Files
another-boids-in-rust/vendor/pxfm/src/acos.rs

350 lines
11 KiB
Rust

/*
* // Copyright (c) Radzivon Bartoshyk 6/2025. All rights reserved.
* //
* // Redistribution and use in source and binary forms, with or without modification,
* // are permitted provided that the following conditions are met:
* //
* // 1. Redistributions of source code must retain the above copyright notice, this
* // list of conditions and the following disclaimer.
* //
* // 2. Redistributions in binary form must reproduce the above copyright notice,
* // this list of conditions and the following disclaimer in the documentation
* // and/or other materials provided with the distribution.
* //
* // 3. Neither the name of the copyright holder nor the names of its
* // contributors may be used to endorse or promote products derived from
* // this software without specific prior written permission.
* //
* // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
use crate::acospi::PI_OVER_TWO_F128;
use crate::asin::asin_eval;
use crate::asin_eval_dyadic::asin_eval_dyadic;
use crate::common::f_fmla;
use crate::double_double::DoubleDouble;
use crate::dyadic_float::{DyadicFloat128, DyadicSign};
use crate::round::RoundFinite;
/// Computes acos(x)
///
/// Max found ULP 0.5
pub fn f_acos(x: f64) -> f64 {
let x_e = (x.to_bits() >> 52) & 0x7ff;
const E_BIAS: u64 = (1u64 << (11 - 1u64)) - 1u64;
const PI_OVER_TWO: DoubleDouble = DoubleDouble::new(
f64::from_bits(0x3c91a62633145c07),
f64::from_bits(0x3ff921fb54442d18),
);
let x_abs = f64::from_bits(x.to_bits() & 0x7fff_ffff_ffff_ffff);
// |x| < 0.5.
if x_e < E_BIAS - 1 {
// |x| < 2^-55.
if x_e < E_BIAS - 55 {
// When |x| < 2^-55, acos(x) = pi/2
return (x_abs + f64::from_bits(0x35f0000000000000)) + PI_OVER_TWO.hi;
}
let x_sq = DoubleDouble::from_exact_mult(x, x);
let err = x_abs * f64::from_bits(0x3cc0000000000000);
// Polynomial approximation:
// p ~ asin(x)/x
let (p, err) = asin_eval(x_sq, err);
// asin(x) ~ x * p
let r0 = DoubleDouble::from_exact_mult(x, p.hi);
// acos(x) = pi/2 - asin(x)
// ~ pi/2 - x * p
// = pi/2 - x * (p.hi + p.lo)
let r_hi = f_fmla(-x, p.hi, PI_OVER_TWO.hi);
// Use Dekker's 2SUM algorithm to compute the lower part.
let mut r_lo = ((PI_OVER_TWO.hi - r_hi) - r0.hi) - r0.lo;
r_lo = f_fmla(-x, p.lo, r_lo + PI_OVER_TWO.lo);
let r_upper = r_hi + (r_lo + err);
let r_lower = r_hi + (r_lo - err);
if r_upper == r_lower {
return r_upper;
}
return acos_less_0p5_hard(x, x_sq);
}
// |x| >= 0.5
let x_sign = if x.is_sign_negative() { -1.0 } else { 1.0 };
const PI: DoubleDouble = DoubleDouble::new(
f64::from_bits(0x3ca1a62633145c07),
f64::from_bits(0x400921fb54442d18),
);
// |x| >= 1
if x_e >= E_BIAS {
// x = +-1, asin(x) = +- pi/2
if x_abs == 1.0 {
// x = 1, acos(x) = 0,
// x = -1, acos(x) = pi
return if x == 1.0 {
0.0
} else {
f_fmla(-x_sign, PI.hi, PI.lo)
};
}
// |x| > 1, return NaN.
return f64::NAN;
}
// When |x| >= 0.5, we perform range reduction as follow:
//
// When 0.5 <= x < 1, let:
// y = acos(x)
// We will use the double angle formula:
// cos(2y) = 1 - 2 sin^2(y)
// and the complement angle identity:
// x = cos(y) = 1 - 2 sin^2 (y/2)
// So:
// sin(y/2) = sqrt( (1 - x)/2 )
// And hence:
// y/2 = asin( sqrt( (1 - x)/2 ) )
// Equivalently:
// acos(x) = y = 2 * asin( sqrt( (1 - x)/2 ) )
// Let u = (1 - x)/2, then:
// acos(x) = 2 * asin( sqrt(u) )
// Moreover, since 0.5 <= x < 1:
// 0 < u <= 1/4, and 0 < sqrt(u) <= 0.5,
// And hence we can reuse the same polynomial approximation of asin(x) when
// |x| <= 0.5:
// acos(x) ~ 2 * sqrt(u) * P(u).
//
// When -1 < x <= -0.5, we reduce to the previous case using the formula:
// acos(x) = pi - acos(-x)
// = pi - 2 * asin ( sqrt( (1 + x)/2 ) )
// ~ pi - 2 * sqrt(u) * P(u),
// where u = (1 - |x|)/2.
// u = (1 - |x|)/2
let u = f_fmla(x_abs, -0.5, 0.5);
// v_hi + v_lo ~ sqrt(u).
// Let:
// h = u - v_hi^2 = (sqrt(u) - v_hi) * (sqrt(u) + v_hi)
// Then:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// ~ v_hi + h / (2 * v_hi)
// So we can use:
// v_lo = h / (2 * v_hi).
let v_hi = u.sqrt();
let h;
#[cfg(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
))]
{
h = f_fmla(v_hi, -v_hi, u);
}
#[cfg(not(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
)))]
{
let v_hi_sq = DoubleDouble::from_exact_mult(v_hi, v_hi);
h = (u - v_hi_sq.hi) - v_hi_sq.lo;
}
// Scale v_lo and v_hi by 2 from the formula:
// vh = v_hi * 2
// vl = 2*v_lo = h / v_hi.
let vh = v_hi * 2.0;
let vl = h / v_hi;
// Polynomial approximation:
// p ~ asin(sqrt(u))/sqrt(u)
let err = vh * f64::from_bits(0x3cc0000000000000);
let (p, err) = asin_eval(DoubleDouble::new(0.0, u), err);
// Perform computations in double-double arithmetic:
// asin(x) = pi/2 - (v_hi + v_lo) * (ASIN_COEFFS[idx][0] + p)
let r0 = DoubleDouble::quick_mult(DoubleDouble::new(vl, vh), p);
let r_hi;
let r_lo;
if x.is_sign_positive() {
r_hi = r0.hi;
r_lo = r0.lo;
} else {
let r = DoubleDouble::from_exact_add(PI.hi, -r0.hi);
r_hi = r.hi;
r_lo = (PI.lo - r0.lo) + r.lo;
}
let r_upper = r_hi + (r_lo + err);
let r_lower = r_hi + (r_lo - err);
if r_upper == r_lower {
return r_upper;
}
acos_hard(x, u, v_hi, h, vh, vl)
}
#[cold]
#[inline(never)]
fn acos_hard(x: f64, u: f64, v_hi: f64, h: f64, vh: f64, vl: f64) -> f64 {
// Ziv's accuracy test failed, we redo the computations in Float128.
// Recalculate mod 1/64.
let idx = (u * f64::from_bits(0x4050000000000000)).round_finite() as usize;
// After the first step of Newton-Raphson approximating v = sqrt(u), we have
// that:
// sqrt(u) = v_hi + h / (sqrt(u) + v_hi)
// v_lo = h / (2 * v_hi)
// With error:
// sqrt(u) - (v_hi + v_lo) = h * ( 1/(sqrt(u) + v_hi) - 1/(2*v_hi) )
// = -h^2 / (2*v * (sqrt(u) + v)^2).
// Since:
// (sqrt(u) + v_hi)^2 ~ (2sqrt(u))^2 = 4u,
// we can add another correction term to (v_hi + v_lo) that is:
// v_ll = -h^2 / (2*v_hi * 4u)
// = -v_lo * (h / 4u)
// = -vl * (h / 8u),
// making the errors:
// sqrt(u) - (v_hi + v_lo + v_ll) = O(h^3)
// well beyond 128-bit precision needed.
// Get the rounding error of vl = 2 * v_lo ~ h / vh
// Get full product of vh * vl
let vl_lo;
#[cfg(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
))]
{
vl_lo = f_fmla(-v_hi, vl, h) / v_hi;
}
#[cfg(not(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
)))]
{
let vh_vl = DoubleDouble::from_exact_mult(v_hi, vl);
vl_lo = ((h - vh_vl.hi) - vh_vl.lo) / v_hi;
}
let t = h * (-0.25) / u;
let vll = f_fmla(vl, t, vl_lo);
let m_v_p = DyadicFloat128::new_from_f64(vl) + DyadicFloat128::new_from_f64(vll);
let mut m_v = DyadicFloat128::new_from_f64(vh) + m_v_p;
m_v.sign = if x.is_sign_negative() {
DyadicSign::Neg
} else {
DyadicSign::Pos
};
// Perform computations in Float128:
// acos(x) = (v_hi + v_lo + vll) * P(u) , when 0.5 <= x < 1,
// = pi - (v_hi + v_lo + vll) * P(u) , when -1 < x <= -0.5.
let y_f128 =
DyadicFloat128::new_from_f64(f_fmla(idx as f64, f64::from_bits(0xbf90000000000000), u));
let p_f128 = asin_eval_dyadic(y_f128, idx);
let mut r_f128 = m_v * p_f128;
if x.is_sign_negative() {
const PI_F128: DyadicFloat128 = DyadicFloat128 {
sign: DyadicSign::Pos,
exponent: -126,
mantissa: 0xc90fdaa2_2168c234_c4c6628b_80dc1cd1_u128,
};
r_f128 = PI_F128 + r_f128;
}
r_f128.fast_as_f64()
}
#[cold]
#[inline(never)]
fn acos_less_0p5_hard(x: f64, x_sq: DoubleDouble) -> f64 {
// Ziv's accuracy test failed, perform 128-bit calculation.
// Recalculate mod 1/64.
let idx = (x_sq.hi * f64::from_bits(0x4050000000000000)).round_finite() as usize;
// Get x^2 - idx/64 exactly. When FMA is available, double-double
// multiplication will be correct for all rounding modes. Otherwise, we use
// Float128 directly.
let mut x_f128 = DyadicFloat128::new_from_f64(x);
let u: DyadicFloat128;
#[cfg(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
))]
{
// u = x^2 - idx/64
let u_hi = DyadicFloat128::new_from_f64(f_fmla(
idx as f64,
f64::from_bits(0xbf90000000000000),
x_sq.hi,
));
u = u_hi.quick_add(&DyadicFloat128::new_from_f64(x_sq.lo));
}
#[cfg(not(any(
all(
any(target_arch = "x86", target_arch = "x86_64"),
target_feature = "fma"
),
all(target_arch = "aarch64", target_feature = "neon")
)))]
{
let x_sq_f128 = x_f128.quick_mul(&x_f128);
u = x_sq_f128.quick_add(&DyadicFloat128::new_from_f64(
idx as f64 * f64::from_bits(0xbf90000000000000),
));
}
let p_f128 = asin_eval_dyadic(u, idx);
// Flip the sign of x_f128 to perform subtraction.
x_f128.sign = x_f128.sign.negate();
let r = PI_OVER_TWO_F128.quick_add(&x_f128.quick_mul(&p_f128));
r.fast_as_f64()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn f_acos_test() {
assert_eq!(f_acos(0.7), 0.7953988301841436);
assert_eq!(f_acos(-0.1), 1.6709637479564565);
assert_eq!(f_acos(-0.4), 1.9823131728623846);
}
}