));
let v = Vec3::cross(w, u);
let orig = lookfrom;
let horiz = u * vp_width * focus_dist;
let verti = v * vp_height * focus_dist;
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
Camera{
origin: orig,
lower_left_corner,
horizontal: horiz,
vertical: verti,
u, v, /* w,*/
lens_radius: aperture / 2.0,
}
}
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir = self.lower_left_corner
+ self.horizontal * s
+ self.vertical * t
- self.origin - offset;
Ray{
orig: self.origin + offset,
dir,
}
}
}

View File

@@ -1,89 +0,0 @@
use crate::primitives::{Vec3, Ray};
use crate::material::Material;
pub struct HitRecord{
pub p: Vec3,
pub normal: Vec3,
pub material: Option<Material>,
pub t: f32,
pub front_face: bool,
}
impl HitRecord{
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face { outward_normal } else { -outward_normal };
}
}
#[derive (Clone)]
pub enum Hittable {
Sphere { center: Vec3, radius: f32, material: Option<Material> },
HittableList { hittables: Vec<Hittable> }
}
impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self {
Hittable::HittableList { hittables } => {
let mut might_return = HitRecord {
p: Vec3::zero(),
normal: Vec3::zero(),
material: None,
t: t_max,
front_face: false,
};
let mut hit_anything = false;
for item in hittables {
if let Some(record) = item.hit(r, t_min, might_return.t){
hit_anything = true;
might_return = record;
}
}
if hit_anything{
return Some(might_return);
} else { return None; }
}
Hittable::Sphere { center, radius, material } => {
let oc = r.orig - *center;
let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir);
let c = oc.length_squared() - radius * radius;
let discriminant = half_b*half_b - a*c;
if discriminant < 0.0 {
return None;
}
let sqrtd = discriminant.sqrt();
// nearest root that lies within tolerance
let mut root = (-half_b - sqrtd) / a;
if root < t_min || root > t_max {
root = (-half_b + sqrtd) / a;
if root < t_min || root > t_max {
return None;
}
}
let mut record = HitRecord{
p: r.at(root),
normal: (r.at(root) - *center) / *radius,
material: *material,
t: root,
front_face: false,
};
let outward_normal = (record.p - *center) / *radius;
record.set_face_normal(r, outward_normal);
Some(record)
}
}
}
pub fn push(&mut self, item: Hittable) {
if let Hittable::HittableList { hittables } = self {
hittables.push(item);
}
}
}

View File

@@ -1,14 +1,14 @@
mod primitives;
mod camera;
mod material;
mod hittable;
mod renderer;
mod scene;
use crate::primitives::Vec3;
use crate::hittable::Hittable;
use crate::material::Material;
use crate::camera::Camera;
use crate::scene::{
Camera,
Hittable,
Material,
};
use crate::renderer::RenderCommand;
use rand::{Rng, SeedableRng};
@@ -213,7 +213,4 @@ fn random_scene(srng: &mut SmallRng) -> Hittable {
return world;
}
pub fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}

View File

@@ -1,88 +0,0 @@
use crate::primitives::{Vec3, Ray};
use crate::hittable::HitRecord;
use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
#[derive(Copy, Clone, Debug)]
pub enum Material{
Lambertian { albedo: Vec3 },
Metal { albedo:Vec3, fuzz: f32 },
Dielectric { index_refraction: f32 },
}
impl Material {
pub fn scatter(
&self,
ray_in: Ray,
rec: HitRecord,
attenuation: &mut Vec3,
scattered: &mut Ray,
srng: &mut SmallRng,
) -> bool {
match self {
Material::Lambertian { albedo } => {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
// The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
rec.normal // replace with normal
} else {
scatter_dir // else preserve current
};
//TODO: Revisit this out-parameter pattern
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
// using them at all)
*scattered = Ray{
orig: rec.p,
dir: scatter_dir
};
*attenuation = *albedo; // deref on both sides? Wacky
return true;
},
Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(
Vec3::as_unit(ray_in.dir),
rec.normal
);
*scattered = Ray{
orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
};
*attenuation = *albedo;
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
},
Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ones();
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let distrib_zero_one = Uniform::new(0.0, 1.0);
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
Vec3::reflect(unit_direction, rec.normal)
} else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
};
*scattered = Ray {
orig: rec.p,
dir: direction
};
return true;
},
}
}
fn reflectance(cosine: f32, ref_idx: f32) -> f32 {
// Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0;
return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
}
}

View File

@@ -1,7 +1,9 @@
use crate::primitives::{Vec3, Ray, Rect};
use crate::camera::Camera;
use crate::hittable::Hittable;
use crate::scene::{
Camera,
Hittable,
};
use core::cmp::Ordering;
use std::thread;

239
src/scene.rs Normal file
View File

@@ -0,0 +1,239 @@
use crate::primitives::{Vec3, Ray};
use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub struct HitRecord{
pub p: Vec3,
pub normal: Vec3,
pub material: Option<Material>,
pub t: f32,
pub front_face: bool,
}
impl HitRecord{
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
self.normal = if self.front_face { outward_normal } else { -outward_normal };
}
}
#[derive (Clone)]
pub enum Hittable {
Sphere { center: Vec3, radius: f32, material: Option<Material> },
HittableList { hittables: Vec<Hittable> }
}
impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self {
Hittable::HittableList { hittables } => {
let mut might_return = HitRecord {
p: Vec3::zero(),
normal: Vec3::zero(),
material: None,
t: t_max,
front_face: false,
};
let mut hit_anything = false;
for item in hittables {
if let Some(record) = item.hit(r, t_min, might_return.t){
hit_anything = true;
might_return = record;
}
}
if hit_anything{
return Some(might_return);
} else { return None; }
}
Hittable::Sphere { center, radius, material } => {
let oc = r.orig - *center;
let a = r.dir.length_squared();
let half_b = Vec3::dot(oc, r.dir);
let c = oc.length_squared() - radius * radius;
let discriminant = half_b*half_b - a*c;
if discriminant < 0.0 {
return None;
}
let sqrtd = discriminant.sqrt();
// nearest root that lies within tolerance
let mut root = (-half_b - sqrtd) / a;
if root < t_min || root > t_max {
root = (-half_b + sqrtd) / a;
if root < t_min || root > t_max {
return None;
}
}
let mut record = HitRecord{
p: r.at(root),
normal: (r.at(root) - *center) / *radius,
material: *material,
t: root,
front_face: false,
};
let outward_normal = (record.p - *center) / *radius;
record.set_face_normal(r, outward_normal);
Some(record)
}
}
}
pub fn push(&mut self, item: Hittable) {
if let Hittable::HittableList { hittables } = self {
hittables.push(item);
}
}
}
#[derive(Copy, Clone, Debug)]
pub enum Material{
Lambertian { albedo: Vec3 },
Metal { albedo:Vec3, fuzz: f32 },
Dielectric { index_refraction: f32 },
}
impl Material {
pub fn scatter(
&self,
ray_in: Ray,
rec: HitRecord,
attenuation: &mut Vec3,
scattered: &mut Ray,
srng: &mut SmallRng,
) -> bool {
match self {
Material::Lambertian { albedo } => {
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
// The compiler might be smart enough to compute this ^^^ just once. In which case,
// I don't need to do this weird dance. Oh well. It'll work.
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
rec.normal // replace with normal
} else {
scatter_dir // else preserve current
};
//TODO: Revisit this out-parameter pattern
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
// using them at all)
*scattered = Ray{
orig: rec.p,
dir: scatter_dir
};
*attenuation = *albedo; // deref on both sides? Wacky
return true;
},
Material::Metal { albedo, fuzz } => {
let reflected = Vec3::reflect(
Vec3::as_unit(ray_in.dir),
rec.normal
);
*scattered = Ray{
orig: rec.p,
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
};
*attenuation = *albedo;
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
},
Material::Dielectric { index_refraction } => {
*attenuation = Vec3::ones();
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
let unit_direction = Vec3::as_unit(ray_in.dir);
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
let cannot_refract = refraction_ratio * sin_theta > 1.0;
let distrib_zero_one = Uniform::new(0.0, 1.0);
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
Vec3::reflect(unit_direction, rec.normal)
} else {
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
};
*scattered = Ray {
orig: rec.p,
dir: direction
};
return true;
},
}
}
fn reflectance(cosine: f32, ref_idx: f32) -> f32 {
// Schlick's approximation for reflectance.
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
let r0 = r0 * r0;
return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
}
}
// Camera
pub fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}
#[derive (Clone, Copy)]
pub struct Camera {
origin: Vec3,
lower_left_corner: Vec3,
horizontal: Vec3,
vertical: Vec3,
u: Vec3, v: Vec3, /*w: Vec3,*/
lens_radius: f32,
}
impl Camera {
pub fn new(
lookfrom: Vec3,
lookat: Vec3,
vup: Vec3,
vfov: f32,
aspect_ratio: f32,
aperture: f32,
focus_dist: f32
) -> Camera {
let theta = degrees_to_radians(vfov);
let h = (theta / 2.0).tan();
let vp_height = 2.0 * h;
let vp_width = aspect_ratio * vp_height;
let w = Vec3::as_unit(lookfrom - lookat);
let u = Vec3::as_unit(Vec3::cross(vup, w));
let v = Vec3::cross(w, u);
let orig = lookfrom;
let horiz = u * vp_width * focus_dist;
let verti = v * vp_height * focus_dist;
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
Camera{
origin: orig,
lower_left_corner,
horizontal: horiz,
vertical: verti,
u, v, /* w,*/
lens_radius: aperture / 2.0,
}
}
pub fn get_ray(&self, s: f32, t: f32, srng: &mut SmallRng) -> Ray {
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
let offset = self.u * rd.x + self.v * rd.y;
let dir = self.lower_left_corner
+ self.horizontal * s
+ self.vertical * t
- self.origin - offset;
Ray{
orig: self.origin + offset,
dir,
}
}
}