Compare commits

...

9 Commits

Author SHA1 Message Date
a701b9407b Line renderer in terms of tile renderer
Done and done.
2023-09-25 11:25:42 -07:00
72f154510f Proper tile rendering
The Tile can now render a region of height > 1px!

I'm gonna rewrite the render_line() function to operate in terms of the
render_tile() function. A line is, after all, just a tile of height 1px.
2023-09-25 11:19:33 -07:00
3250f8e580 Hook up the new renderer
The threading code is gone, now. We're back to just having a single
loop to drive the whole thing.

Along with this, I realized that the Distrs container thing wasn't
actually being used. It's a real pain to cart it around, and very few
things actually use it.

TODO: Reinstate the small wiggle done by the uv mapping routine. This
version no longer nudges the coordinate, so I expect there to be some
small visual differences.
2023-09-25 10:50:47 -07:00
f03c6280a7 Renderer 2, now with 100% less threading tools
I've rewritten the renderer to see if I can make a better model the
second time around. I was having a rough time untangling parts and
refactoring it piece-by-piece.

Next is to hook up the new rendering parts into a single-threaded
build. Once the parts work again, I can look into thread pooling
machinery.
2023-09-25 08:20:27 -07:00
60b4407573 New Scene struct
The scene is more than just a list of hittables. It's any and all
hittables (so the list, yeah), and also the camera(s!) in the world.

This doens't compile, however. More work will need to be done to
untangle the other things that could previously see these scattered
components.
2023-09-23 14:40:34 -07:00
7c43c3fb82 Rewrite hittable list hit method using iter magic
The loop can go away completely and be replaced with an iterator. Yay
for Rust iterators!
2023-09-23 13:26:42 -07:00
4be7ba54bb Relocate world generation function 2023-09-23 13:07:40 -07:00
515f5b866a Fix: hit record selection mechanism
Because of the mutable record being used in the loop, the previous
version had a somewhat obscured way to track the nearest collision.

Switching to an optional (so I can have a non-optional Material in it)
means I'm not interrogating that value.... So it gets to be explicit
again.

I'll refactor the entire for-loop into an iterator with the min()
adapter at some point. For now: Material lifetimes!
2023-09-23 09:27:21 -07:00
bdc396accf Material references... but bad ordering
It looks like I messed up the preference for the HitRecords. The
geometry bounces correctly, but the record that sticks is not
necessarily the one closest to the camera.
2023-09-22 18:21:12 -07:00
5 changed files with 366 additions and 455 deletions

BIN
hitrecord_misordering.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 MiB

View File

@@ -1,41 +1,45 @@
mod primitives;
mod renderer;
mod scene;
mod renderer;
use crate::primitives::Vec3;
use crate::primitives::{
Vec2i,
Vec3,
};
use crate::scene::{
Camera,
Hittable,
Material,
Scene
};
use crate::renderer::RenderCommand;
use rand::{Rng, SeedableRng};
use crate::renderer::{
Tile,
RenderProperties,
};
use rand::SeedableRng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
use std::thread;
fn main() {
// image
let aspect_ratio = 3.0 / 2.0;
let image = (
1920,
(1920.0 / aspect_ratio) as i32
);
let samples_per_pixel: u32 = 10;
let max_depth = 50;
let image = Vec2i {
x: 400,
y: (400.0 / aspect_ratio) as i32
};
let render_config = RenderProperties {
samples: 10,
bounces: 50
};
// random generator
let mut small_rng = SmallRng::seed_from_u64(0);
// world
let world = random_scene(&mut small_rng);
// camera
let cam = Camera::new(
// Scene (now includes camera)
let scene = Scene {
camera: Camera::new(
Vec3::new(13.0, 2.0, 3.0), // lookfrom
Vec3::zero(), // lookat
Vec3::new(0.0, 1.0, 0.0), // vup
@@ -43,174 +47,33 @@ fn main() {
aspect_ratio,
0.1, // aperture
10.0, // dist_to_focus
);
),
world: Scene::random_world(&mut small_rng)
};
// render
// The render loop should now be a job submission mechanism
// Iterate lines, submitting them as tasks to the thread.
println!("P3\n{} {}\n255", image.0, image.1);
let context = renderer::RenderContext {
camera: cam,
image,
max_depth,
samples_per_pixel,
world,
};
println!("P3\n{} {}\n255", image.x, image.y);
// TILE BASED RENDERER
// let tile = Tile::render_tile(
// Rect { x: 0, y: 0, w: image.x, h: image.y },
// image,
// &scene,
// &render_config,
// &mut small_rng
// );
// for pixel in tile.pixels.iter().rev() {
// println!("{}", pixel.print_ppm(render_config.samples));
// }
thread::scope(|s| {
let (mut dispatcher, scanline_receiver) = renderer::Dispatcher::new(&small_rng, 12);
s.spawn(move || {
for y in (0..image.1).rev() {
eprintln!("Submitting scanline: {}", y);
let job = RenderCommand::Line { line_num: y, context: context.clone() };
dispatcher.submit_job(job).unwrap();
}
dispatcher.submit_job(RenderCommand::Stop).unwrap();
// ... also I happen to know there are 4 threads.
});
/*
* Store received results in the segments buffer.
* Some will land before their previous segments and will need to be held
* until the next-to-write arrives.
*
* Elements are sorted in reverse order so that they can be popped from the
* Vec quickly.
*
* The queue is scanned every single time a new item is received. In the
* happy path where the received item is next-up, it'll be buffered, checked
* and then printed. In the case where it isn't, it'll get buffered and
* stick around for more loops. When the next-to-write finally lands, it
* means the n+1 element is up, now. If that element is already in the buffer
* we want to write it out. Hence the loop that scans the whole buffer each
* receive.
*
* TODO: There could be an up-front conditional that checks to see if the
* received item *is* the next-to-write and skip the buffering step.
* But I need to make the concept work at all, first.
*/
let mut raster_segments = Vec::<renderer::RenderResult>::new();
let mut sl_output_index = image.1-1; // scanlines count down, start at image height.
while let Ok(scanline) = scanline_receiver.recv() {
eprintln!("Received scanline: {}", scanline.line_num);
raster_segments.push(scanline);
raster_segments.sort_by( |a, b| b.cmp(a) );
loop {
if raster_segments.len() == 0 { break; } // can this ever happen? Not while every
// single element gets pushed to the
// buffer first. With the happy path
// short-circuit noted above, it could.
let last_ind = raster_segments.len() - 1;
if raster_segments[last_ind].line_num == sl_output_index{
let scanline = raster_segments.pop().unwrap();
print_scanline(scanline, samples_per_pixel);
sl_output_index -= 1;
} else {
break;
// LINE BASED RENDERER
for row in (0..image.y).rev() {
let tile = Tile::render_line(row, image, &scene, &render_config, &mut small_rng);
eprintln!("Printing scanline #{}", row);
for pixel in tile.pixels {
println!("{}", pixel.print_ppm(render_config.samples))
}
}
}
eprintln!("Size of raster_segments at finish: {}", raster_segments.len());
});
// TODO: Dispatcher shutdown mechanism. Right now, we might technically be leaking threads.
eprintln!("Done!");
}
fn print_scanline(scanline: renderer::RenderResult, samples_per_pixel: u32){
eprintln!("Printing scanline num: {}", scanline.line_num);
for color in &scanline.line {
println!("{}", color.print_ppm(samples_per_pixel));
}
}
fn random_scene(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: Some(mat_ground) });
let distrib_zero_one = Uniform::new(0.0, 1.0);
for a in -11..11 {
for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one);
let center = Vec3 {
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
y: 0.2,
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
};
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 {
// diffuse
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: Some(sphere_material),
}
);
} else if choose_mat < 0.95 {
// metal
let distr_albedo = Uniform::new(0.5, 1.0);
let distr_fuzz = Uniform::new(0.0, 0.5);
let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: Some(material),
}
);
} else {
// glass
let material = Material::Dielectric { index_refraction: 1.5 };
world.push(
Hittable::Sphere{
center,
radius: 0.2,
material: Some(material),
}
);
};
}
}
}
let material1 = Material::Dielectric { index_refraction: 1.5 };
world.push( Hittable::Sphere{
center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0,
material: Some(material1)
});
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
world.push( Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0,
material: Some(material2)
});
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
world.push( Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0,
material: Some(material3)
});
return world;
}

View File

@@ -17,6 +17,96 @@ use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
pub type Vec2i = Vec2<i32>;
pub type Vec2f = Vec2<f32>;
#[derive (Clone, Copy, PartialEq, PartialOrd, Debug)]
pub struct Vec2<T>{
pub x: T,
pub y: T,
}
impl Vec2<f32> {
pub fn zero() -> Vec2<f32> {
Vec2{ x: 0.0, y: 0.0 }
}
pub fn ones() -> Vec2<f32> {
Vec2{ x: 1.0, y: 1.0 }
}
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> {
Vec2 { x: srng.sample(distrib), y: srng.sample(distrib) }
}
}
impl <T> Vec2<T>
where T: std::ops::Mul{
pub fn new(x: T, y: T) -> Vec2<T> {
Vec2{x, y}
}
}
impl <T> Add for Vec2 <T>
where T: std::ops::Add<Output = T>{
type Output = Vec2<T>;
fn add(self, other: Vec2<T>) -> Vec2<T> {
Vec2 { x: self.x + other.x, y: self.y + other.y }
}
}
impl <T> Mul for Vec2<T>
where T: std::ops::Mul<Output = T>{
type Output = Vec2<T>;
fn mul(self, other: Vec2<T>) -> Vec2<T> {
Vec2 {
x: self.x * other.x,
y: self.y * other.y
}
}
}
impl Div<f32> for Vec2<f32>{
type Output = Vec2<f32>;
fn div(self, other: f32) -> Vec2<f32> {
Vec2 {
x: 1.0/other * self.x,
y: 1.0/other * self.y
}
}
}
impl Div<i32> for Vec2<i32>{
type Output = Vec2<i32>;
fn div(self, other: i32) -> Vec2<i32> {
Vec2 {
x: self.x / other,
y: self.y / other
}
}
}
impl <T> Div<Vec2<T>> for Vec2<T>
where T: std::ops::Div<Output = T>{
type Output = Vec2<T>;
fn div(self, other: Vec2<T>) -> Vec2<T> {
Vec2 {
x: self.x / other.x,
y: self.y / other.y
}
}
}
impl <T> Display for Vec2<T>
where T: Display { // nested type still needs to have Display
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let str = format!("{} {}", self.x, self.y);
fmt.write_str(&str)
}
}
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct Vec3{
pub x: f32,
@@ -308,6 +398,22 @@ pub struct Rect {
pub h: i32,
}
impl Rect{
pub fn pos(&self) -> Vec2i {
Vec2i {
x: self.x,
y: self.y,
}
}
pub fn size(&self) -> Vec2i {
Vec2i {
x: self.w - self.x,
y: self.h - self.y,
}
}
}
#[cfg(test)]
mod test{
use super::*;

View File

@@ -1,275 +1,138 @@
use crate::primitives::{Vec3, Ray, Rect};
use crate::primitives::{
Vec2i,
Vec2f,
Vec3,
Ray,
Rect,
};
use crate::scene::{
Camera,
Hittable,
Scene,
};
use core::cmp::Ordering;
use std::thread;
use std::sync::mpsc;
use std::ops;
use rand::Rng;
use rand::rngs::SmallRng;
use rand::distributions::Uniform;
use itertools::Itertools;
// =================
// Description parts
// =================
use itertools::{self, Itertools};
#[derive (Clone)]
pub struct RenderContext{
pub image: (i32, i32),
pub samples_per_pixel: u32,
pub max_depth: u32,
pub world: Hittable,
pub camera: Camera,
const SKY_COLOR: Vec3 = Vec3 { x: 0.5, y: 0.7, z: 1.0};
pub struct RenderProperties {
pub samples: u32, // samples are averaged results over a pixel
pub bounces: u32, // bounces are how far the ray will travel (in hits not total distance)
}
pub struct DistributionContianer {
pub distrib_zero_one: Uniform<f32>,
pub distrib_plusminus_one: Uniform<f32>,
fn to_uv(coord: Vec2i, img_size: Vec2i) -> Vec2f {
let u = (coord.x as f32) / ((img_size.x - 1) as f32);
let v = (coord.y as f32) / ((img_size.y - 1) as f32);
Vec2f::new(u, v)
}
impl DistributionContianer {
fn new() -> Self {
DistributionContianer {
distrib_zero_one: Uniform::new(0.0, 1.0),
distrib_plusminus_one: Uniform::new(-1.0, 1.0),
}
}
}
// =============
// Drawing Parts
// =============
fn render_line(y: i32, small_rng: &mut SmallRng, context: RenderContext, distr: &DistributionContianer) -> Vec<Vec3> {
//TODO: Ensure that the compiler hoists the distribution's out as constants
// else, do so manually
(0..context.image.0).map(|x| {
sample_pixel(x, y, small_rng, &context, distr)
}).collect()
}
fn ray_color(r: Ray, world: &Hittable, depth: u32, srng: &mut SmallRng, distrib: Uniform<f32> ) -> Vec3 {
// recursion depth guard
fn ray_color(
r: Ray, surface: &Hittable, depth: u32,
rng: &mut SmallRng,
) -> Vec3 {
// recursion guard
if depth == 0 {
return Vec3::zero();
}
if let Some(rec) = world.hit(r, 0.001, f32::INFINITY){
// cast a ray, interrogate hit record
if let Some(record) = surface.hit(r, 0.001, f32::INFINITY){
let mut scattered = Ray {
orig: Vec3::zero(),
dir: Vec3::zero()
dir: Vec3::zero(),
};
let mut attenuation = Vec3::zero();
match rec.material {
Some(mat) => {
if mat.scatter(r, rec, &mut attenuation, &mut scattered, srng) {
return attenuation * ray_color(scattered, world, depth-1, srng, distrib);
};
},
None => return Vec3::zero(),
}
if record.material.scatter(
r,
&record,
&mut attenuation,
&mut scattered,
rng
) {
return attenuation * ray_color(
scattered, surface, depth-1, rng
);
}
} // TODO: explicit else block
// Rust gets angry about the inner if{} block because it evaluates to ()
// when the else path is taken. This is a problem for a function
// that returns Vec3 and not ().
{ // when nothing is struck, return sky color
let unitdir = Vec3::as_unit(r.dir);
let t = 0.5 * (unitdir.y + 1.0);
return Vec3::ones() * (1.0 - t) + Vec3::new(0.5, 0.7, 1.0) * t
return Vec3::ones() * (1.0 - t) + SKY_COLOR * t
}
}
fn sample_pixel(x: i32, y: i32, small_rng: &mut SmallRng, context: &RenderContext, distr: &DistributionContianer) -> Vec3{
(0..context.samples_per_pixel).into_iter().fold(
fn sample_pixel(
coord: Vec2i, // location in image/screen space
scene: &Scene, // scene we're drawing
render_props: &RenderProperties,
img_size: Vec2i,
// Supplied by the execution environment (the thread)
rng: &mut SmallRng,
) -> Vec3{
(0..render_props.samples)
.fold(
Vec3::zero(),
|color, _sample| {
let u = ((x as f32) + small_rng.sample(distr.distrib_zero_one)) / ((context.image.0 - 1) as f32);
let v = ((y as f32) + small_rng.sample(distr.distrib_zero_one)) / ((context.image.1 - 1) as f32);
let ray = context.camera.get_ray(u, v, small_rng);
color + ray_color(ray, &context.world, context.max_depth, small_rng, distr.distrib_plusminus_one)
|color, _sample| -> Vec3 {
let uv = to_uv(coord, img_size);
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
if ray.dir.x.is_nan() {
panic!("Ray dir.x is NAN");
}
color + ray_color(ray, &scene.world, render_props.bounces, rng)
}
)
}
// ===============
// Execution parts
// ===============
/* Iterable that produces pixels left-to-right, top-to-bottom.
* `Tile`s represent the render space, not the finished image.
* There is no internal pixel buffer
*/
type TileCursorIter = itertools::Product<ops::Range<i32>, ops::Range<i32>>;
struct Tile {
bounds: Rect,
context: RenderContext,
small_rng: SmallRng,
rand_distr: DistributionContianer,
cursor: TileCursorIter,
pub struct Tile {
_bounds: Rect,
pub pixels: Vec<Vec3>,
}
impl Tile{
fn new(
bounds: Rect,
context: RenderContext,
small_rng: SmallRng,
rand_distr: DistributionContianer
) -> Self
{
Tile { bounds, context, small_rng, rand_distr,
cursor: (bounds.x..(bounds.x + bounds.w))
.cartesian_product(bounds.y..(bounds.y + bounds.h)
impl Tile {
pub fn render_tile(
bounds: Rect, // bounds of the region to render
img_size: Vec2i, // final image resolution (needed for proper UV mapping)
scene: &Scene,
properties: &RenderProperties, // TODO: Place image size in render properties?
rng: &mut SmallRng,
) -> Self {
let pixel_iter = (bounds.y..(bounds.y + bounds.h))
.cartesian_product( bounds.x..(bounds.x + bounds.w));
let pixels = pixel_iter.map(
|coord| -> Vec3 {
sample_pixel(
Vec2i{x: coord.1, y: coord.0},
scene,
properties,
img_size,
rng,
)
}
}
}
impl Iterator for Tile {
type Item = Vec3;
fn next(&mut self) -> Option<Self::Item> {
if let Some((x, y)) = self.cursor.next(){
Some(sample_pixel(
x, y,
&mut self.small_rng,
&self.context,
&self.rand_distr,
))
} else {
None
).collect();
Self {
_bounds: bounds,
pixels
}
}
}
#[derive (Clone)]
pub enum RenderCommand{
Stop,
Line { line_num: i32, context: RenderContext },
}
pub struct RenderResult {
pub line_num: i32,
pub line: Vec<Vec3>,
}
impl Ord for RenderResult {
fn cmp(&self, other: &Self) -> Ordering {
if self.line_num > other.line_num {
Ordering::Less
} else if self.line_num < other.line_num {
Ordering::Greater
} else {
Ordering::Equal
}
}
}
impl PartialOrd for RenderResult {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for RenderResult {
fn eq(&self, other: &Self) -> bool {
self.line_num == other.line_num
}
}
impl Eq for RenderResult {}
/*
* The dispatcher will hold a list of threads, and a list of command input channels to match.
* Helper functions exist to input jobs serially, and then dispatch them to an open thread.
*
* Since receivers can be matched to several senders, the input end of the result channel will
* be cloned and given to each of the threads.
* TODO: Consider holding a copy of the render_tx end in case threads exit early and need to
* be restored.
*/
pub struct Dispatcher{
handles: Vec<thread::JoinHandle<()>>,
command_transmitters: Vec<mpsc::SyncSender<RenderCommand>>,
next_to_feed: usize, // gonna do a round-robin style dispatch, ig.
}
impl Dispatcher {
pub fn new(srng: &SmallRng, num_threads: usize) -> (Dispatcher, mpsc::Receiver<RenderResult> ) {
let mut handles = Vec::new();
let mut command_transmitters = Vec::<mpsc::SyncSender<RenderCommand>>::new();
let (render_tx, render_rx) = mpsc::sync_channel::<RenderResult>(1);
for _ in 0..num_threads {
// create new command tx/rx pairs. Store tx in the list, give rx to the thread.
let (command_tx, command_rx) = mpsc::sync_channel::<RenderCommand>(1);
// TODO: Pick appropriate command queue depth (or make it controllable, even)
let mut srng = srng.clone();
let threads_result_tx = render_tx.clone();
let distribs = DistributionContianer::new();
let thread_handle = thread::spawn(move || {
while let Ok(job) = command_rx.recv() {
match job {
RenderCommand::Stop => {
break;
}
RenderCommand::Line { line_num, context } => {
let line = render_line(line_num, &mut srng, context, &distribs);
let result = RenderResult { line_num, line };
threads_result_tx.send(result).unwrap();
}
}
}
});
handles.push(thread_handle);
command_transmitters.push(command_tx);
}
// finally, stash everything in the Dispatcher struct and return.
(
Dispatcher{
handles,
command_transmitters,
next_to_feed: 0,
},
render_rx
pub fn render_line(
y: i32, // bounding rect and line
img_size: Vec2i,
scene: &Scene,
properties: &RenderProperties,
rng: &mut SmallRng, // rng utils
) -> Self {
Tile::render_tile(
Rect{ x: 0, y, w: img_size.x, h: 1 },
img_size,
scene,
properties,
rng
)
}
//TODO: Reconsider round-robin dispatch
// When passing the message to threads which are still busy, this function
// will block (it's a sync_channel). While blocked, other threads could
// become available and left idle.
pub fn submit_job(&mut self, command: RenderCommand) -> Result<(), mpsc::SendError<RenderCommand>> {
// Stop command is special. We'll broadcast it to all threads.
if let RenderCommand::Stop = command {
for channel in &self.command_transmitters {
return channel.send(command.clone());
}
}
// Check that `next_to_feed` is in-bounds, and then insert.
// index is post-incremented with this function call.
// wrap when at length (0-indexed so last valid index is len-1)
if self.next_to_feed == self.handles.len() {
self.next_to_feed = 0;
} else if self.next_to_feed > self.handles.len() {
panic!("How the hell did a +=1 skip past the maximum allowed size?");
}
match self.command_transmitters.get(self.next_to_feed){
Some(target) => target.send(command).unwrap(),
None => panic!("oh god oh fuck"),
}
self.next_to_feed += 1;
Ok(())
}
}

View File

@@ -8,7 +8,7 @@ use rand::distributions::Uniform;
pub struct HitRecord{
pub p: Vec3,
pub normal: Vec3,
pub material: Option<Material>,
pub material: Material,
pub t: f32,
pub front_face: bool,
}
@@ -22,7 +22,7 @@ impl HitRecord{
#[derive (Clone)]
pub enum Hittable {
Sphere { center: Vec3, radius: f32, material: Option<Material> },
Sphere { center: Vec3, radius: f32, material: Material },
HittableList { hittables: Vec<Hittable> }
}
@@ -30,24 +30,15 @@ impl Hittable {
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
match self {
Hittable::HittableList { hittables } => {
let mut might_return = HitRecord {
p: Vec3::zero(),
normal: Vec3::zero(),
material: None,
t: t_max,
front_face: false,
};
let mut hit_anything = false;
for item in hittables {
if let Some(record) = item.hit(r, t_min, might_return.t){
hit_anything = true;
might_return = record;
}
}
if hit_anything{
return Some(might_return);
} else { return None; }
hittables.iter()
.map( |obj| -> Option<HitRecord> {
obj.hit(r, t_min, t_max)
}).filter(|obj| obj.is_some())
.min_by(|lhs, rhs| {
let lhs = lhs.as_ref().unwrap();
let rhs = rhs.as_ref().unwrap();
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
}).unwrap_or(None)
}
Hittable::Sphere { center, radius, material } => {
@@ -102,7 +93,7 @@ impl Material {
pub fn scatter(
&self,
ray_in: Ray,
rec: HitRecord,
rec: &HitRecord,
attenuation: &mut Vec3,
scattered: &mut Ray,
srng: &mut SmallRng,
@@ -178,7 +169,6 @@ pub fn degrees_to_radians(degrees: f32) -> f32 {
degrees * std::f32::consts::PI / 180.0
}
#[derive (Clone, Copy)]
pub struct Camera {
origin: Vec3,
lower_left_corner: Vec3,
@@ -237,3 +227,92 @@ impl Camera {
}
}
pub struct Scene {
pub camera: Camera,
pub world: Hittable,
}
impl Scene {
pub fn random_world(srng: &mut SmallRng) -> Hittable {
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: mat_ground });
let distrib_zero_one = Uniform::new(0.0, 1.0);
for a in -11..11 {
for b in -11..11 {
let choose_mat = srng.sample(distrib_zero_one);
let center = Vec3 {
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
y: 0.2,
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
};
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
if choose_mat < 0.8 {
// diffuse
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
let sphere_material = Material::Lambertian { albedo };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: sphere_material,
}
);
} else if choose_mat < 0.95 {
// metal
let distr_albedo = Uniform::new(0.5, 1.0);
let distr_fuzz = Uniform::new(0.0, 0.5);
let albedo = Vec3::rand(srng, distr_albedo);
let fuzz = srng.sample(distr_fuzz);
let material = Material::Metal { albedo, fuzz };
world.push(
Hittable::Sphere {
center,
radius: 0.2,
material: material,
}
);
} else {
// glass
let material = Material::Dielectric { index_refraction: 1.5 };
world.push(
Hittable::Sphere{
center,
radius: 0.2,
material: material,
}
);
};
}
}
}
let material1 = Material::Dielectric { index_refraction: 1.5 };
world.push( Hittable::Sphere{
center: Vec3::new(0.0, 1.0, 0.0),
radius: 1.0,
material: material1
});
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
world.push( Hittable::Sphere {
center: Vec3::new(-4.0, 1.0, 0.0),
radius: 1.0,
material: material2
});
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
world.push( Hittable::Sphere {
center: Vec3::new(4.0, 1.0, 0.0),
radius: 1.0,
material: material3
});
world
}
}