Compare commits
20 Commits
4ce43e12af
...
trunk
| Author | SHA1 | Date | |
|---|---|---|---|
| 78ed28a334 | |||
| 6614b32969 | |||
| 49569528fa | |||
| 309931b7f6 | |||
| 83fa670d35 | |||
| 46f6784256 | |||
| fcb9ad2dd2 | |||
| 34a828fe67 | |||
| 05add1efca | |||
| 8548e4e322 | |||
| c8726a4d9a | |||
| a701b9407b | |||
| 72f154510f | |||
| 3250f8e580 | |||
| f03c6280a7 | |||
| 60b4407573 | |||
| 7c43c3fb82 | |||
| 4be7ba54bb | |||
| 515f5b866a | |||
| bdc396accf |
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
/target
|
||||||
@@ -1,10 +1,11 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "rustpt"
|
name = "rustpt"
|
||||||
version = "0.1.0"
|
version = "1.0.0"
|
||||||
edition = "2021"
|
edition = "2024"
|
||||||
|
license = "AGPL-3.0-only"
|
||||||
|
|
||||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
rand = { version = "0.8.5", features = ["small_rng"] }
|
rand = { version = "0.9", features = ["small_rng"] }
|
||||||
itertools = { version = "0.11.0" }
|
itertools = { version = "0.14" }
|
||||||
|
|||||||
661
LICENSE
Normal file
@@ -0,0 +1,661 @@
|
|||||||
|
GNU AFFERO GENERAL PUBLIC LICENSE
|
||||||
|
Version 3, 19 November 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies
|
||||||
|
of this license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
Preamble
|
||||||
|
|
||||||
|
The GNU Affero General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works, specifically designed to ensure
|
||||||
|
cooperation with the community in the case of network server software.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
our General Public Licenses are intended to guarantee your freedom to
|
||||||
|
share and change all versions of a program--to make sure it remains free
|
||||||
|
software for all its users.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
Developers that use our General Public Licenses protect your rights
|
||||||
|
with two steps: (1) assert copyright on the software, and (2) offer
|
||||||
|
you this License which gives you legal permission to copy, distribute
|
||||||
|
and/or modify the software.
|
||||||
|
|
||||||
|
A secondary benefit of defending all users' freedom is that
|
||||||
|
improvements made in alternate versions of the program, if they
|
||||||
|
receive widespread use, become available for other developers to
|
||||||
|
incorporate. Many developers of free software are heartened and
|
||||||
|
encouraged by the resulting cooperation. However, in the case of
|
||||||
|
software used on network servers, this result may fail to come about.
|
||||||
|
The GNU General Public License permits making a modified version and
|
||||||
|
letting the public access it on a server without ever releasing its
|
||||||
|
source code to the public.
|
||||||
|
|
||||||
|
The GNU Affero General Public License is designed specifically to
|
||||||
|
ensure that, in such cases, the modified source code becomes available
|
||||||
|
to the community. It requires the operator of a network server to
|
||||||
|
provide the source code of the modified version running there to the
|
||||||
|
users of that server. Therefore, public use of a modified version, on
|
||||||
|
a publicly accessible server, gives the public access to the source
|
||||||
|
code of the modified version.
|
||||||
|
|
||||||
|
An older license, called the Affero General Public License and
|
||||||
|
published by Affero, was designed to accomplish similar goals. This is
|
||||||
|
a different license, not a version of the Affero GPL, but Affero has
|
||||||
|
released a new version of the Affero GPL which permits relicensing under
|
||||||
|
this license.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU Affero General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||||
|
works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of an
|
||||||
|
exact copy. The resulting work is called a "modified version" of the
|
||||||
|
earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user through
|
||||||
|
a computer network, with no transfer of a copy, is not conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices"
|
||||||
|
to the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work
|
||||||
|
for making modifications to it. "Object code" means any non-source
|
||||||
|
form of a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users
|
||||||
|
can regenerate automatically from other parts of the Corresponding
|
||||||
|
Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that
|
||||||
|
same work.
|
||||||
|
|
||||||
|
2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not
|
||||||
|
convey, without conditions so long as your license otherwise remains
|
||||||
|
in force. You may convey covered works to others for the sole purpose
|
||||||
|
of having them make modifications exclusively for you, or provide you
|
||||||
|
with facilities for running those works, provided that you comply with
|
||||||
|
the terms of this License in conveying all material for which you do
|
||||||
|
not control copyright. Those thus making or running the covered works
|
||||||
|
for you must do so exclusively on your behalf, under your direction
|
||||||
|
and control, on terms that prohibit them from making any copies of
|
||||||
|
your copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under
|
||||||
|
the conditions stated below. Sublicensing is not allowed; section 10
|
||||||
|
makes it unnecessary.
|
||||||
|
|
||||||
|
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such circumvention
|
||||||
|
is effected by exercising rights under this License with respect to
|
||||||
|
the covered work, and you disclaim any intention to limit operation or
|
||||||
|
modification of the work as a means of enforcing, against the work's
|
||||||
|
users, your or third parties' legal rights to forbid circumvention of
|
||||||
|
technological measures.
|
||||||
|
|
||||||
|
4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these conditions:
|
||||||
|
|
||||||
|
a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
|
||||||
|
b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under section
|
||||||
|
7. This requirement modifies the requirement in section 4 to
|
||||||
|
"keep intact all notices".
|
||||||
|
|
||||||
|
c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
|
||||||
|
d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms
|
||||||
|
of sections 4 and 5, provided that you also convey the
|
||||||
|
machine-readable Corresponding Source under the terms of this License,
|
||||||
|
in one of these ways:
|
||||||
|
|
||||||
|
a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
|
||||||
|
b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the
|
||||||
|
Corresponding Source from a network server at no charge.
|
||||||
|
|
||||||
|
c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
|
||||||
|
d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
|
||||||
|
e) Convey the object code using peer-to-peer transmission, provided
|
||||||
|
you inform other peers where the object code and Corresponding
|
||||||
|
Source of the work are being offered to the general public at no
|
||||||
|
charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal, family,
|
||||||
|
or household purposes, or (2) anything designed or sold for incorporation
|
||||||
|
into a dwelling. In determining whether a product is a consumer product,
|
||||||
|
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||||
|
product received by a particular user, "normally used" refers to a
|
||||||
|
typical or common use of that class of product, regardless of the status
|
||||||
|
of the particular user or of the way in which the particular user
|
||||||
|
actually uses, or expects or is expected to use, the product. A product
|
||||||
|
is a consumer product regardless of whether the product has substantial
|
||||||
|
commercial, industrial or non-consumer uses, unless such uses represent
|
||||||
|
the only significant mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to install
|
||||||
|
and execute modified versions of a covered work in that User Product from
|
||||||
|
a modified version of its Corresponding Source. The information must
|
||||||
|
suffice to ensure that the continued functioning of the modified object
|
||||||
|
code is in no case prevented or interfered with solely because
|
||||||
|
modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or updates
|
||||||
|
for a work that has been modified or installed by the recipient, or for
|
||||||
|
the User Product in which it has been modified or installed. Access to a
|
||||||
|
network may be denied when the modification itself materially and
|
||||||
|
adversely affects the operation of the network or violates the rules and
|
||||||
|
protocols for communication across the network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders of
|
||||||
|
that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
|
||||||
|
b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
|
||||||
|
c) Prohibiting misrepresentation of the origin of that material, or
|
||||||
|
requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
|
||||||
|
d) Limiting the use for publicity purposes of names of licensors or
|
||||||
|
authors of the material; or
|
||||||
|
|
||||||
|
e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
|
||||||
|
f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions of
|
||||||
|
it) with contractual assumptions of liability to the recipient, for
|
||||||
|
any liability that these contractual assumptions directly impose on
|
||||||
|
those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions;
|
||||||
|
the above requirements apply either way.
|
||||||
|
|
||||||
|
8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your
|
||||||
|
license from a particular copyright holder is reinstated (a)
|
||||||
|
provisionally, unless and until the copyright holder explicitly and
|
||||||
|
finally terminates your license, and (b) permanently, if the copyright
|
||||||
|
holder fails to notify you of the violation by some reasonable means
|
||||||
|
prior to 60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or
|
||||||
|
run a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims
|
||||||
|
owned or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within
|
||||||
|
the scope of its coverage, prohibits the exercise of, or is
|
||||||
|
conditioned on the non-exercise of one or more of the rights that are
|
||||||
|
specifically granted under this License. You may not convey a covered
|
||||||
|
work if you are a party to an arrangement with a third party that is
|
||||||
|
in the business of distributing software, under which you make payment
|
||||||
|
to the third party based on the extent of your activity of conveying
|
||||||
|
the work, and under which the third party grants, to any of the
|
||||||
|
parties who would receive the covered work from you, a discriminatory
|
||||||
|
patent license (a) in connection with copies of the covered work
|
||||||
|
conveyed by you (or copies made from those copies), or (b) primarily
|
||||||
|
for and in connection with specific products or compilations that
|
||||||
|
contain the covered work, unless you entered into that arrangement,
|
||||||
|
or that patent license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under this
|
||||||
|
License and any other pertinent obligations, then as a consequence you may
|
||||||
|
not convey it at all. For example, if you agree to terms that obligate you
|
||||||
|
to collect a royalty for further conveying from those to whom you convey
|
||||||
|
the Program, the only way you could satisfy both those terms and this
|
||||||
|
License would be to refrain entirely from conveying the Program.
|
||||||
|
|
||||||
|
13. Remote Network Interaction; Use with the GNU General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, if you modify the
|
||||||
|
Program, your modified version must prominently offer all users
|
||||||
|
interacting with it remotely through a computer network (if your version
|
||||||
|
supports such interaction) an opportunity to receive the Corresponding
|
||||||
|
Source of your version by providing access to the Corresponding Source
|
||||||
|
from a network server at no charge, through some standard or customary
|
||||||
|
means of facilitating copying of software. This Corresponding Source
|
||||||
|
shall include the Corresponding Source for any work covered by version 3
|
||||||
|
of the GNU General Public License that is incorporated pursuant to the
|
||||||
|
following paragraph.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the work with which it is combined will remain governed by version
|
||||||
|
3 of the GNU General Public License.
|
||||||
|
|
||||||
|
14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions of
|
||||||
|
the GNU Affero General Public License from time to time. Such new versions
|
||||||
|
will be similar in spirit to the present version, but may differ in detail to
|
||||||
|
address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the
|
||||||
|
Program specifies that a certain numbered version of the GNU Affero General
|
||||||
|
Public License "or any later version" applies to it, you have the
|
||||||
|
option of following the terms and conditions either of that numbered
|
||||||
|
version or of any later version published by the Free Software
|
||||||
|
Foundation. If the Program does not specify a version number of the
|
||||||
|
GNU Affero General Public License, you may choose any version ever published
|
||||||
|
by the Free Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future
|
||||||
|
versions of the GNU Affero General Public License can be used, that proxy's
|
||||||
|
public statement of acceptance of a version permanently authorizes you
|
||||||
|
to choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||||
|
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||||
|
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||||
|
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||||
|
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||||
|
|
||||||
|
16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||||
|
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||||
|
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||||
|
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||||
|
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||||
|
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||||
|
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||||
|
SUCH DAMAGES.
|
||||||
|
|
||||||
|
17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest
|
||||||
|
to attach them to the start of each source file to most effectively
|
||||||
|
state the exclusion of warranty; and each file should have at least
|
||||||
|
the "copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU Affero General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU Affero General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU Affero General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper mail.
|
||||||
|
|
||||||
|
If your software can interact with users remotely through a computer
|
||||||
|
network, you should also make sure that it provides a way for users to
|
||||||
|
get its source. For example, if your program is a web application, its
|
||||||
|
interface could display a "Source" link that leads users to an archive
|
||||||
|
of the code. There are many ways you could offer source, and different
|
||||||
|
solutions will be better for different programs; see section 13 for the
|
||||||
|
specific requirements.
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or school,
|
||||||
|
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||||
|
For more information on this, and how to apply and follow the GNU AGPL, see
|
||||||
|
<https://www.gnu.org/licenses/>.
|
||||||
|
Before Width: | Height: | Size: 3.0 MiB |
|
Before Width: | Height: | Size: 83 KiB |
BIN
fascinating.png
|
Before Width: | Height: | Size: 99 KiB |
|
Before Width: | Height: | Size: 3.6 MiB |
|
Before Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 68 KiB |
BIN
materials.png
|
Before Width: | Height: | Size: 70 KiB |
3
src/lib.rs
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
pub mod primitives;
|
||||||
|
pub mod renderer;
|
||||||
|
pub mod scene;
|
||||||
242
src/main.rs
@@ -1,216 +1,64 @@
|
|||||||
|
use rustpt::primitives::{Vec2i, Vec3};
|
||||||
|
use rustpt::scene::{Camera, Scene};
|
||||||
|
|
||||||
mod primitives;
|
use rustpt::renderer::{RenderProperties, Tile};
|
||||||
mod renderer;
|
|
||||||
mod scene;
|
|
||||||
|
|
||||||
use crate::primitives::Vec3;
|
use rand::SeedableRng;
|
||||||
use crate::scene::{
|
|
||||||
Camera,
|
|
||||||
Hittable,
|
|
||||||
Material,
|
|
||||||
};
|
|
||||||
use crate::renderer::RenderCommand;
|
|
||||||
|
|
||||||
use rand::{Rng, SeedableRng};
|
|
||||||
use rand::rngs::SmallRng;
|
use rand::rngs::SmallRng;
|
||||||
use rand::distributions::Uniform;
|
|
||||||
|
|
||||||
use std::thread;
|
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
// image
|
// image
|
||||||
let aspect_ratio = 3.0 / 2.0;
|
let aspect_ratio = 3.0 / 2.0;
|
||||||
let image = (
|
let image = Vec2i {
|
||||||
1920,
|
x: 400,
|
||||||
(1920.0 / aspect_ratio) as i32
|
y: (400.0 / aspect_ratio) as i32,
|
||||||
);
|
};
|
||||||
let samples_per_pixel: u32 = 10;
|
|
||||||
let max_depth = 50;
|
let render_config = RenderProperties {
|
||||||
|
samples: 10,
|
||||||
|
bounces: 50,
|
||||||
|
};
|
||||||
|
|
||||||
// random generator
|
// random generator
|
||||||
let mut small_rng = SmallRng::seed_from_u64(0);
|
let mut small_rng = SmallRng::seed_from_u64(0);
|
||||||
|
|
||||||
// world
|
// Scene (now includes camera)
|
||||||
let world = random_scene(&mut small_rng);
|
let scene = Scene {
|
||||||
|
camera: Camera::new(
|
||||||
// camera
|
Vec3::new(13.0, 2.0, 3.0), // lookfrom
|
||||||
|
Vec3::ZERO, // lookat
|
||||||
let cam = Camera::new(
|
Vec3::UP, // vup
|
||||||
Vec3::new(13.0, 2.0, 3.0), // lookfrom
|
20.0,
|
||||||
Vec3::zero(), // lookat
|
aspect_ratio,
|
||||||
Vec3::new(0.0, 1.0, 0.0), // vup
|
0.1, // aperture
|
||||||
20.0,
|
10.0, // dist_to_focus
|
||||||
aspect_ratio,
|
),
|
||||||
0.1, // aperture
|
world: Scene::random_world(&mut small_rng),
|
||||||
10.0, // dist_to_focus
|
};
|
||||||
);
|
|
||||||
|
|
||||||
// render
|
// render
|
||||||
// The render loop should now be a job submission mechanism
|
// The render loop should now be a job submission mechanism
|
||||||
// Iterate lines, submitting them as tasks to the thread.
|
// Iterate lines, submitting them as tasks to the thread.
|
||||||
println!("P3\n{} {}\n255", image.0, image.1);
|
println!("P3\n{} {}\n255", image.x, image.y);
|
||||||
let context = renderer::RenderContext {
|
// TILE BASED RENDERER
|
||||||
camera: cam,
|
// let tile = Tile::render_tile(
|
||||||
image,
|
// Rect { x: 0, y: 0, w: image.x, h: image.y },
|
||||||
max_depth,
|
// image,
|
||||||
samples_per_pixel,
|
// &scene,
|
||||||
world,
|
// &render_config,
|
||||||
};
|
// &mut small_rng
|
||||||
|
// );
|
||||||
|
// for pixel in tile.pixels.iter().rev() {
|
||||||
|
// println!("{}", pixel.print_ppm(render_config.samples));
|
||||||
|
// }
|
||||||
|
|
||||||
thread::scope(|s| {
|
// LINE BASED RENDERER
|
||||||
let (mut dispatcher, scanline_receiver) = renderer::Dispatcher::new(&small_rng, 12);
|
for row in (0..image.y).rev() {
|
||||||
|
let tile = Tile::render_line(row, image, &scene, &render_config, &mut small_rng);
|
||||||
s.spawn(move || {
|
eprintln!("Printing scanline #{}", row);
|
||||||
for y in (0..image.1).rev() {
|
for pixel in tile.pixels {
|
||||||
eprintln!("Submitting scanline: {}", y);
|
println!("{}", pixel.print_ppm(render_config.samples))
|
||||||
let job = RenderCommand::Line { line_num: y, context: context.clone() };
|
|
||||||
dispatcher.submit_job(job).unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
dispatcher.submit_job(RenderCommand::Stop).unwrap();
|
|
||||||
// ... also I happen to know there are 4 threads.
|
|
||||||
});
|
|
||||||
|
|
||||||
/*
|
|
||||||
* Store received results in the segments buffer.
|
|
||||||
* Some will land before their previous segments and will need to be held
|
|
||||||
* until the next-to-write arrives.
|
|
||||||
*
|
|
||||||
* Elements are sorted in reverse order so that they can be popped from the
|
|
||||||
* Vec quickly.
|
|
||||||
*
|
|
||||||
* The queue is scanned every single time a new item is received. In the
|
|
||||||
* happy path where the received item is next-up, it'll be buffered, checked
|
|
||||||
* and then printed. In the case where it isn't, it'll get buffered and
|
|
||||||
* stick around for more loops. When the next-to-write finally lands, it
|
|
||||||
* means the n+1 element is up, now. If that element is already in the buffer
|
|
||||||
* we want to write it out. Hence the loop that scans the whole buffer each
|
|
||||||
* receive.
|
|
||||||
*
|
|
||||||
* TODO: There could be an up-front conditional that checks to see if the
|
|
||||||
* received item *is* the next-to-write and skip the buffering step.
|
|
||||||
* But I need to make the concept work at all, first.
|
|
||||||
*/
|
|
||||||
let mut raster_segments = Vec::<renderer::RenderResult>::new();
|
|
||||||
let mut sl_output_index = image.1-1; // scanlines count down, start at image height.
|
|
||||||
while let Ok(scanline) = scanline_receiver.recv() {
|
|
||||||
eprintln!("Received scanline: {}", scanline.line_num);
|
|
||||||
|
|
||||||
raster_segments.push(scanline);
|
|
||||||
raster_segments.sort_by( |a, b| b.cmp(a) );
|
|
||||||
|
|
||||||
loop {
|
|
||||||
if raster_segments.len() == 0 { break; } // can this ever happen? Not while every
|
|
||||||
// single element gets pushed to the
|
|
||||||
// buffer first. With the happy path
|
|
||||||
// short-circuit noted above, it could.
|
|
||||||
|
|
||||||
let last_ind = raster_segments.len() - 1;
|
|
||||||
if raster_segments[last_ind].line_num == sl_output_index{
|
|
||||||
let scanline = raster_segments.pop().unwrap();
|
|
||||||
print_scanline(scanline, samples_per_pixel);
|
|
||||||
sl_output_index -= 1;
|
|
||||||
} else {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
eprintln!("Size of raster_segments at finish: {}", raster_segments.len());
|
}
|
||||||
});
|
|
||||||
|
|
||||||
|
|
||||||
// TODO: Dispatcher shutdown mechanism. Right now, we might technically be leaking threads.
|
|
||||||
eprintln!("Done!");
|
eprintln!("Done!");
|
||||||
}
|
}
|
||||||
|
|
||||||
fn print_scanline(scanline: renderer::RenderResult, samples_per_pixel: u32){
|
|
||||||
eprintln!("Printing scanline num: {}", scanline.line_num);
|
|
||||||
for color in &scanline.line {
|
|
||||||
println!("{}", color.print_ppm(samples_per_pixel));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn random_scene(srng: &mut SmallRng) -> Hittable {
|
|
||||||
let mat_ground = Material::Lambertian { albedo: Vec3::new(0.5, 0.5, 0.5) };
|
|
||||||
let mut world = Hittable::HittableList { hittables : Vec::<Hittable>::new() };
|
|
||||||
|
|
||||||
world.push( Hittable::Sphere { center: Vec3::new(0.0, -1000.0, 0.0), radius: 1000.0, material: Some(mat_ground) });
|
|
||||||
|
|
||||||
let distrib_zero_one = Uniform::new(0.0, 1.0);
|
|
||||||
for a in -11..11 {
|
|
||||||
for b in -11..11 {
|
|
||||||
let choose_mat = srng.sample(distrib_zero_one);
|
|
||||||
let center = Vec3 {
|
|
||||||
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
|
|
||||||
y: 0.2,
|
|
||||||
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
|
|
||||||
};
|
|
||||||
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
|
|
||||||
|
|
||||||
if choose_mat < 0.8 {
|
|
||||||
// diffuse
|
|
||||||
let albedo = Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
|
|
||||||
let sphere_material = Material::Lambertian { albedo };
|
|
||||||
world.push(
|
|
||||||
Hittable::Sphere {
|
|
||||||
center,
|
|
||||||
radius: 0.2,
|
|
||||||
material: Some(sphere_material),
|
|
||||||
}
|
|
||||||
);
|
|
||||||
} else if choose_mat < 0.95 {
|
|
||||||
// metal
|
|
||||||
let distr_albedo = Uniform::new(0.5, 1.0);
|
|
||||||
let distr_fuzz = Uniform::new(0.0, 0.5);
|
|
||||||
|
|
||||||
let albedo = Vec3::rand(srng, distr_albedo);
|
|
||||||
let fuzz = srng.sample(distr_fuzz);
|
|
||||||
let material = Material::Metal { albedo, fuzz };
|
|
||||||
world.push(
|
|
||||||
Hittable::Sphere {
|
|
||||||
center,
|
|
||||||
radius: 0.2,
|
|
||||||
material: Some(material),
|
|
||||||
}
|
|
||||||
);
|
|
||||||
} else {
|
|
||||||
// glass
|
|
||||||
let material = Material::Dielectric { index_refraction: 1.5 };
|
|
||||||
world.push(
|
|
||||||
Hittable::Sphere{
|
|
||||||
center,
|
|
||||||
radius: 0.2,
|
|
||||||
material: Some(material),
|
|
||||||
}
|
|
||||||
);
|
|
||||||
|
|
||||||
};
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
let material1 = Material::Dielectric { index_refraction: 1.5 };
|
|
||||||
world.push( Hittable::Sphere{
|
|
||||||
center: Vec3::new(0.0, 1.0, 0.0),
|
|
||||||
radius: 1.0,
|
|
||||||
material: Some(material1)
|
|
||||||
});
|
|
||||||
|
|
||||||
let material2 = Material::Lambertian { albedo: Vec3::new(0.4, 0.2, 0.1) };
|
|
||||||
world.push( Hittable::Sphere {
|
|
||||||
center: Vec3::new(-4.0, 1.0, 0.0),
|
|
||||||
radius: 1.0,
|
|
||||||
material: Some(material2)
|
|
||||||
});
|
|
||||||
|
|
||||||
let material3 = Material::Metal { albedo: Vec3::new(0.7, 0.6, 0.5), fuzz: 0.0 };
|
|
||||||
world.push( Hittable::Sphere {
|
|
||||||
center: Vec3::new(4.0, 1.0, 0.0),
|
|
||||||
radius: 1.0,
|
|
||||||
material: Some(material3)
|
|
||||||
});
|
|
||||||
|
|
||||||
return world;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,52 +1,149 @@
|
|||||||
|
|
||||||
use std::ops::{
|
|
||||||
Add,
|
|
||||||
AddAssign,
|
|
||||||
Sub,
|
|
||||||
SubAssign,
|
|
||||||
Mul,
|
|
||||||
MulAssign,
|
|
||||||
Div,
|
|
||||||
DivAssign,
|
|
||||||
Neg,
|
|
||||||
};
|
|
||||||
use std::fmt;
|
use std::fmt;
|
||||||
use std::fmt::Display;
|
use std::fmt::Display;
|
||||||
|
use std::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
|
||||||
|
|
||||||
use rand::Rng;
|
use rand::Rng;
|
||||||
|
use rand::distr::Uniform;
|
||||||
use rand::rngs::SmallRng;
|
use rand::rngs::SmallRng;
|
||||||
use rand::distributions::Uniform;
|
|
||||||
|
|
||||||
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
|
pub type Vec2i = Vec2<i32>;
|
||||||
pub struct Vec3{
|
pub type Vec2f = Vec2<f32>;
|
||||||
pub x: f32,
|
|
||||||
pub y: f32,
|
#[derive(Clone, Copy, PartialEq, PartialOrd, Debug)]
|
||||||
pub z: f32,
|
pub struct Vec2<T> {
|
||||||
|
pub x: T,
|
||||||
|
pub y: T,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Vec3{
|
impl Vec2<f32> {
|
||||||
pub fn new(x: f32, y: f32, z: f32) -> Vec3{
|
pub fn zero() -> Vec2<f32> {
|
||||||
Vec3{x, y, z}
|
Vec2 { x: 0.0, y: 0.0 }
|
||||||
}
|
|
||||||
|
|
||||||
pub fn zero() -> Vec3{
|
|
||||||
Vec3{
|
|
||||||
x: 0.0,
|
|
||||||
y: 0.0,
|
|
||||||
z: 0.0,
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn ones() -> Vec3{
|
pub fn ones() -> Vec2<f32> {
|
||||||
Vec3 {
|
Vec2 { x: 1.0, y: 1.0 }
|
||||||
x: 1.0,
|
}
|
||||||
y: 1.0,
|
|
||||||
z: 1.0
|
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec2<f32> {
|
||||||
|
Vec2 {
|
||||||
|
x: srng.sample(distrib),
|
||||||
|
y: srng.sample(distrib),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Vec2<T>
|
||||||
|
where
|
||||||
|
T: std::ops::Mul,
|
||||||
|
{
|
||||||
|
pub fn new(x: T, y: T) -> Vec2<T> {
|
||||||
|
Vec2 { x, y }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Add for Vec2<T>
|
||||||
|
where
|
||||||
|
T: std::ops::Add<Output = T>,
|
||||||
|
{
|
||||||
|
type Output = Vec2<T>;
|
||||||
|
fn add(self, other: Vec2<T>) -> Vec2<T> {
|
||||||
|
Vec2 {
|
||||||
|
x: self.x + other.x,
|
||||||
|
y: self.y + other.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Mul for Vec2<T>
|
||||||
|
where
|
||||||
|
T: std::ops::Mul<Output = T>,
|
||||||
|
{
|
||||||
|
type Output = Vec2<T>;
|
||||||
|
fn mul(self, other: Vec2<T>) -> Vec2<T> {
|
||||||
|
Vec2 {
|
||||||
|
x: self.x * other.x,
|
||||||
|
y: self.y * other.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Div<f32> for Vec2<f32> {
|
||||||
|
type Output = Vec2<f32>;
|
||||||
|
fn div(self, other: f32) -> Vec2<f32> {
|
||||||
|
Vec2 {
|
||||||
|
x: 1.0 / other * self.x,
|
||||||
|
y: 1.0 / other * self.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Div<i32> for Vec2<i32> {
|
||||||
|
type Output = Vec2<i32>;
|
||||||
|
fn div(self, other: i32) -> Vec2<i32> {
|
||||||
|
Vec2 {
|
||||||
|
x: self.x / other,
|
||||||
|
y: self.y / other,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Div<Vec2<T>> for Vec2<T>
|
||||||
|
where
|
||||||
|
T: std::ops::Div<Output = T>,
|
||||||
|
{
|
||||||
|
type Output = Vec2<T>;
|
||||||
|
fn div(self, other: Vec2<T>) -> Vec2<T> {
|
||||||
|
Vec2 {
|
||||||
|
x: self.x / other.x,
|
||||||
|
y: self.y / other.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> Display for Vec2<T>
|
||||||
|
where
|
||||||
|
T: Display,
|
||||||
|
{
|
||||||
|
// nested type still needs to have Display
|
||||||
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||||
|
let str = format!("{} {}", self.x, self.y);
|
||||||
|
fmt.write_str(&str)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
|
||||||
|
pub struct Vec3 {
|
||||||
|
pub x: f32,
|
||||||
|
pub y: f32,
|
||||||
|
pub z: f32,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Vec3 {
|
||||||
|
pub fn new(x: f32, y: f32, z: f32) -> Vec3 {
|
||||||
|
Vec3 { x, y, z }
|
||||||
|
}
|
||||||
|
|
||||||
|
pub const ZERO: Self = Vec3 {
|
||||||
|
x: 0.0,
|
||||||
|
y: 0.0,
|
||||||
|
z: 0.0,
|
||||||
|
};
|
||||||
|
|
||||||
|
pub const ONES: Self = Vec3 {
|
||||||
|
x: 1.0,
|
||||||
|
y: 1.0,
|
||||||
|
z: 1.0,
|
||||||
|
};
|
||||||
|
|
||||||
|
/// "Up" is considered to be positive-y
|
||||||
|
pub const UP: Self = Vec3 {
|
||||||
|
x: 0.0,
|
||||||
|
y: 1.0,
|
||||||
|
z: 0.0,
|
||||||
|
};
|
||||||
|
|
||||||
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
|
pub fn rand(srng: &mut SmallRng, distrib: Uniform<f32>) -> Vec3 {
|
||||||
Vec3{
|
Vec3 {
|
||||||
x: srng.sample(distrib),
|
x: srng.sample(distrib),
|
||||||
y: srng.sample(distrib),
|
y: srng.sample(distrib),
|
||||||
z: srng.sample(distrib),
|
z: srng.sample(distrib),
|
||||||
@@ -54,11 +151,14 @@ impl Vec3{
|
|||||||
}
|
}
|
||||||
|
|
||||||
pub fn rand_in_unit_sphere(srng: &mut SmallRng) -> Vec3 {
|
pub fn rand_in_unit_sphere(srng: &mut SmallRng) -> Vec3 {
|
||||||
let distrib = Uniform::new(-1.0, 1.0);
|
let distrib = Uniform::new(-1.0, 1.0).unwrap();
|
||||||
loop {
|
loop {
|
||||||
let p = Vec3::rand(srng, distrib);
|
let p = Vec3::rand(srng, distrib);
|
||||||
if p.length_squared() >= 1.0 { continue; }
|
if p.length_squared() >= 1.0 {
|
||||||
else { return p; }
|
continue;
|
||||||
|
} else {
|
||||||
|
return p;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -66,55 +166,54 @@ impl Vec3{
|
|||||||
let distrib = Uniform::new(-1.0, 1.0);
|
let distrib = Uniform::new(-1.0, 1.0);
|
||||||
loop {
|
loop {
|
||||||
let p = Vec3 {
|
let p = Vec3 {
|
||||||
x: srng.sample(distrib),
|
x: srng.sample(distrib.unwrap()),
|
||||||
y: srng.sample(distrib),
|
y: srng.sample(distrib.unwrap()),
|
||||||
z: 0.0,
|
z: 0.0,
|
||||||
};
|
};
|
||||||
if p.length_squared() >= 1.0 { continue; }
|
if p.length_squared() >= 1.0 {
|
||||||
else { return p; }
|
continue;
|
||||||
|
} else {
|
||||||
|
return p;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn rand_unit_vector(srng: &mut SmallRng) -> Vec3 {
|
pub fn rand_unit_vector(srng: &mut SmallRng) -> Vec3 {
|
||||||
return Vec3::as_unit(Vec3::rand_in_unit_sphere(srng));
|
Vec3::as_unit(Vec3::rand_in_unit_sphere(srng))
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn length(&self) -> f32 {
|
pub fn length(&self) -> f32 {
|
||||||
self.length_squared().sqrt()
|
self.length_squared().sqrt()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub fn length_squared(&self) -> f32 {
|
||||||
|
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
|
||||||
|
}
|
||||||
|
|
||||||
pub fn length_squared(&self) -> f32 {
|
|
||||||
(self.x * self.x) + (self.y * self.y) + (self.z * self.z)
|
|
||||||
}
|
|
||||||
|
|
||||||
// roughly equivalent to the `void write_color(...)` in the book
|
// roughly equivalent to the `void write_color(...)` in the book
|
||||||
pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
|
pub fn print_ppm(&self, samples_per_pixel: u32) -> String {
|
||||||
|
|
||||||
let scale = 1.0 / samples_per_pixel as f32;
|
let scale = 1.0 / samples_per_pixel as f32;
|
||||||
|
|
||||||
// now with gamma correction
|
// now with gamma correction
|
||||||
let r = (self.x * scale).sqrt();
|
let r = (self.x * scale).sqrt();
|
||||||
let g = (self.y * scale).sqrt();
|
let g = (self.y * scale).sqrt();
|
||||||
let b = (self.z * scale).sqrt();
|
let b = (self.z * scale).sqrt();
|
||||||
|
|
||||||
let ir = (r.clamp( 0.0, 0.999) * 256.0) as i32;
|
let ir = (r.clamp(0.0, 0.999) * 256.0) as i32;
|
||||||
let ig = (g.clamp( 0.0, 0.999) * 256.0) as i32;
|
let ig = (g.clamp(0.0, 0.999) * 256.0) as i32;
|
||||||
let ib = (b.clamp( 0.0, 0.999) * 256.0) as i32;
|
let ib = (b.clamp(0.0, 0.999) * 256.0) as i32;
|
||||||
format!("{} {} {}", ir, ig, ib)
|
format!("{} {} {}", ir, ig, ib)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn near_zero(&self) -> bool {
|
pub fn near_zero(&self) -> bool {
|
||||||
let epsilon: f32 = 1e-4;
|
let epsilon: f32 = 1e-4;
|
||||||
return
|
self.x.abs() < epsilon && self.y.abs() < epsilon && self.z.abs() < epsilon
|
||||||
self.x.abs() < epsilon &&
|
|
||||||
self.y.abs() < epsilon &&
|
|
||||||
self.z.abs() < epsilon
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn reflect(v: Vec3, n: Vec3) -> Vec3 {
|
pub fn reflect(v: Vec3, n: Vec3) -> Vec3 {
|
||||||
return v - n * Vec3::dot(v, n) * 2.0;
|
v - n * Vec3::dot(v, n) * 2.0
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 {
|
pub fn refract(uv: Vec3, n: Vec3, etai_over_etat: f32) -> Vec3 {
|
||||||
let cos_theta = Vec3::dot(-uv, n).min(1.0);
|
let cos_theta = Vec3::dot(-uv, n).min(1.0);
|
||||||
let r_out_perp = (uv + n * cos_theta) * etai_over_etat;
|
let r_out_perp = (uv + n * cos_theta) * etai_over_etat;
|
||||||
@@ -122,156 +221,153 @@ impl Vec3{
|
|||||||
r_out_perp + r_out_parallel
|
r_out_perp + r_out_parallel
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn dot(left: Vec3, right: Vec3) -> f32{
|
pub fn dot(left: Vec3, right: Vec3) -> f32 {
|
||||||
left.x * right.x +
|
left.x * right.x + left.y * right.y + left.z * right.z
|
||||||
left.y * right.y +
|
|
||||||
left.z * right.z
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn cross(u: Vec3, v: Vec3) -> Vec3{
|
pub fn cross(u: Vec3, v: Vec3) -> Vec3 {
|
||||||
Vec3{
|
Vec3 {
|
||||||
x: u.y * v.z - u.z * v.y,
|
x: u.y * v.z - u.z * v.y,
|
||||||
y: u.z * v.x - u.x * v.z,
|
y: u.z * v.x - u.x * v.z,
|
||||||
z: u.x * v.y - u.y * v.x
|
z: u.x * v.y - u.y * v.x,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn as_unit(v: Vec3) -> Vec3 {
|
pub fn as_unit(v: Vec3) -> Vec3 {
|
||||||
let len = v.length();
|
let len = v.length();
|
||||||
v / len
|
v / len
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
impl Add for Vec3 {
|
impl Add for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn add(self, other: Vec3) -> Vec3 {
|
fn add(self, other: Vec3) -> Vec3 {
|
||||||
Vec3{
|
Vec3 {
|
||||||
x: self.x + other.x,
|
x: self.x + other.x,
|
||||||
y: self.y + other.y,
|
y: self.y + other.y,
|
||||||
z: self.z + other.z,
|
z: self.z + other.z,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl AddAssign for Vec3 {
|
impl AddAssign for Vec3 {
|
||||||
fn add_assign(&mut self, other: Vec3){
|
fn add_assign(&mut self, other: Vec3) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x + other.x,
|
x: self.x + other.x,
|
||||||
y: self.y + other.y,
|
y: self.y + other.y,
|
||||||
z: self.z + other.z
|
z: self.z + other.z,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Sub for Vec3 {
|
impl Sub for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn sub(self, other: Vec3) -> Vec3 {
|
fn sub(self, other: Vec3) -> Vec3 {
|
||||||
Vec3 {
|
Vec3 {
|
||||||
x: self.x - other.x,
|
x: self.x - other.x,
|
||||||
y: self.y - other.y,
|
y: self.y - other.y,
|
||||||
z: self.z - other.z,
|
z: self.z - other.z,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl SubAssign for Vec3 {
|
impl SubAssign for Vec3 {
|
||||||
fn sub_assign(&mut self, other: Vec3){
|
fn sub_assign(&mut self, other: Vec3) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x - other.x,
|
x: self.x - other.x,
|
||||||
y: self.y - other.y,
|
y: self.y - other.y,
|
||||||
z: self.z - other.z
|
z: self.z - other.z,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Mul<Vec3> for Vec3 {
|
impl Mul<Vec3> for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn mul(self, other: Vec3) -> Vec3 {
|
fn mul(self, other: Vec3) -> Vec3 {
|
||||||
Vec3 {
|
Vec3 {
|
||||||
x: self.x * other.x,
|
x: self.x * other.x,
|
||||||
y: self.y * other.y,
|
y: self.y * other.y,
|
||||||
z: self.z * other.z,
|
z: self.z * other.z,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Mul<f32> for Vec3{
|
impl Mul<f32> for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn mul(self, other: f32) -> Vec3 {
|
fn mul(self, other: f32) -> Vec3 {
|
||||||
Vec3 {
|
Vec3 {
|
||||||
x: self.x * other,
|
x: self.x * other,
|
||||||
y: self.y * other,
|
y: self.y * other,
|
||||||
z: self.z * other,
|
z: self.z * other,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl MulAssign<Vec3> for Vec3 {
|
impl MulAssign<Vec3> for Vec3 {
|
||||||
fn mul_assign(&mut self, other: Vec3){
|
fn mul_assign(&mut self, other: Vec3) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x * other.x,
|
x: self.x * other.x,
|
||||||
y: self.y * other.y,
|
y: self.y * other.y,
|
||||||
z: self.z * other.z
|
z: self.z * other.z,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl MulAssign<f32> for Vec3{
|
impl MulAssign<f32> for Vec3 {
|
||||||
fn mul_assign(&mut self, other: f32){
|
fn mul_assign(&mut self, other: f32) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x * other,
|
x: self.x * other,
|
||||||
y: self.y * other,
|
y: self.y * other,
|
||||||
z: self.z * other
|
z: self.z * other,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Div<Vec3> for Vec3 {
|
impl Div<Vec3> for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn div(self, other: Vec3) -> Vec3 {
|
fn div(self, other: Vec3) -> Vec3 {
|
||||||
Vec3 {
|
Vec3 {
|
||||||
x: self.x / other.x,
|
x: self.x / other.x,
|
||||||
y: self.y / other.y,
|
y: self.y / other.y,
|
||||||
z: self.z / other.z,
|
z: self.z / other.z,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Div<f32> for Vec3 {
|
impl Div<f32> for Vec3 {
|
||||||
type Output = Vec3;
|
type Output = Vec3;
|
||||||
fn div(self, other: f32) -> Vec3 {
|
fn div(self, other: f32) -> Vec3 {
|
||||||
Vec3 {
|
Vec3 {
|
||||||
x: 1.0/other * self.x,
|
x: 1.0 / other * self.x,
|
||||||
y: 1.0/other * self.y,
|
y: 1.0 / other * self.y,
|
||||||
z: 1.0/other * self.z,
|
z: 1.0 / other * self.z,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl DivAssign<Vec3> for Vec3 {
|
impl DivAssign<Vec3> for Vec3 {
|
||||||
fn div_assign(&mut self, other: Vec3){
|
fn div_assign(&mut self, other: Vec3) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x / other.x,
|
x: self.x / other.x,
|
||||||
y: self.y / other.y,
|
y: self.y / other.y,
|
||||||
z: self.z / other.z
|
z: self.z / other.z,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl DivAssign<f32> for Vec3 {
|
impl DivAssign<f32> for Vec3 {
|
||||||
fn div_assign(&mut self, other: f32){
|
fn div_assign(&mut self, other: f32) {
|
||||||
*self = Self {
|
*self = Self {
|
||||||
x: self.x / other,
|
x: self.x / other,
|
||||||
y: self.y / other,
|
y: self.y / other,
|
||||||
z: self.z / other
|
z: self.z / other,
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Neg for Vec3{
|
impl Neg for Vec3 {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
fn neg(self) -> Self::Output {
|
fn neg(self) -> Self::Output {
|
||||||
Vec3{
|
Vec3 {
|
||||||
x: -self.x,
|
x: -self.x,
|
||||||
y: -self.y,
|
y: -self.y,
|
||||||
z: -self.z,
|
z: -self.z,
|
||||||
@@ -280,27 +376,26 @@ impl Neg for Vec3{
|
|||||||
}
|
}
|
||||||
|
|
||||||
impl Display for Vec3 {
|
impl Display for Vec3 {
|
||||||
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
|
||||||
let str = format!("{} {} {}", self.x, self.y, self.z);
|
let str = format!("{} {} {}", self.x, self.y, self.z);
|
||||||
fmt.write_str(&str)?;
|
fmt.write_str(&str)?;
|
||||||
Ok(())
|
Ok(())
|
||||||
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Copy, Clone)]
|
#[derive(Copy, Clone)]
|
||||||
pub struct Ray{
|
pub struct Ray {
|
||||||
pub orig: Vec3,
|
pub orig: Vec3,
|
||||||
pub dir: Vec3,
|
pub dir: Vec3,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Ray{
|
impl Ray {
|
||||||
pub fn at(&self, t: f32) -> Vec3 {
|
pub fn at(&self, t: f32) -> Vec3 {
|
||||||
self.orig + self.dir*t
|
self.orig + self.dir * t
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive (Copy, Clone)]
|
#[derive(Copy, Clone)]
|
||||||
pub struct Rect {
|
pub struct Rect {
|
||||||
pub x: i32,
|
pub x: i32,
|
||||||
pub y: i32,
|
pub y: i32,
|
||||||
@@ -308,189 +403,205 @@ pub struct Rect {
|
|||||||
pub h: i32,
|
pub h: i32,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
impl Rect {
|
||||||
|
pub fn pos(&self) -> Vec2i {
|
||||||
|
Vec2i {
|
||||||
|
x: self.x,
|
||||||
|
y: self.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn size(&self) -> Vec2i {
|
||||||
|
Vec2i {
|
||||||
|
x: self.w - self.x,
|
||||||
|
y: self.h - self.y,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#[cfg(test)]
|
#[cfg(test)]
|
||||||
mod test{
|
mod test {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_add(){
|
fn test_add() {
|
||||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||||
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(1.0, 1.0, 1.0);
|
let expected = Vec3::new(1.0, 1.0, 1.0);
|
||||||
|
|
||||||
assert_eq!( v1+v2, expected );
|
assert_eq!(v1 + v2, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_add_assign(){
|
fn test_add_assign() {
|
||||||
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
||||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
let expected = Vec3::new(1.0, 1.0, 1.0);
|
let expected = Vec3::new(1.0, 1.0, 1.0);
|
||||||
|
|
||||||
v1+=v2;
|
v1 += v2;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_sub(){
|
fn test_sub() {
|
||||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||||
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
let v2 = Vec3::new(0.0, 0.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(1.0, 1.0, -1.0);
|
let expected = Vec3::new(1.0, 1.0, -1.0);
|
||||||
|
|
||||||
assert_eq!( v1-v2, expected );
|
assert_eq!(v1 - v2, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_sub_assign(){
|
fn test_sub_assign() {
|
||||||
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
let mut v1 = Vec3::new(0.0, 1.0, 1.0);
|
||||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
let expected = Vec3::new(-1.0, 1.0, 1.0);
|
let expected = Vec3::new(-1.0, 1.0, 1.0);
|
||||||
|
|
||||||
v1-=v2;
|
v1 -= v2;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_mul_vec(){
|
fn test_mul_vec() {
|
||||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(0.1, 1.0, 0.7);
|
let expected = Vec3::new(0.1, 1.0, 0.7);
|
||||||
|
|
||||||
assert_eq!( v1*v2, expected );
|
assert_eq!(v1 * v2, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_mul_float(){
|
fn test_mul_float() {
|
||||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let f1 = 0.5;
|
let f1 = 0.5;
|
||||||
|
|
||||||
let expected = Vec3::new(0.05, 0.25, 0.35);
|
let expected = Vec3::new(0.05, 0.25, 0.35);
|
||||||
|
|
||||||
assert_eq!( v1*f1, expected );
|
assert_eq!(v1 * f1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_mul_vec_assign(){
|
fn test_mul_vec_assign() {
|
||||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(0.1, 1.0, 0.7);
|
let expected = Vec3::new(0.1, 1.0, 0.7);
|
||||||
|
|
||||||
v1*=v2;
|
v1 *= v2;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_mul_float_assign(){
|
fn test_mul_float_assign() {
|
||||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let f1 = 0.5;
|
let f1 = 0.5;
|
||||||
|
|
||||||
let expected = Vec3::new(0.05, 0.25, 0.35);
|
let expected = Vec3::new(0.05, 0.25, 0.35);
|
||||||
|
|
||||||
v1*=f1;
|
v1 *= f1;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_div_vec(){
|
fn test_div_vec() {
|
||||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let v2 = Vec3::new(0.5, 2.0, 1.0);
|
let v2 = Vec3::new(0.5, 2.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(0.2, 0.25, 0.7);
|
let expected = Vec3::new(0.2, 0.25, 0.7);
|
||||||
|
|
||||||
assert_eq!( v1/v2, expected );
|
assert_eq!(v1 / v2, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_div_float(){
|
fn test_div_float() {
|
||||||
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
let v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let f1 = 0.5;
|
let f1 = 0.5;
|
||||||
|
|
||||||
let expected = Vec3::new(0.2, 1.0, 1.4);
|
let expected = Vec3::new(0.2, 1.0, 1.4);
|
||||||
|
|
||||||
assert_eq!( v1/f1, expected );
|
assert_eq!(v1 / f1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_div_vec_assign(){
|
fn test_div_vec_assign() {
|
||||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
let v2 = Vec3::new(1.0, 2.0, 1.0);
|
||||||
|
|
||||||
let expected = Vec3::new(0.1, 0.25, 0.7);
|
let expected = Vec3::new(0.1, 0.25, 0.7);
|
||||||
|
|
||||||
v1/=v2;
|
v1 /= v2;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_div_float_assign(){
|
fn test_div_float_assign() {
|
||||||
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
let mut v1 = Vec3::new(0.1, 0.5, 0.7);
|
||||||
let f1 = 0.5;
|
let f1 = 0.5;
|
||||||
|
|
||||||
let expected = Vec3::new(0.2, 1., 1.4);
|
let expected = Vec3::new(0.2, 1., 1.4);
|
||||||
|
|
||||||
v1/=f1;
|
v1 /= f1;
|
||||||
assert_eq!( v1, expected );
|
assert_eq!(v1, expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_length_squared(){
|
fn test_length_squared() {
|
||||||
let v = Vec3::new(2.0, 0.0, 2.0);
|
let v = Vec3::new(2.0, 0.0, 2.0);
|
||||||
let len = v.length_squared();
|
let len = v.length_squared();
|
||||||
assert_eq!(len, 8.0);
|
assert_eq!(len, 8.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_length(){
|
fn test_length() {
|
||||||
let v = Vec3::new(3.0, 4.0, 0.0);
|
let v = Vec3::new(3.0, 4.0, 0.0);
|
||||||
let len = v.length();
|
let len = v.length();
|
||||||
assert_eq!(len, 5.0)
|
assert_eq!(len, 5.0)
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_dot_perpendicular(){
|
fn test_dot_perpendicular() {
|
||||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||||
assert_eq!(Vec3::dot(v1, v2), 0.0);
|
assert_eq!(Vec3::dot(v1, v2), 0.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_dot_parallel(){
|
fn test_dot_parallel() {
|
||||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
assert_eq!(Vec3::dot(v1, v2), 1.0);
|
assert_eq!(Vec3::dot(v1, v2), 1.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_dot_acute(){
|
fn test_dot_acute() {
|
||||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||||
let v2 = Vec3::new(0.5, 1.0, 0.0);
|
let v2 = Vec3::new(0.5, 1.0, 0.0);
|
||||||
assert_eq!(Vec3::dot(v1, v2), 1.5);
|
assert_eq!(Vec3::dot(v1, v2), 1.5);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_dot_obtuse(){
|
fn test_dot_obtuse() {
|
||||||
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
let v1 = Vec3::new(1.0, 1.0, 0.0);
|
||||||
let v2 = Vec3::new(0.5, -1.0, 0.0);
|
let v2 = Vec3::new(0.5, -1.0, 0.0);
|
||||||
assert_eq!(Vec3::dot(v1, v2), -0.5);
|
assert_eq!(Vec3::dot(v1, v2), -0.5);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_cross_perpendicular(){
|
fn test_cross_perpendicular() {
|
||||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||||
|
|
||||||
let expected = Vec3::new(0.0, 0.0, 1.0);
|
let expected = Vec3::new(0.0, 0.0, 1.0);
|
||||||
assert_eq!(Vec3::cross(v1, v2), expected);
|
assert_eq!(Vec3::cross(v1, v2), expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_cross_parallel(){
|
fn test_cross_parallel() {
|
||||||
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
let v1 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
let v2 = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
@@ -500,7 +611,7 @@ mod test{
|
|||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_cross_111(){
|
fn test_cross_111() {
|
||||||
let v1 = Vec3::new(1.0, 1.0, 1.0);
|
let v1 = Vec3::new(1.0, 1.0, 1.0);
|
||||||
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
let v2 = Vec3::new(0.0, 1.0, 0.0);
|
||||||
|
|
||||||
@@ -510,32 +621,32 @@ mod test{
|
|||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_unit_shorten(){
|
fn test_unit_shorten() {
|
||||||
let v = Vec3::new(2.0, 0.0, 0.0);
|
let v = Vec3::new(2.0, 0.0, 0.0);
|
||||||
let expected = Vec3::new(1.0, 0.0, 0.0);
|
let expected = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
assert_eq!(Vec3::as_unit(v), expected);
|
assert_eq!(Vec3::as_unit(v), expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_unit_lengthen(){
|
fn test_unit_lengthen() {
|
||||||
let v = Vec3::new(0.5, 0.0, 0.0);
|
let v = Vec3::new(0.5, 0.0, 0.0);
|
||||||
let expected = Vec3::new(1.0, 0.0, 0.0);
|
let expected = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
assert_eq!(Vec3::as_unit(v), expected);
|
assert_eq!(Vec3::as_unit(v), expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_unit_111(){
|
fn test_unit_111() {
|
||||||
let v = Vec3::new(1.0, 1.0, 1.0);
|
let v = Vec3::new(1.0, 1.0, 1.0);
|
||||||
let expected = Vec3::new(0.577350269,0.577350269,0.577350269);
|
let expected = Vec3::new(0.577350269, 0.577350269, 0.577350269);
|
||||||
|
|
||||||
assert!(Vec3::as_unit(v) <= expected * 1.001); // within very small under-estimate
|
assert!(Vec3::as_unit(v) <= expected * 1.001); // within very small under-estimate
|
||||||
assert!(Vec3::as_unit(v) >= expected * 0.999); // within very small over-estimate
|
assert!(Vec3::as_unit(v) >= expected * 0.999); // within very small over-estimate
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_reflect_flat(){
|
fn test_reflect_flat() {
|
||||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let normal = Vec3::new(-1.0, 0.0, 0.0);
|
let normal = Vec3::new(-1.0, 0.0, 0.0);
|
||||||
|
|
||||||
@@ -543,24 +654,22 @@ mod test{
|
|||||||
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
||||||
assert!(refl == expected);
|
assert!(refl == expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_reflect_flat_back(){
|
fn test_reflect_flat_back() {
|
||||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let normal = Vec3::new(1.0, 0.0, 0.0);
|
let normal = Vec3::new(1.0, 0.0, 0.0);
|
||||||
|
|
||||||
let refl = Vec3::reflect(ray, normal);
|
let refl = Vec3::reflect(ray, normal);
|
||||||
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
let expected = Vec3::new(-1.0, 0.0, 0.0);
|
||||||
assert!(refl == expected);
|
assert!(refl == expected);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn test_reflect_45(){
|
fn test_reflect_45() {
|
||||||
let ray = Vec3::new(1.0, 0.0, 0.0);
|
let ray = Vec3::new(1.0, 0.0, 0.0);
|
||||||
let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0));
|
let normal = Vec3::as_unit(Vec3::new(-1.0, 1.0, 0.0));
|
||||||
|
|
||||||
|
|
||||||
let refl = Vec3::reflect(ray, normal);
|
let refl = Vec3::reflect(ray, normal);
|
||||||
let expected = Vec3::new(0.0, 1.0, 0.0);
|
let expected = Vec3::new(0.0, 1.0, 0.0);
|
||||||
let diff = refl - expected;
|
let diff = refl - expected;
|
||||||
@@ -569,15 +678,12 @@ mod test{
|
|||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn check_lerp(){
|
fn check_lerp() {
|
||||||
let ray = Ray{
|
let ray = Ray {
|
||||||
orig: Vec3::new(0.0, 0.0, 0.0),
|
orig: Vec3::new(0.0, 0.0, 0.0),
|
||||||
dir: Vec3::new(1.0, 1.0, 0.0)
|
dir: Vec3::new(1.0, 1.0, 0.0),
|
||||||
};
|
};
|
||||||
let half = ray.at(0.5);
|
let half = ray.at(0.5);
|
||||||
assert_eq!(
|
assert_eq!(half, Vec3::new(0.5, 0.5, 0.0));
|
||||||
half,
|
|
||||||
Vec3::new(0.5, 0.5, 0.0)
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
344
src/renderer.rs
@@ -1,275 +1,127 @@
|
|||||||
|
use crate::primitives::{Ray, Rect, Vec2f, Vec2i, Vec3};
|
||||||
|
use crate::scene::{Hittable, Scene};
|
||||||
|
|
||||||
use crate::primitives::{Vec3, Ray, Rect};
|
use rand::rngs::SmallRng;
|
||||||
use crate::scene::{
|
|
||||||
Camera,
|
use itertools::{self, Itertools};
|
||||||
Hittable,
|
|
||||||
|
const SKY_COLOR: Vec3 = Vec3 {
|
||||||
|
x: 0.5,
|
||||||
|
y: 0.7,
|
||||||
|
z: 1.0,
|
||||||
};
|
};
|
||||||
|
|
||||||
use core::cmp::Ordering;
|
pub struct RenderProperties {
|
||||||
use std::thread;
|
pub samples: u32, // samples are averaged results over a pixel
|
||||||
use std::sync::mpsc;
|
pub bounces: u32, // bounces are how far the ray will travel (in hits not total distance)
|
||||||
use std::ops;
|
|
||||||
use rand::Rng;
|
|
||||||
use rand::rngs::SmallRng;
|
|
||||||
use rand::distributions::Uniform;
|
|
||||||
use itertools::Itertools;
|
|
||||||
|
|
||||||
// =================
|
|
||||||
// Description parts
|
|
||||||
// =================
|
|
||||||
|
|
||||||
#[derive (Clone)]
|
|
||||||
pub struct RenderContext{
|
|
||||||
pub image: (i32, i32),
|
|
||||||
pub samples_per_pixel: u32,
|
|
||||||
pub max_depth: u32,
|
|
||||||
pub world: Hittable,
|
|
||||||
pub camera: Camera,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
pub struct DistributionContianer {
|
fn to_uv(coord: Vec2i, img_size: Vec2i) -> Vec2f {
|
||||||
pub distrib_zero_one: Uniform<f32>,
|
let u = (coord.x as f32) / ((img_size.x - 1) as f32);
|
||||||
pub distrib_plusminus_one: Uniform<f32>,
|
let v = (coord.y as f32) / ((img_size.y - 1) as f32);
|
||||||
|
Vec2f::new(u, v)
|
||||||
}
|
}
|
||||||
|
|
||||||
impl DistributionContianer {
|
fn ray_color(r: Ray, surface: &Hittable, depth: u32, rng: &mut SmallRng) -> Vec3 {
|
||||||
fn new() -> Self {
|
// recursion guard
|
||||||
DistributionContianer {
|
|
||||||
distrib_zero_one: Uniform::new(0.0, 1.0),
|
|
||||||
distrib_plusminus_one: Uniform::new(-1.0, 1.0),
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// =============
|
|
||||||
// Drawing Parts
|
|
||||||
// =============
|
|
||||||
|
|
||||||
fn render_line(y: i32, small_rng: &mut SmallRng, context: RenderContext, distr: &DistributionContianer) -> Vec<Vec3> {
|
|
||||||
//TODO: Ensure that the compiler hoists the distribution's out as constants
|
|
||||||
// else, do so manually
|
|
||||||
(0..context.image.0).map(|x| {
|
|
||||||
sample_pixel(x, y, small_rng, &context, distr)
|
|
||||||
}).collect()
|
|
||||||
}
|
|
||||||
|
|
||||||
fn ray_color(r: Ray, world: &Hittable, depth: u32, srng: &mut SmallRng, distrib: Uniform<f32> ) -> Vec3 {
|
|
||||||
// recursion depth guard
|
|
||||||
if depth == 0 {
|
if depth == 0 {
|
||||||
return Vec3::zero();
|
return Vec3::ZERO;
|
||||||
}
|
}
|
||||||
|
|
||||||
if let Some(rec) = world.hit(r, 0.001, f32::INFINITY){
|
// cast a ray, interrogate hit record
|
||||||
|
if let Some(record) = surface.hit(r, 0.001, f32::INFINITY) {
|
||||||
let mut scattered = Ray {
|
let mut scattered = Ray {
|
||||||
orig: Vec3::zero(),
|
orig: Vec3::ZERO,
|
||||||
dir: Vec3::zero()
|
dir: Vec3::ZERO,
|
||||||
};
|
};
|
||||||
let mut attenuation = Vec3::zero();
|
let mut attenuation = Vec3::ZERO;
|
||||||
match rec.material {
|
if record
|
||||||
Some(mat) => {
|
.material
|
||||||
if mat.scatter(r, rec, &mut attenuation, &mut scattered, srng) {
|
.scatter(r, &record, &mut attenuation, &mut scattered, rng)
|
||||||
return attenuation * ray_color(scattered, world, depth-1, srng, distrib);
|
{
|
||||||
};
|
return attenuation * ray_color(scattered, surface, depth - 1, rng);
|
||||||
},
|
|
||||||
None => return Vec3::zero(),
|
|
||||||
}
|
}
|
||||||
}
|
} // TODO: explicit else block
|
||||||
|
// Rust gets angry about the inner if{} block because it evaluates to ()
|
||||||
|
// when the else path is taken. This is a problem for a function
|
||||||
|
// that returns Vec3 and not ().
|
||||||
|
|
||||||
|
// when nothing is struck, return sky color
|
||||||
let unitdir = Vec3::as_unit(r.dir);
|
let unitdir = Vec3::as_unit(r.dir);
|
||||||
let t = 0.5 * (unitdir.y + 1.0);
|
let t = 0.5 * (unitdir.y + 1.0);
|
||||||
return Vec3::ones() * (1.0 - t) + Vec3::new(0.5, 0.7, 1.0) * t
|
Vec3::ONES * (1.0 - t) + SKY_COLOR * t
|
||||||
}
|
}
|
||||||
|
|
||||||
fn sample_pixel(x: i32, y: i32, small_rng: &mut SmallRng, context: &RenderContext, distr: &DistributionContianer) -> Vec3{
|
fn sample_pixel(
|
||||||
(0..context.samples_per_pixel).into_iter().fold(
|
coord: Vec2i, // location in image/screen space
|
||||||
Vec3::zero(),
|
scene: &Scene, // scene we're drawing
|
||||||
|color, _sample| {
|
render_props: &RenderProperties,
|
||||||
let u = ((x as f32) + small_rng.sample(distr.distrib_zero_one)) / ((context.image.0 - 1) as f32);
|
img_size: Vec2i,
|
||||||
let v = ((y as f32) + small_rng.sample(distr.distrib_zero_one)) / ((context.image.1 - 1) as f32);
|
// Supplied by the execution environment (the thread)
|
||||||
let ray = context.camera.get_ray(u, v, small_rng);
|
rng: &mut SmallRng,
|
||||||
color + ray_color(ray, &context.world, context.max_depth, small_rng, distr.distrib_plusminus_one)
|
) -> Vec3 {
|
||||||
|
(0..render_props.samples).fold(Vec3::ZERO, |color, _sample| -> Vec3 {
|
||||||
|
let uv = to_uv(coord, img_size);
|
||||||
|
let ray = scene.camera.get_ray(uv.x, uv.y, rng);
|
||||||
|
if ray.dir.x.is_nan() {
|
||||||
|
panic!("Ray dir.x is NAN");
|
||||||
}
|
}
|
||||||
)
|
color + ray_color(ray, &scene.world, render_props.bounces, rng)
|
||||||
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
// ===============
|
pub struct Tile {
|
||||||
// Execution parts
|
_bounds: Rect,
|
||||||
// ===============
|
pub pixels: Vec<Vec3>,
|
||||||
|
|
||||||
/* Iterable that produces pixels left-to-right, top-to-bottom.
|
|
||||||
* `Tile`s represent the render space, not the finished image.
|
|
||||||
* There is no internal pixel buffer
|
|
||||||
*/
|
|
||||||
|
|
||||||
type TileCursorIter = itertools::Product<ops::Range<i32>, ops::Range<i32>>;
|
|
||||||
|
|
||||||
struct Tile {
|
|
||||||
bounds: Rect,
|
|
||||||
context: RenderContext,
|
|
||||||
small_rng: SmallRng,
|
|
||||||
rand_distr: DistributionContianer,
|
|
||||||
cursor: TileCursorIter,
|
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Tile{
|
impl Tile {
|
||||||
fn new(
|
pub fn render_tile(
|
||||||
bounds: Rect,
|
bounds: Rect, // bounds of the region to render
|
||||||
context: RenderContext,
|
img_size: Vec2i, // final image resolution (needed for proper UV mapping)
|
||||||
small_rng: SmallRng,
|
scene: &Scene,
|
||||||
rand_distr: DistributionContianer
|
properties: &RenderProperties, // TODO: Place image size in render properties?
|
||||||
) -> Self
|
rng: &mut SmallRng,
|
||||||
{
|
) -> Self {
|
||||||
Tile { bounds, context, small_rng, rand_distr,
|
let pixel_iter =
|
||||||
cursor: (bounds.x..(bounds.x + bounds.w))
|
(bounds.y..(bounds.y + bounds.h)).cartesian_product(bounds.x..(bounds.x + bounds.w));
|
||||||
.cartesian_product(bounds.y..(bounds.y + bounds.h)
|
let pixels = pixel_iter
|
||||||
)
|
.map(|coord| -> Vec3 {
|
||||||
}
|
sample_pixel(
|
||||||
|
Vec2i {
|
||||||
}
|
x: coord.1,
|
||||||
}
|
y: coord.0,
|
||||||
|
},
|
||||||
impl Iterator for Tile {
|
scene,
|
||||||
type Item = Vec3;
|
properties,
|
||||||
fn next(&mut self) -> Option<Self::Item> {
|
img_size,
|
||||||
if let Some((x, y)) = self.cursor.next(){
|
rng,
|
||||||
Some(sample_pixel(
|
)
|
||||||
x, y,
|
})
|
||||||
&mut self.small_rng,
|
.collect();
|
||||||
&self.context,
|
Self {
|
||||||
&self.rand_distr,
|
_bounds: bounds,
|
||||||
))
|
pixels,
|
||||||
} else {
|
|
||||||
None
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
pub fn render_line(
|
||||||
|
y: i32, // bounding rect and line
|
||||||
|
img_size: Vec2i,
|
||||||
|
scene: &Scene,
|
||||||
#[derive (Clone)]
|
properties: &RenderProperties,
|
||||||
pub enum RenderCommand{
|
rng: &mut SmallRng, // rng utils
|
||||||
Stop,
|
) -> Self {
|
||||||
Line { line_num: i32, context: RenderContext },
|
Tile::render_tile(
|
||||||
}
|
Rect {
|
||||||
|
x: 0,
|
||||||
pub struct RenderResult {
|
y,
|
||||||
pub line_num: i32,
|
w: img_size.x,
|
||||||
pub line: Vec<Vec3>,
|
h: 1,
|
||||||
}
|
|
||||||
|
|
||||||
impl Ord for RenderResult {
|
|
||||||
fn cmp(&self, other: &Self) -> Ordering {
|
|
||||||
if self.line_num > other.line_num {
|
|
||||||
Ordering::Less
|
|
||||||
} else if self.line_num < other.line_num {
|
|
||||||
Ordering::Greater
|
|
||||||
} else {
|
|
||||||
Ordering::Equal
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl PartialOrd for RenderResult {
|
|
||||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
|
||||||
Some(self.cmp(other))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl PartialEq for RenderResult {
|
|
||||||
fn eq(&self, other: &Self) -> bool {
|
|
||||||
self.line_num == other.line_num
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Eq for RenderResult {}
|
|
||||||
|
|
||||||
/*
|
|
||||||
* The dispatcher will hold a list of threads, and a list of command input channels to match.
|
|
||||||
* Helper functions exist to input jobs serially, and then dispatch them to an open thread.
|
|
||||||
*
|
|
||||||
* Since receivers can be matched to several senders, the input end of the result channel will
|
|
||||||
* be cloned and given to each of the threads.
|
|
||||||
* TODO: Consider holding a copy of the render_tx end in case threads exit early and need to
|
|
||||||
* be restored.
|
|
||||||
*/
|
|
||||||
pub struct Dispatcher{
|
|
||||||
handles: Vec<thread::JoinHandle<()>>,
|
|
||||||
command_transmitters: Vec<mpsc::SyncSender<RenderCommand>>,
|
|
||||||
next_to_feed: usize, // gonna do a round-robin style dispatch, ig.
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Dispatcher {
|
|
||||||
pub fn new(srng: &SmallRng, num_threads: usize) -> (Dispatcher, mpsc::Receiver<RenderResult> ) {
|
|
||||||
let mut handles = Vec::new();
|
|
||||||
let mut command_transmitters = Vec::<mpsc::SyncSender<RenderCommand>>::new();
|
|
||||||
|
|
||||||
let (render_tx, render_rx) = mpsc::sync_channel::<RenderResult>(1);
|
|
||||||
|
|
||||||
for _ in 0..num_threads {
|
|
||||||
// create new command tx/rx pairs. Store tx in the list, give rx to the thread.
|
|
||||||
let (command_tx, command_rx) = mpsc::sync_channel::<RenderCommand>(1);
|
|
||||||
// TODO: Pick appropriate command queue depth (or make it controllable, even)
|
|
||||||
|
|
||||||
|
|
||||||
let mut srng = srng.clone();
|
|
||||||
let threads_result_tx = render_tx.clone();
|
|
||||||
let distribs = DistributionContianer::new();
|
|
||||||
let thread_handle = thread::spawn(move || {
|
|
||||||
while let Ok(job) = command_rx.recv() {
|
|
||||||
match job {
|
|
||||||
RenderCommand::Stop => {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
RenderCommand::Line { line_num, context } => {
|
|
||||||
let line = render_line(line_num, &mut srng, context, &distribs);
|
|
||||||
let result = RenderResult { line_num, line };
|
|
||||||
threads_result_tx.send(result).unwrap();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
||||||
handles.push(thread_handle);
|
|
||||||
command_transmitters.push(command_tx);
|
|
||||||
}
|
|
||||||
// finally, stash everything in the Dispatcher struct and return.
|
|
||||||
(
|
|
||||||
Dispatcher{
|
|
||||||
handles,
|
|
||||||
command_transmitters,
|
|
||||||
next_to_feed: 0,
|
|
||||||
},
|
},
|
||||||
render_rx
|
img_size,
|
||||||
|
scene,
|
||||||
|
properties,
|
||||||
|
rng,
|
||||||
)
|
)
|
||||||
}
|
}
|
||||||
|
|
||||||
//TODO: Reconsider round-robin dispatch
|
|
||||||
// When passing the message to threads which are still busy, this function
|
|
||||||
// will block (it's a sync_channel). While blocked, other threads could
|
|
||||||
// become available and left idle.
|
|
||||||
pub fn submit_job(&mut self, command: RenderCommand) -> Result<(), mpsc::SendError<RenderCommand>> {
|
|
||||||
// Stop command is special. We'll broadcast it to all threads.
|
|
||||||
if let RenderCommand::Stop = command {
|
|
||||||
for channel in &self.command_transmitters {
|
|
||||||
return channel.send(command.clone());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Check that `next_to_feed` is in-bounds, and then insert.
|
|
||||||
// index is post-incremented with this function call.
|
|
||||||
|
|
||||||
// wrap when at length (0-indexed so last valid index is len-1)
|
|
||||||
if self.next_to_feed == self.handles.len() {
|
|
||||||
self.next_to_feed = 0;
|
|
||||||
} else if self.next_to_feed > self.handles.len() {
|
|
||||||
panic!("How the hell did a +=1 skip past the maximum allowed size?");
|
|
||||||
}
|
|
||||||
|
|
||||||
match self.command_transmitters.get(self.next_to_feed){
|
|
||||||
Some(target) => target.send(command).unwrap(),
|
|
||||||
None => panic!("oh god oh fuck"),
|
|
||||||
}
|
|
||||||
self.next_to_feed += 1;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
246
src/scene.rs
@@ -1,61 +1,64 @@
|
|||||||
|
use crate::primitives::{Ray, Vec3};
|
||||||
use crate::primitives::{Vec3, Ray};
|
|
||||||
|
|
||||||
use rand::Rng;
|
use rand::Rng;
|
||||||
|
use rand::distr::Uniform;
|
||||||
use rand::rngs::SmallRng;
|
use rand::rngs::SmallRng;
|
||||||
use rand::distributions::Uniform;
|
|
||||||
|
|
||||||
pub struct HitRecord{
|
pub struct HitRecord {
|
||||||
pub p: Vec3,
|
pub p: Vec3,
|
||||||
pub normal: Vec3,
|
pub normal: Vec3,
|
||||||
pub material: Option<Material>,
|
pub material: Material,
|
||||||
pub t: f32,
|
pub t: f32,
|
||||||
pub front_face: bool,
|
pub front_face: bool,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl HitRecord{
|
impl HitRecord {
|
||||||
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) -> (){
|
pub fn set_face_normal(&mut self, r: Ray, outward_normal: Vec3) {
|
||||||
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
|
self.front_face = Vec3::dot(r.dir, outward_normal) < 0.0;
|
||||||
self.normal = if self.front_face { outward_normal } else { -outward_normal };
|
self.normal = if self.front_face {
|
||||||
|
outward_normal
|
||||||
|
} else {
|
||||||
|
-outward_normal
|
||||||
|
};
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive (Clone)]
|
#[derive(Clone)]
|
||||||
pub enum Hittable {
|
pub enum Hittable {
|
||||||
Sphere { center: Vec3, radius: f32, material: Option<Material> },
|
Sphere {
|
||||||
HittableList { hittables: Vec<Hittable> }
|
center: Vec3,
|
||||||
|
radius: f32,
|
||||||
|
material: Material,
|
||||||
|
},
|
||||||
|
HittableList {
|
||||||
|
hittables: Vec<Hittable>,
|
||||||
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Hittable {
|
impl Hittable {
|
||||||
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
|
pub fn hit(&self, r: Ray, t_min: f32, t_max: f32) -> Option<HitRecord> {
|
||||||
match self {
|
match self {
|
||||||
Hittable::HittableList { hittables } => {
|
Hittable::HittableList { hittables } => hittables
|
||||||
let mut might_return = HitRecord {
|
.iter()
|
||||||
p: Vec3::zero(),
|
.map(|obj| -> Option<HitRecord> { obj.hit(r, t_min, t_max) })
|
||||||
normal: Vec3::zero(),
|
.filter(|obj| obj.is_some())
|
||||||
material: None,
|
.min_by(|lhs, rhs| {
|
||||||
t: t_max,
|
let lhs = lhs.as_ref().unwrap();
|
||||||
front_face: false,
|
let rhs = rhs.as_ref().unwrap();
|
||||||
};
|
lhs.t.partial_cmp(&rhs.t).expect("Couldn't compare??")
|
||||||
let mut hit_anything = false;
|
})
|
||||||
|
.unwrap_or(None),
|
||||||
|
|
||||||
for item in hittables {
|
Hittable::Sphere {
|
||||||
if let Some(record) = item.hit(r, t_min, might_return.t){
|
center,
|
||||||
hit_anything = true;
|
radius,
|
||||||
might_return = record;
|
material,
|
||||||
}
|
} => {
|
||||||
}
|
|
||||||
if hit_anything{
|
|
||||||
return Some(might_return);
|
|
||||||
} else { return None; }
|
|
||||||
}
|
|
||||||
|
|
||||||
Hittable::Sphere { center, radius, material } => {
|
|
||||||
let oc = r.orig - *center;
|
let oc = r.orig - *center;
|
||||||
let a = r.dir.length_squared();
|
let a = r.dir.length_squared();
|
||||||
let half_b = Vec3::dot(oc, r.dir);
|
let half_b = Vec3::dot(oc, r.dir);
|
||||||
let c = oc.length_squared() - radius * radius;
|
let c = oc.length_squared() - radius * radius;
|
||||||
let discriminant = half_b*half_b - a*c;
|
let discriminant = half_b * half_b - a * c;
|
||||||
|
|
||||||
if discriminant < 0.0 {
|
if discriminant < 0.0 {
|
||||||
return None;
|
return None;
|
||||||
@@ -70,7 +73,7 @@ impl Hittable {
|
|||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
let mut record = HitRecord{
|
let mut record = HitRecord {
|
||||||
p: r.at(root),
|
p: r.at(root),
|
||||||
normal: (r.at(root) - *center) / *radius,
|
normal: (r.at(root) - *center) / *radius,
|
||||||
material: *material,
|
material: *material,
|
||||||
@@ -90,11 +93,10 @@ impl Hittable {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#[derive(Copy, Clone, Debug)]
|
#[derive(Copy, Clone, Debug)]
|
||||||
pub enum Material{
|
pub enum Material {
|
||||||
Lambertian { albedo: Vec3 },
|
Lambertian { albedo: Vec3 },
|
||||||
Metal { albedo:Vec3, fuzz: f32 },
|
Metal { albedo: Vec3, fuzz: f32 },
|
||||||
Dielectric { index_refraction: f32 },
|
Dielectric { index_refraction: f32 },
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -102,7 +104,7 @@ impl Material {
|
|||||||
pub fn scatter(
|
pub fn scatter(
|
||||||
&self,
|
&self,
|
||||||
ray_in: Ray,
|
ray_in: Ray,
|
||||||
rec: HitRecord,
|
rec: &HitRecord,
|
||||||
attenuation: &mut Vec3,
|
attenuation: &mut Vec3,
|
||||||
scattered: &mut Ray,
|
scattered: &mut Ray,
|
||||||
srng: &mut SmallRng,
|
srng: &mut SmallRng,
|
||||||
@@ -112,55 +114,60 @@ impl Material {
|
|||||||
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
|
let scatter_dir = rec.normal + Vec3::rand_unit_vector(srng);
|
||||||
// The compiler might be smart enough to compute this ^^^ just once. In which case,
|
// The compiler might be smart enough to compute this ^^^ just once. In which case,
|
||||||
// I don't need to do this weird dance. Oh well. It'll work.
|
// I don't need to do this weird dance. Oh well. It'll work.
|
||||||
let scatter_dir = if scatter_dir.near_zero() { // if near zero,
|
let scatter_dir = if scatter_dir.near_zero() {
|
||||||
rec.normal // replace with normal
|
// if near zero,
|
||||||
|
rec.normal // replace with normal
|
||||||
} else {
|
} else {
|
||||||
scatter_dir // else preserve current
|
scatter_dir // else preserve current
|
||||||
};
|
};
|
||||||
|
|
||||||
//TODO: Revisit this out-parameter pattern
|
//TODO: Revisit this out-parameter pattern
|
||||||
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
|
// It's a side effect of C++'s obtuse move semantics (and the RTIOW author not
|
||||||
// using them at all)
|
// using them at all)
|
||||||
*scattered = Ray{
|
*scattered = Ray {
|
||||||
orig: rec.p,
|
orig: rec.p,
|
||||||
dir: scatter_dir
|
dir: scatter_dir,
|
||||||
};
|
};
|
||||||
*attenuation = *albedo; // deref on both sides? Wacky
|
*attenuation = *albedo; // deref on both sides? Wacky
|
||||||
return true;
|
true
|
||||||
},
|
}
|
||||||
Material::Metal { albedo, fuzz } => {
|
Material::Metal { albedo, fuzz } => {
|
||||||
let reflected = Vec3::reflect(
|
let reflected = Vec3::reflect(Vec3::as_unit(ray_in.dir), rec.normal);
|
||||||
Vec3::as_unit(ray_in.dir),
|
*scattered = Ray {
|
||||||
rec.normal
|
|
||||||
);
|
|
||||||
*scattered = Ray{
|
|
||||||
orig: rec.p,
|
orig: rec.p,
|
||||||
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
|
dir: reflected + Vec3::rand_in_unit_sphere(srng) * *fuzz,
|
||||||
};
|
};
|
||||||
*attenuation = *albedo;
|
*attenuation = *albedo;
|
||||||
return Vec3::dot(scattered.dir, rec.normal) > 0.0;
|
Vec3::dot(scattered.dir, rec.normal) > 0.0
|
||||||
},
|
}
|
||||||
Material::Dielectric { index_refraction } => {
|
Material::Dielectric { index_refraction } => {
|
||||||
*attenuation = Vec3::ones();
|
*attenuation = Vec3::ONES;
|
||||||
let refraction_ratio = if rec.front_face { 1.0 / index_refraction } else { *index_refraction };
|
let refraction_ratio = if rec.front_face {
|
||||||
|
1.0 / index_refraction
|
||||||
|
} else {
|
||||||
|
*index_refraction
|
||||||
|
};
|
||||||
|
|
||||||
let unit_direction = Vec3::as_unit(ray_in.dir);
|
let unit_direction = Vec3::as_unit(ray_in.dir);
|
||||||
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
|
let cos_theta = Vec3::dot(-unit_direction, rec.normal).min(1.0);
|
||||||
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
|
let sin_theta = (1.0 - cos_theta * cos_theta).sqrt();
|
||||||
|
|
||||||
let cannot_refract = refraction_ratio * sin_theta > 1.0;
|
let cannot_refract = refraction_ratio * sin_theta > 1.0;
|
||||||
let distrib_zero_one = Uniform::new(0.0, 1.0);
|
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
|
||||||
let direction = if cannot_refract || Material::reflectance(cos_theta, refraction_ratio) > srng.sample(distrib_zero_one) {
|
let direction = if cannot_refract
|
||||||
|
|| Material::reflectance(cos_theta, refraction_ratio)
|
||||||
|
> srng.sample(distrib_zero_one)
|
||||||
|
{
|
||||||
Vec3::reflect(unit_direction, rec.normal)
|
Vec3::reflect(unit_direction, rec.normal)
|
||||||
} else {
|
} else {
|
||||||
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
|
Vec3::refract(unit_direction, rec.normal, refraction_ratio)
|
||||||
};
|
};
|
||||||
*scattered = Ray {
|
*scattered = Ray {
|
||||||
orig: rec.p,
|
orig: rec.p,
|
||||||
dir: direction
|
dir: direction,
|
||||||
};
|
};
|
||||||
return true;
|
true
|
||||||
},
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -168,7 +175,7 @@ impl Material {
|
|||||||
// Schlick's approximation for reflectance.
|
// Schlick's approximation for reflectance.
|
||||||
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
|
let r0 = (1.0 - ref_idx) / (1.0 + ref_idx);
|
||||||
let r0 = r0 * r0;
|
let r0 = r0 * r0;
|
||||||
return r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0);
|
r0 + (1.0 - r0) * (1.0 - cosine).powf(5.0)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -178,13 +185,13 @@ pub fn degrees_to_radians(degrees: f32) -> f32 {
|
|||||||
degrees * std::f32::consts::PI / 180.0
|
degrees * std::f32::consts::PI / 180.0
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive (Clone, Copy)]
|
|
||||||
pub struct Camera {
|
pub struct Camera {
|
||||||
origin: Vec3,
|
origin: Vec3,
|
||||||
lower_left_corner: Vec3,
|
lower_left_corner: Vec3,
|
||||||
horizontal: Vec3,
|
horizontal: Vec3,
|
||||||
vertical: Vec3,
|
vertical: Vec3,
|
||||||
u: Vec3, v: Vec3, /*w: Vec3,*/
|
u: Vec3,
|
||||||
|
v: Vec3, /*w: Vec3,*/
|
||||||
lens_radius: f32,
|
lens_radius: f32,
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -196,7 +203,7 @@ impl Camera {
|
|||||||
vfov: f32,
|
vfov: f32,
|
||||||
aspect_ratio: f32,
|
aspect_ratio: f32,
|
||||||
aperture: f32,
|
aperture: f32,
|
||||||
focus_dist: f32
|
focus_dist: f32,
|
||||||
) -> Camera {
|
) -> Camera {
|
||||||
let theta = degrees_to_radians(vfov);
|
let theta = degrees_to_radians(vfov);
|
||||||
let h = (theta / 2.0).tan();
|
let h = (theta / 2.0).tan();
|
||||||
@@ -212,12 +219,13 @@ impl Camera {
|
|||||||
let verti = v * vp_height * focus_dist;
|
let verti = v * vp_height * focus_dist;
|
||||||
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
|
let lower_left_corner = orig - horiz / 2.0 - verti / 2.0 - w * focus_dist;
|
||||||
|
|
||||||
Camera{
|
Camera {
|
||||||
origin: orig,
|
origin: orig,
|
||||||
lower_left_corner,
|
lower_left_corner,
|
||||||
horizontal: horiz,
|
horizontal: horiz,
|
||||||
vertical: verti,
|
vertical: verti,
|
||||||
u, v, /* w,*/
|
u,
|
||||||
|
v, /* w,*/
|
||||||
lens_radius: aperture / 2.0,
|
lens_radius: aperture / 2.0,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -226,14 +234,110 @@ impl Camera {
|
|||||||
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
|
let rd = Vec3::rand_in_unit_disk(srng) * self.lens_radius;
|
||||||
let offset = self.u * rd.x + self.v * rd.y;
|
let offset = self.u * rd.x + self.v * rd.y;
|
||||||
|
|
||||||
let dir = self.lower_left_corner
|
let dir =
|
||||||
+ self.horizontal * s
|
self.lower_left_corner + self.horizontal * s + self.vertical * t - self.origin - offset;
|
||||||
+ self.vertical * t
|
Ray {
|
||||||
- self.origin - offset;
|
|
||||||
Ray{
|
|
||||||
orig: self.origin + offset,
|
orig: self.origin + offset,
|
||||||
dir,
|
dir,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
pub struct Scene {
|
||||||
|
pub camera: Camera,
|
||||||
|
pub world: Hittable,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Scene {
|
||||||
|
pub fn random_world(srng: &mut SmallRng) -> Hittable {
|
||||||
|
let mat_ground = Material::Lambertian {
|
||||||
|
albedo: Vec3::new(0.5, 0.5, 0.5),
|
||||||
|
};
|
||||||
|
let mut world = Hittable::HittableList {
|
||||||
|
hittables: Vec::<Hittable>::new(),
|
||||||
|
};
|
||||||
|
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center: Vec3::new(0.0, -1000.0, 0.0),
|
||||||
|
radius: 1000.0,
|
||||||
|
material: mat_ground,
|
||||||
|
});
|
||||||
|
|
||||||
|
let distrib_zero_one = Uniform::new(0.0, 1.0).unwrap();
|
||||||
|
for a in -11..11 {
|
||||||
|
for b in -11..11 {
|
||||||
|
let choose_mat = srng.sample(distrib_zero_one);
|
||||||
|
let center = Vec3 {
|
||||||
|
x: a as f32 + 0.9 * srng.sample(distrib_zero_one),
|
||||||
|
y: 0.2,
|
||||||
|
z: b as f32 + 0.9 * srng.sample(distrib_zero_one),
|
||||||
|
};
|
||||||
|
if (center - Vec3::new(4.0, 0.2, 0.0)).length() > 0.9 {
|
||||||
|
if choose_mat < 0.8 {
|
||||||
|
// diffuse
|
||||||
|
let albedo =
|
||||||
|
Vec3::rand(srng, distrib_zero_one) * Vec3::rand(srng, distrib_zero_one);
|
||||||
|
let sphere_material = Material::Lambertian { albedo };
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center,
|
||||||
|
radius: 0.2,
|
||||||
|
material: sphere_material,
|
||||||
|
});
|
||||||
|
} else if choose_mat < 0.95 {
|
||||||
|
// metal
|
||||||
|
let distr_albedo = Uniform::new(0.5, 1.0).unwrap();
|
||||||
|
let distr_fuzz = Uniform::new(0.0, 0.5).unwrap();
|
||||||
|
|
||||||
|
let albedo = Vec3::rand(srng, distr_albedo);
|
||||||
|
let fuzz = srng.sample(distr_fuzz);
|
||||||
|
let material = Material::Metal { albedo, fuzz };
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center,
|
||||||
|
radius: 0.2,
|
||||||
|
material,
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
// glass
|
||||||
|
let material = Material::Dielectric {
|
||||||
|
index_refraction: 1.5,
|
||||||
|
};
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center,
|
||||||
|
radius: 0.2,
|
||||||
|
material,
|
||||||
|
});
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
let material1 = Material::Dielectric {
|
||||||
|
index_refraction: 1.5,
|
||||||
|
};
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center: Vec3::new(0.0, 1.0, 0.0),
|
||||||
|
radius: 1.0,
|
||||||
|
material: material1,
|
||||||
|
});
|
||||||
|
|
||||||
|
let material2 = Material::Lambertian {
|
||||||
|
albedo: Vec3::new(0.4, 0.2, 0.1),
|
||||||
|
};
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center: Vec3::new(-4.0, 1.0, 0.0),
|
||||||
|
radius: 1.0,
|
||||||
|
material: material2,
|
||||||
|
});
|
||||||
|
|
||||||
|
let material3 = Material::Metal {
|
||||||
|
albedo: Vec3::new(0.7, 0.6, 0.5),
|
||||||
|
fuzz: 0.0,
|
||||||
|
};
|
||||||
|
world.push(Hittable::Sphere {
|
||||||
|
center: Vec3::new(4.0, 1.0, 0.0),
|
||||||
|
radius: 1.0,
|
||||||
|
material: material3,
|
||||||
|
});
|
||||||
|
world
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|||||||